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Arthropod-borne viral diseases are likely to be affected by the consequences of
climate change with an increase in their distribution and intensity. Among these
infectious diseases, chikungunya and dengue viruses are two (re)emergent
arboviruses transmitted by Aedes species mosquitoes and which have recently
demonstrated their capacity for rapid expansion. They most often cause mild
diseases, but they can both be associated with complications and severe
forms. In Europe, following the establishment of invasive Aedes spp, the first
outbreaks of autochtonous dengue and chikungunya have already occurred.
Northern Europe is currently relatively spared, but climatic projections show
that the conditions are permissive for the establishment of Aedes albopictus
(also known as the tiger mosquito) in the coming decades. It is therefore
essential to question and improve the means of surveillance in northern
Europe, at the dawn of inevitable future epidemics.
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1 Introduction

It is now an established fact that the climate is changing as a result of human activities,

and that this trend will accelerate in the coming decades, unless we change drastically the

way we use energy (1). Consequences on human health are multiple and of extreme

importance, and justify a One Health approach that takes global changes into account

in public health policies (2, 3).

Among human health domains that are likely to be impacted by climate change, now

or in the future, infectious diseases have recently attracted renewed interest. Recent

decades have showed a rapid increase of emerging diseases, mainly zoonoses and

vector-transmitted diseases (4). Arbovirosis—a group of viral diseases transmitted by

arthropod—appear likely to show particular sensitivity to the main abiotic

consequences of climate change, namely rising temperature and changing

precipitation patterns (5).

Arthropods are affected by external temperature, on which their survival, feeding and

reproduction depend (6–8). The alternation of rain and drought, as well as extreme events,

favours the development of stagnant water points, and therefore the reproduction of

mosquitoes (9, 10). Viral replication within the arthropod vector also depends on the

external temperature. Ultimately, the interaction between the vector and the virus

results in a bell-shaped temperature response with an optimum, a lower threshold and

a higher threshold (10–13).
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Evidence of the climate change impact on the distribution of

vectors, the endemic area, and the occurrence of outbreaks

already exist for many arboviruses, including dengue (14),

chikungunya and zika (15), tick-borne encephalitis (16, 17),

Crimean-Congo haemorrhagic fever (18) and West Nile virus

(5, 19). Current researches are largely focused on the

development of predictive distribution models of these diseases,

particularly in Europe (20, 21). These models predict an

expansion of the endemic areas of arboviruses studied towards

higher latitudes and altitudes (22–27). The expected impact is

particularly significant in Europe (23, 24, 28). The spread of

these pathogens in this immunologically naive population could

lead to severe cases and outbreaks (24, 29).

We will focus this review on two emerging Aedes-borne

arboviruses which are already a threat in some European

countries that have to some extent, an animal reservoir and have,

according to current models, a predicted expansion in next

decades toward northern Europe: chikungunya virus (CHIKV)

and dengue virus (DENV).
2 Invasive Aedes mosquitoes

Aedes (Ae.) sppmosquitoes, and in particular Aedes aegypti and

Aedes albopictus, are major vectors of arboviruses, among which

the yellow fever, dengue, chikungunya and zika viruses (30, 31).

Due to their invasion potential and their health importance, they

are the subject of entomological surveillance programs at

nationals and European level (32, 33).
2.1 Aedes albopictus

Aedes albopictus, or tiger mosquito, was originally to be found

in Asia, but has now spread to all continents (34). Currently, Ae.

albopictus is introduced in Belgium, and considered established

in France and Germany, as well as in large parts of Europe

(35, 36). The success of Ae. albopictus in our latitudes can be

explained by its robust physiology and adaptability. Indeed, this

species is capable of surviving and reproducing above the average

annual temperature threshold of 10° or 11°, with optimum

activity between 25 and 30 degrees, and provided that a

minimum of 500 mm of precipitation occurs on an annual basis

(37, 38). Even more surprising, European strains of the mosquito

show a capacity for hibernation, in the form of eggs which enter

diapause in response to the reduction in the photoperiod

(37, 39). This diapause allows European strains to withstand

temperatures down to −10°C during a short period and increases

the hatching rate at the end of winter (39). This species also

proliferates in a much more urban environment than its original

environment, can feed on a wide range of vertebrates, modify its

periods of activity and lay eggs in artificial water points (38, 40).

Furthermore, it is a daytime-biter and shows resistance to

common insecticides, two characteristics that pose problems in

terms of vector control (41).
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When comparing the theoretical climatic thresholds of Ae.

albopictus to current climate data, the fundamental niche of Ae.

albopictus does not yet include northern parts of Europe, mainly

due to insufficient summer temperatures (42). However, more

recent studies based on climatic data from areas already

colonized by this vector conclude that the fundamental niche is

much broader (23, 43). In all cases, the climatic conditions in

northern Europe should not represent an obstacle to the

establishment (and role of vector) of Ae. albopictus by 2050, even

in the most favourable climatic scenarios (23, 24, 44).
2.2 Aedes aegypti

Aedes aegypti was previously established in southern Europe,

around the Mediterranean basin, from which it disappeared in

the early 1900s (37). In recent years, it has reconquered a small

part of European territory, in particular Madeira (45). The

relatively high thermal requirements of Ae. Aegypti currently

prevent its expansion to northern Europe (37). It has an

optimum around 29°C and remains capable of proliferating up to

36°C, while the population decreases below the threshold of 15°C

(46, 47). This threshold temperature of 15 degrees is also

approximately the one below which the adult ceases to be active

(48). Aedes aegypti is rather anthropophilic, although it can feed

on other mammals (37).

The fundamental niche of Ae. aegypti does not currently cover

northern Europe, unlike some southern regions of France, Italy and

Spain (23, 43). Aedes aegypti will see its global distribution area

increase significantly in the coming decades in every climate

change scenario (23, 24, 43). Under the “worst case scenario”

hypothesis it could even cease to be a vector in Africa and make

a shift towards a northern and more seasonal transmission (24).

However, it is not expected for this mosquito to become endemic

in northern Europe by the end of the century (23, 43, 49, 50).
2.3 Current situation of Aedes aegypti and
Ae. albopictus in Europe

Monitoring programs for tropical mosquitoes (in particular

Aedes spp) aim to see the evolution of their population in

Europe. The ECDC distinguishes three phases of colonization of

invasive species: the absence, introduction, and establishment of

the invasive species. Ae. albopictus is already established in most

of the France (with the exception of some northern regions), and

occasionally leads to autochthonous transmission of arboviruses

(51, 52). In Andalusia (Spain), a permanent population of Ae.

aegypti has been established since the end of the last century,

and outbreaks of Aedes-transmitted arboviruses have been

reported since 2009 (15).

Ae. albopictus is not yet established (although recently locally

introduced) in United Kingdom (35, 53, 54). In the Netherlands,

evidence of introduction and even local reproduction of Aedes

aegypti and Aedes albopictus has been found around Schiphol

Airport (54, 55). The first specimen of Ae. albopictus in Belgium
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was found in 2000, it is now regularly introduced (36, 56) and

some specimens survive the Belgian winter (57). See also

Figure 1 for the current and past distributions of Aedes

albopictus in mainland Europe.
2.4 Other Aedes mosquitoes

Ae. japonicus and Ae. koreica are other potentially invasive

Aedes mosquitoes that could cause health issues. There is

evidence of competence of Ae. japonicus for the transmission of

arboviruses such as dengue, chikungunya and Zika virus, in

laboratory setting (58, 59). These two mosquitoes are now widely

established in Europe (60). Their health importance is unknown

to date, and their field transmission competence has not been

established in Europe (58, 59).
3 Aedes-borne diseases

The main arboviruses transmitted by Aedes aegypti (and to

varying extents by Ae. albopictus) present similar epidemiological

features and clinical syndromes.

Most of the time, the natural course of diseases caused by these

viruses consists in the succession of a short incubation phase, a

febrile phase, and a defervescence phase (61, 62). The defervescence

phase progresses within a week either towards recovery or towards
FIGURE 1

Introduction status of the invasive mosquito species aedes albopictus in Euro
dengue cases are indicated on the same map for the period 2014-2017 (A)
available for countries belonging to the EEA. Data obtained from the Europ
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a more severe disease (61, 62). Seroconversion (IgM) is generally

observed one week after symptoms onset (61). However, cross-

reactivity between different flaviviruses can make distinction

complicated, particularly in cases of pre-exposure (infection or

vaccination) (63). Direct detection by PCR is effective but limited to

the first days of the disease (61).
3.1 Chikungunya

Chikungunya virus (CHIKV), a togaviridae, is transmitted by

Aedes spp mosquitoes, especially Ae. aegypti and Ae. albopictus.

Four lineages are currently described, all of which belonging to

the same serotype (64). CHIKV was first isolated from a patient

in Tanzania in 1952 (65). Its natural cycle, originally described in

Asia and the Indian Pacific Islands is sylvatic, with numerous

vertebrates (notably non-human primates, bats and ectothermic

vertebrates) as reservoirs (66, 67). However, epidemics are

characterized by the circulation of the virus in an urban cycle,

with a transmission between mosquitoes and humans, the latter

serving as reservoirs (66). Occasionally the virus can also be

transmitted directly from human to human, through contact

with bodily fluids of highly viremic individuals (68).

Chikungunya disease is classically characterized by a sudden

onset of high fever, severe arthralgia (often with swelling) and a

rash (61, 69). Full recovery is usual within ten days but joint

pain can persist in up to 25% of the patients and become
pe, in 2017 (A), 2021 (B) and 2023 (C) cumulative reported autochtonous
, 2018-2021 (B) and 2022-2023 (C) data regarding DENV cases are only
ean Centre for Diseases Prevention and Control (1–4).
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chronic (69–71). Severe disease, with neurological, renal, cardiac or

metabolic involvement is rare and 1 death per 1,000 cases is

observed, mainly among comorbid patients (72).

Chikungunya remained relatively unknown until the early

2000s. In 2004, an epidemic started in Kenya and spread in

2005—2006 to the islands of the Indian Ocean, notably the

Reunion Island (66). The epidemic that occurred in Reunion was

striking due to its intensity and the fact that its main vector was

Ae. albopictus, which was previously thought to be only a

secondary vector (73). These two characteristics were partially

explained by the A226V mutation altering a membrane fusion

glycoprotein (74). This mutation makes Ae. albopictus slightly

more competent than Ae. aegypti for the E1-A226V variant,

which rapidly constituted the main variant in Reunion (75, 76, 77).

Another important cause of the severity of the Reunion

epidemic was the immunologically naive nature of the population

to this arbovirus (48).

Since then, other significant outbreaks have occurred around the

world, including several in Europe. In 2007, the first Chikungunya

outbreak in Europe was recorded in Italy (34, 78). In the following

years, a few indigenous cases were reported in France, often

associated with extreme climatic events (34, 51, 79, 80). If the

CHIKV strain with the E1-A226V mutation shows, in most

studies, better transmissibility by Ae. albopictus, it is not the only

strain transmitted in Europe by this vector (81). Indeed, a strain

without this mutation caused an epidemic in Italy in 2017 (82),

during which the competence of Ae. albopictus was similar to the

2007 CHIKV-E1-A226V outbreak (83).

As discussed previously, the competent vector Ae. albopictus is

already found in northern Europe. Furthermore, the incubation

of CHIKV in Ae. albopictus can occur at temperatures as low as

18°C, resulting in a high transmission rate (84). Therefore, the

climate in some parts of northern Europe is already conducive to a

Chikungunya outbreak in summer (25, 26). In the coming decades,

temperature conditions are expected to allow the transmission of

Chikungunya in northern Europe for 3 months per year (85).
3.2 Dengue

Dengue virus (DENV), a flavivirideae, was first isolated in 1943

(86). There are four serotypes, initially isolated in Asia and

Oceania, which now circulate widely throughout the world,

mainly in Asia, Africa and America (87, 90). Its enzootic cycle

involves specific sylvatic strains circulating between non-human

primates and arboreal mosquitoes (sylvatic cycle). On the other

hand, the epidemic circulation of urban DENV (urban cycle) is

classically described as exclusively depending on the human host

and (peri-)urban mosquitoes’ vector Aedes aegypti and Ae.

Albopictus (86). However, spillovers from the enzootic cycle are

regularly documented and four of these cross-over species

transmission events are thought to be the origin of the four

current urban serotypes of dengue (88). Moreover, there is recent

evidence supporting the fact that other vertebrates can be

infected and their role as urban reservoirs can’t be ruled out

(89). These findings suggest that the role of the animal-human
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interface in the present and future (re)emergence of dengue

shouldn’t be overlooked.

The disease caused by this virus is dengue fever, a usually mild

disease with a spontaneous favourable evolution within 1–2 weeks

(90). However, a more serious disease is also observed, severe

dengue, preferentially affecting children before the age of 15, and

fatal in 20% of cases in the absence of appropriate supporting

care (91). Severe dengue occurs preferentially in areas of

coexistence of different subtypes, and the main causal

mechanism is linked to sequential infection by two different

subtypes, the previous antibodies forming antibody-virus

complexes during the next infection (92). However, the antibody

not being specific to the subtype fails to inactivate the virus and

leads to the antibody-dependent enhancement of the viral

replication, increasing the risk of sepsis (92).

Dengue has undergone the most dramatic increase among

infectious diseases during the last 50 years, with a 30-fold increase

(93). Evidence already exists in Asia of the impact of climate

change on its distribution (14). Models predict an increase in the

endemic area of dengue, an extension of the transmission season

and a shift toward a younger age at secondary infection by dengue

under the effect of climate change (27, 94).

Although Ae. aegypti is historically considered the main vector

of dengue, the role of Aedes albopictus in the transmission of

dengue is increasingly recognized. Its involvement in previous

epidemics in temperate zones has been proven (95). Some studies

even consider that its robustness and lifespan, make Ae.

albopictus a more competent vector than Ae. aegypti for DENV

(96). The optimum temperature for dengue transmission depends

on the vector concerned (97). Ae. albopictus is competent for

dengue transmission at temperatures as low as 21°C (with an

optimum around 30°C) (98). In this interval, increasing

temperature decreases the incubation period and increases the

rate of transmission (99).

In mainland France where Ae. albopictus is established,

autochthonous transmission of DENV has been observed since

2010 (51, 100, 101). This transmission mode remains confined to

small self-limited outbreaks of a few individuals, even if 2022

summer has seen a dramatic increase of these events with 65

indigenous cases (more than the total from 2010 to 2021)

(102, 103). Figure 1 shows the cumulative reported autochthonous

dengue cases in countries of the European Union, in parallel with

the distribution of Ae. albopictus.

Given the projections regarding the likely establishment of Ae.

albopictus in the short term in northern Europe, the rather

moderate temperatures allowing transmission of dengue by this

mosquito, observations already reported in neighboring

countries, and inevitable introductions of DENV (via infected

people), it therefore seems probable that dengue epidemics will

occur in the coming decades in northern Europe.
4 Discussion

Aedine mosquitoes, and in particular Aedes albopictus, have

shown a recent large geographical expansion, becoming
frontiersin.org
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established in regions ever further north of the European continent.

Ae. albopictus is considered as one of the more threatening invasive

species in the world (104). Even under current climatic conditions,

it is expected that the mosquito will continue its dissemination

across the European continent in the next years through human-

mediated spread, considering its fundamental niche already

includes most of this territory (23, 49). Afterwards, as the

suitability of European climate for this mosquito is expected to

continually increase in the next decades, its distribution will

likely include northern Europe by the end of the century (49).

Both Ae. albopictus and Ae. aegypti are vectors of human

health threatening viruses, among which dengue and

chikungunya are of particular concern. Data from other regions

of the world show that the first epidemics of Aedes-borne

viruses were observed between 5 and 15 years after the

establishment of Ae. albopictus (49). On the American

continent, the existence of competent vectors for ZIKV and

CHIKV allowed the introduction of these two viruses in the

2010s. It resulted in large epidemics in the following years and

ultimately the endemic establishment of these diseases

(105, 106). The first European data tend to confirm this

pattern, with an important increase of autochthonous DENV

cases in countries where Ae. albopictus has been well

established for several years (see Figure 1).

These data converge to demonstrate the probability that large

arboviruses epidemics could occur in northern Europe in next

decades. They also tend to support the need to act on different

levels to prevent these arboviruses from posing a serious public

health threat in the coming decades.

Entomological surveillance of invasive mosquitoes species

already exists and is coordinated at European level (107).

However, on the field, some disparities exist in the degree and

methods of surveillance around high-risk introduction routes

(54). Resources to strengthen and improve coordination of

entomological surveillance could therefore help to prevent the

dissemination, especially of Ae. albopictus, in the already

climatically suitable European regions. Furthermore, several

initiatives have been taken to locally control the mosquito

population, including eradication programs for Ae. aegypti in the

Mediterranean (92) or the use of larvicides to control introduced

populations in Belgium (36).

Despite the efforts put in the surveillance and control of

invasive mosquitoes, it is likely that Ae. albopictus will finally

become established in large parts of Europe, and some resources

should be allocated to the next steps of the risk mitigation (49).

One of these next steps have to be the increase of knowledge and

awareness concerning arboviral diseases among healthcare

workers (108, 109). Furthermore, an epidemiologic monitoring as

soon as the vector is established could be effectively done by an

entomo-virological surveillance followed by serologic surveys

(110). Serological surveys are useful to monitor the level of viral

circulation and take timely mitigation measures (111). They also

show that, among travellers, the circulation of dengue is

underestimated (112). However, the serological diagnosis of

arboviruses is still a challenge in many ways, due to laboratory

lack of preparedness and the technical challenge posed by
Frontiers in Epidemiology 05
cross-reactivity among arboviruses (113, 114). Efforts to improve

laboratory preparedness, physician awareness and to develop

accurate and cost-effective diagnostic tools would therefore help

assess the current circulation of these arboviruses and prepare to

respond in a timely manner to a future outbreak.

Finally, when basing assumptions on climate change

modeling scenarios, it must not be neglected that the more

unfavorable the mitigation scenario, the greater the uncertainty

regarding temperature increases and climate extremes (1).

Preparing for the inevitable consequences of the climate change

should therefore not make us forget the crucial importance of

limiting its (potentially unpredictable) impact by continuing

efforts to reduce greenhouse gases and mitigate other human-

mediated global changes.
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