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Transporting results in an
observational epidemiology
setting: purposes, methods,
and applied example
Ghislaine Scelo1, Daniela Zugna1*, Maja Popovic1,
Katrine Strandberg-Larsen2 and Lorenzo Richiardi1

1Department of Medical Sciences, University of Turin, CPO-Piemonte, Turin, Italy, 2Section of
Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
In the medical domain, substantial effort has been invested in generating
internally valid estimates in experimental as well as observational studies, but
limited effort has been made in testing generalizability, or external validity.
Testing the external validity of scientific findings is nevertheless crucial for the
application of knowledge across populations. In particular, transporting
estimates obtained from observational studies requires the combination of
methods for causal inference and methods to transport the effect estimates in
order to minimize biases inherent to observational studies and to account for
differences between the study and target populations. In this paper, the
conceptual framework and assumptions behind transporting results from a
population-based study population to a target population is described in an
observational setting. An applied example to life-course epidemiology, where
internal validity was constructed for illustrative purposes, is shown by using the
targeted maximum likelihood estimator.
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1 Introduction

Interest in external validity of study findings has increased in recent years, leading to a

multiplication of theoretical publications in the field [see for example references (1, 2)], as

well as raising concerns on how well target populations of health interventions are

represented in study populations.

In 2002, Shadish et al. (3) defined external validity generalizations as “inferences about

whether the causal relationship holds over variation in persons, settings, treatment, and

measurement variables”. Lesko et al. (4) used a more technical definition referring on

whether an internally valid effect obtained in a study is an unbiased estimator of the

corresponding effect in a specific population of interest, further referred to as the target

population. Depending on the nature of the target population, this definition may be

consistent with the concepts of either generalizability or transportability: the former

addresses the feasibility of applying a study finding to the background population from

which the study population is a subset, the latter focuses on the setting where the study

population is at least partly external to the target population (5). In observational

analytical studies transportability is more relevant than generalizability as the intent is

often to quantify the effect of an exposure on an outcome in contemporary populations

to inform decision-makers. This is particularly true for life-course epidemiology, where
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long-term longitudinal data collection is in play. Under certain

assumptions often not more stringent than those required for

generalizability, study findings can be transported to different

populations.

When a study is conducted with a specific target population in

mind, the external validity of study findings could guide the choice

of the sampling design. The gold standard would be a random

sample of the target population, either through simple random

sampling or other probability sampling methods that increase the

study efficiency. This is however most often impractical because

of the long latency that there might be between the exposures

and their health effects, which requires to study the (far) past to

guide current decisions when preventive or treatment actions

should be implemented. Populations are “moving targets”, whose

individuals are subject to dynamic processes in form of selection

and self-selection forces, and thus, in the words of Keyes and

Galea, “at any moment in time, the composition of a population

is changing” (6). It follows that any study, representative and

selected cohorts alike, is conducted in a selected population,

which often will differ from the target population (7).

Most literature available in the field focuses on transporting

study findings from randomized controlled trials (RCTs). Indeed,

transportability requires internal validity in the first place and

well-conducted RCTs may provide internally valid estimates of a

causal relationship between the allocated treatments and an

outcome. However, RCTs are relatively rare and often unethical

in health-related research. Transporting study findings from

observational studies is similarly feasible, assuming an internally

valid estimate. Observational studies also confer the advantage of

larger size, enhanced possibilities of long-term follow up and

potentially higher external validity than RCTs considering that

inclusion criteria are often more relaxed than in experimental

settings. Westreich et al. (8) proposed the concept of target

validity, which measures jointly the internal and the external

validity of an effect estimate with respect to a pre-specified target

population. In terms of target validity, a well-conducted

observational study could outperform an RCT, as perfect internal

validity does not translate into unbiased study finding in a

specific target population.

Here we review the conceptual framework and assumptions

behind transporting results from a study population to a target

population in an observational setting. We detail one method

through an applied example to life-course epidemiology where

real data on covariates in the study and target populations were

used to transport a simulated treatment-outcome effect from the

study to the target population.
2 Assumptions

Transporting estimates from a study population to a target

population requires a set of assumptions, some of which are

verifiable whereas others are not (5). Careful consideration of

assumptions listed below is needed in both cases. In Box 1 are

provided the counterfactual framework notations for each

assumption. For alignment with published literature that refers
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mainly to RCTs, “treatment” is used for any kind of exposure

throughout this section.
2.1 Assumptions for internally valid
estimates

1. Conditional treatment exchangeability: no unmeasured

confounding of the treatment-outcome relationship in the study

population. When estimating the population average treatment

effect, it can be replaced by the weaker assumption of mean

exchangeability over treatment, i.e., conditionally to the

covariates, the distribution of the outcome, on average, differs

among treated and untreated subjects due to treatment alone.

2. Positivity of treatment assignment: each subject in the study

population has a positive probability of receiving each version

of the treatment.

3. No interference between subjects: a subject’s potential outcome

is not affected by other subjects’ exposure to the treatment.

4. Treatment definition consistency: well-defined treatment in the

study population.
2.2 Assumptions for externally valid
estimates

1. Conditional exchangeability for study selection: the outcomes

are identical in subjects with equal treatment and covariate

values in the study and target populations. For obvious

reasons, the set of covariates cannot include those that

separate the study population from the target population,

such as geographical location or period when transporting

from one context to another. When estimating the

population average treatment effect, it can be replaced by the

weaker assumption of mean exchangeability of selection, i.e.,

the distribution of the outcomes, on average, is equal in

subjects with equal treatment and covariate values in the

study and target populations.

2. Positivity of selection: sufficient overlap of the characteristics

of subjects in the study population and the target population

is a requirement. For example, if age is a covariate,

transporting estimates from a study population with an age

distribution very skewed compared to the target population

will not be feasible. Large overlap will result in better

precision of the estimates.

3. No interference between the subjects selected in the study vs.

those not selected (i.e., there is no interference between

individuals of the target population or between individuals of

the study and the target population).

4. Treatment version consistency between study population and

target population (i.e., the two populations do not have

different versions of the same treatment)
Excluding the positivity assumptions, the assumptions listed in 1,

3, 4 are untestable. However, in some cases, sensitivity analyses can
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BOX 1 Counterfactual framework notations and equations for the assumptions for transporting estimates from a study- to a target population.

Notations:

• Outcome Y ∈ {0,1} (with Y = 1 indicating outcome occurs)

• Treatment A ∈ {0,1} (with A = 1 indicating treated)

• Baseline covariates Z (include effect modifiers)

• Study S (with S = 1 indicating selection into the study)

• Potential outcome Ya under the treatment A = a

Internal validity:

1) Conditional treatment exchangeability:

Y a?A jZ, S ¼ 1

Mean (E) exchangeability over treatment:

E(Y 1�Y 0 jZ ¼ z, A ¼ a, S ¼ 1) ¼ E(Y 1�Y 0 jZ ¼ z, S ¼ 1) for every a [ A

2) Positivity of treatment assignment:

probability P (A ¼ ajZ ¼ z, S ¼ 1) . 0 for every a [ A and every zwith positive density in the study population

3) No interference between subjects, and treatment definition consistency:

if A ¼ a thenY ¼ Y a for every a [ A

External validity:

1) Conditional exchangeability for study selection (generalizability assumption):

Y ?S jZ for every a [ A

Mean exchangeability of selection:

E(Y 1�Y 0 jZ ¼ z, S ¼ 1) ¼ E(Y 1�Y 0 jZ ¼ z) for every a 1A

2) Positivity of selection:

P(S ¼ 1jZ ¼ z) . 0 for every zwith positive density in the target population

3 and 4) No interference between subjects selected in the study vs. those not selected, and treatment version consistency between

study population and target population:

if S ¼ s andA ¼ a thenY ¼ Ya for every a [ A
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be carried out to evaluate themagnitude and direction of the bias under

different scenarios of violation of these assumptions. Concerning the

positivity of treatment assignment, it is possible to carry out basic

descriptive analyses of treatment variability within strata defined by

selected covariates. Similarly it is possible to analyse the overlap of

the characteristics of subjects in the study population and the target

population to check the positivity of selection.

While external validity can be jeopardized by several factors,

including differences between the study and the target populations in

subject characteristics, societal context, treatment/exposure (e.g.,

changed clinical practices/lifestyle), and outcome measurements (e.g.,

length of follow-up or timing of measurements), the assumptions

listed above explicitly preclude variations other than in subject

characteristics. Referring back to Shadish’s definition of external

validity generalizations as “inferences about whether the causal

relationship holds over variation in persons, settings, treatment, and

measurement variables” (3), the former variation in subject

characteristics is the only one covered in currently available
Frontiers in Epidemiology 03
transporting methods. In other words, transportability methods

assume that external validity bias arises solely from: (i) variation in

the probability of being represented in the study population given

certain subject characteristics; (ii) heterogeneity in treatment effects

across subject characteristics, i.e., allowance of effect modification;

and (iii) correlation between (i) and (ii).
3 Graphical representation

Exchangeability is a crucial assumption for both internal

validity, i.e., applied to a specific study population, and external

validity, i.e., applied to the comparison between the study and

the target population. Directed acyclic graphs (DAGs) are a

useful tool to visualize assumptions about exchangeability in

the context of internal validity, using visual inspection and

graphical rules. For a given set of relevant variables and an

assumed data generating process depicted in a DAG, the
frontiersin.org
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FIGURE 1

Directed acyclic graph depicting the effect of the treatment A on the
outcome Y, in which Z1 is a confounder and Z2 is a determinant of Y
(potential effect modifier) (A); selection diagram for transporting the
effect of A on Y from a study population to a target population,
which differs in the distribution of Z1 and Z2, as indicated by the
S-variables (B).
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exchangeability assumption is met when there are no open

backdoor paths between the treatment and the outcome. We

refer to the literature on DAGs for a summary of the graphical

rules, known as d-separation (9, 10).

Figure 1A for example reports the DAG for a target population,

in which a treatment A affects the outcome Y, Z1 is a potential

confounder of the effect of A on Y and Z2 is a determinant of Y

(potential effect modifier). Given this DAG, to obtain a valid

estimate of the causal effect of A on Y one could carry out the

study in the target population and adjust for Z1 when estimating

the association between A and Y. Adjustment for Z1 would block

the only open backdoor path from A to Y. Pearl and Bareinboim

(1, 11) defined as trivially transportable to the target population

a causal relation that is identifiable in the target population, with

no need of using information from the study population.

Most often, a study cannot be conducted on the target

population, but it is possible to transport the estimates from a

chosen study population. DAGs are insufficient to reason on the

exchangeability assumption in the context of external validity,

which depends on the difference between the target and the

study populations, and on how this difference can modify the

effect of treatment on outcome (11). External validity thus

considers the structure of two distinct populations. For this

reason, Pearl et al. in a series of studies have introduced the

notion of selection diagrams, which are causal diagrams

augmented with a set of variables that depict the mechanism

underlying the relevant differences between the target and the

study populations (11–14). For example, in Figure 1B the

assumptions of different distributions of Z1 and Z2 between the

study and the target population are depicted by the arrows

pointing into Z1 and Z2 respectively. Following the notation

introduced by Pearl et al., this difference is depicted by a set of

variables S represented as black squares with arrows pointing

towards Z1 and Z2. The S variables are dichotomous variables

that can shift the distribution from the target population (S = 0)
Frontiers in Epidemiology 04
to the study population (S = 1), thus depicting the systematic

processes, i.e., the mechanisms, accounting for the differences

between the two populations. The absence of an S node pointing

to a variable implies the strong assumption of invariance

between the two populations for what regards the causal

mechanism assigning the value of that variable. For example, in

Figure 1B the distribution of Y differs between the two

populations only as a consequence of the differences in the

distributions of Z1 and Z2, as no S variable points directly to Y.

The distribution of A also differs between the study and target

population due to the different distribution of Z1.
The graphical rules that are used in DAGs to reason on

exchangeability can be adapted to understand if and under what

conditions an estimate is exchangeable in the context of external

validity in selection diagrams. These rules are derived in a context

in which the causal estimate in the study population is identifiable,

i.e., internally valid, as it could be the case of an experimental study

or an observational study with internal exchangeability between the

exposed and the unexposed. A complete lack of S variables in a

selection diagram (Figure 1A) implies that the causal estimate

obtained in the study population is transportable to the target

population with no need of calibration, as the two populations have

the same underlying generating process and the same distribution

of the variables (11). In presence of S variables, a causal estimate is

transportable using recalibration techniques on the Z distributions if

the open pathways from S to Y are blocked after conditioning on

the Z variables (i.e., the Z variables d-separate Y from S) in a graph

in which the incoming arrows to A have been removed. According

to this rule the causal effect estimated in the study population is

transportable in Figure 1B, if Z2 and Z1 are measured in the target

population. If S and Y are d-separated without conditioning on Z,

the estimate can be directly transported with no need of calibration

on Z (11). It follows that an S variable that points directly into A,

or has a connection with Y only through A, can be ignored,

provided that the causal effect of A on Y can be estimated in the

study population. An example of this scenario would be the

selection diagram in Figure 2A, according to which there is no

need to measure Z in the target population to transport the results

of the study population. This is not an unusual scenario as often

information on the target population comes from population

registries that typically have more limited information on the

potential confounders than the original study that provided the

causal estimate. Conversely, in the diagram shown in Figure 2B, in

which S affects Y, there is no guarantee that the effect of A on Y is

transportable from the study population.

To summarize, depending on the selection diagram, the causal

estimate identified in the study population could be (i) identifiable

in the target population (trivial transportability) or (ii)

transportable to the target population if, either directly (as in

Figure 2A) or thanks to recalibration on the appropriate

variables (as in Figure 1B, but not in Figure 2B), there are no

open paths between S and Y in a graph in which incoming

arrows to the exposure A are removed. These rules work in a

non-parametric context in which any variable may act as an

effect modifier, but they could be relaxed by assuming lack of

interactions between the treatment and the potential effect
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FIGURE 2

Selection diagram for transporting the effect of the treatment A on
the outcome Y from a study population to a target population,
which, as indicated by the S-variable, differs in the distribution of
the treatment A (A) or the outcome Y (B).
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modifiers. Furthermore, Pearl et al. (11) extended the approach

to scenarios in which the S affects a treatment-dependent

variable, which is a variable affected by the treatment,

including, for example a mediator of the effect of the

treatment on the outcome. For the sake of simplicity this

scenario will not be discussed further in this manuscript.
4 Illustrative example

To illustrate the use of transporting estimates from a study

population to a target population, we used data from an Italian

birth cohort study (the NINFEA study, conducted in the

Piedmont Region in 2005–2016) and transported a simulated

exposure-outcome effect to the target population of newborns in

the Piedmont Region in 2019. This setting allowed comparison

with the same exposure-outcome effect directly estimated from

the Piedmont Birth Register (PBR) data (since simulated),

knowing that in a real-world setting the estimate would not be

directly calculated in the target population.
TABLE 1 Observed distribution of covariates in the NINFEA cohort and the
piedmont birth register (PBR) 2019.

NINFEA (N = 4,052) PBR (N = 26,909)
Maternal age (median, IQR) 33 (30, 36) 32 (28, 36)

Parity (N, %)
0 2,994 (73.9) 13,332 (49.5)

1 868 (21.4) 9,869 (36.7)

2+ 198 (4.9) 3,708 (13.8)

Maternal education (N, %)
High 2,614 (64.5) 8,124 (30.2)

Medium 1,267 (31.3) 11,989 (44.5)

Low 171 (4.2) 6,796 (25.2)
4.1 Study population

NINFEA is a web-based birth cohort with the aim of

investigating the effects of early-life exposures on the health of

newborns, children, adolescents, and adults (15). Cohort

members are children of women recruited between 2005 and

2016 in the Piedmont Region of Italy who completed a first

online questionnaire at any time during their pregnancy on

general health and exposures before and during pregnancy.

Further follow-up information is obtained with repeated

questionnaires when their child turns 6 months, 18 months, 4, 7,

10, 13, and 16 years of age. The study was approved by the local

Ethical Committee (approval n. 45, and subsequent

amendments). The NINFEA cohort includes 4,052 singleton

pregnancies with residence in the Piedmont Region.

Previous work demonstrated that members of the NINFEA

cohort study originate from a selected sample of pregnant

women in Piedmont, with baseline participation strongly

associated with socioeconomic factors, such as a high educational
Frontiers in Epidemiology 05
level (16). This baseline selection is not likely to affect internal

validity (17), but may affect the external validity, as the

participants of NINFEA were more often highly educated (64%

vs. 30%), more likely to give birth for the first time (74% vs.

50%), and slightly older compared to PBR (Table 1). Thus, the

difference in calendar period is not the only difference between

the study and the target populations in our example.
4.2 Target population

A highly complete Birth Register exists in the Piedmont Region

of Italy, which holds information on selected maternal and child/

delivery characteristics on virtually all births in the region. To

avoid potential recording delays due to the COVID-19 pandemic,

we used anonymized data from 2019 (27,852 newborns, of whom

26,909 with complete data on the selected variables).
4.3 Exposure, outcome and covariates

The aim of the applied example is to estimate the risk

difference of an outcome of interest between exposed vs.

unexposed subjects in the target population, the PBR 2019, using

data in the available study population, the NINFEA cohort. We

simulated the treatment and the outcome, both binary, to

guarantee that the causal estimate in the NINFEA cohort was

internally valid, while we used real data for the covariates’

distribution in the two populations. For the sake of simplicity, we

selected three commonly used confounders/effect modifiers in

birth cohort research of exposure-outcome associations: maternal

age, parity, and education.
4.4 Statistical methods

Methodologies on how to transport estimates from the study to

external target population are developing fast and there are pros

and cons with the available methods (18–23). For the purpose of

this illustration, we used the targeted maximum likelihood

estimator (TMLE) method; other available methods are discussed

in the next section. The TMLE method is a semiparametric

double/multiple robust method with improved chances of correct
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model specification by allowing for flexible estimation using

machine-learning algorithms (24, 25). Briefly, the average

treatment effect (ATE) is defined as:

ATE ¼ E(Y1 � Y0jS ¼ 0) ¼
X

z
{[E(Y jS ¼ 1, A ¼ 1, Z ¼ z)� E(Y jS ¼ 1, A ¼ 0, Z ¼ z)]

�P(Z ¼ zjS ¼ 0)

}

where Y is the outcome, A is the exposure, Z is the covariates’ vector

and S is the sampling indicator indicating whether the sampling unit

comes from the study population (S = 1) or the target population (S

= 0). Ya denotes the counterfactual outcome that would be observed

if A = a, with a equal to 0 or 1. TMLE is solved in a iterative manner

by initially finding E0(Y|S = 1,Z,A) using the independent sampling

units from the study population and then updating the estimated

conditional means E(Y|S = 1,Z,A) using consistent estimates of P

(S = 1|Z ) and P(A = 1|S = 1,Z ) through the so-called clever

covariates and the vector fluctuation parameter ε = (ε0, ε1) (24):

E(Y jS ¼ 1, Z, A)(1) ¼ E0(Y jS ¼ 1, Z, A)

þ 10
(1� A)[1� P(S ¼ 1jZ)]

P(S ¼ 1jZ) [1� P(A ¼ 1jS ¼ 1, Z)]

þ 11
A [1� P(S ¼ 1jZ)]

P(S ¼ 1jZ) P(A ¼ 1jS ¼ 1, Z)

When there is little variability in Y-E0(Y|S = 1,Z,A), i.e., in absence of

residual confounding, the fluctuation parameters ε will be estimated

close to 0, meaning that E0(Y|S = 1,Z,A) was correctly specified.

TMLE is doubly robust, i.e., it is consistent as long as either E(Y|S

= 1,Z,A) or both P(S = 1|Z) and P(A = 1|S = 1,Z ) are estimated

correctly. As is evident from the estimation procedure, we need to

know the complete individual data from the study population (i.e.,

A, Z and Y ) but only the individual-level covariate data (i.e., Z)

from the target population.

We considered the following data-generating mechanism which

determines the exposure and the outcome assignments. Exposure

assignment was generated for each subject i by sampling from

Xi∼B(πi) and the outcome assignment was generated by sampling

from Yi∼B(ρi) with πi and ρi calculated as follows:

pi ¼ plogis[0:1�(agei �mean(age))� 0:3�I(parityi ¼ 1)

� 0:5�I(parityi ¼ 2)]

and

ri ¼ plogis[0:6� I(xi ¼ 1)]þ 0:2�(agei �mean(age))

� 0:1�I(parityi ¼ 1)� 0:3�I(parityi ¼ 2)þ 0:4�I(edui ¼ medium)

þ 0:6�I(edui ¼ low)þ 0:3� I(xi ¼ 1)� I(edui ¼ medium)

þ 0:5� I(xi ¼ 1)� I(edui ¼ lowÞ]

with plogis = exp(v)/(1 + exp(v)). Hencewe identifiedmaternal age and

parity as confounders and maternal education as an effect modifier.
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4.5 Results

The simulated exposure prevalence was 48.5% in the study

population and 45.4% in the target population. The simulated

outcome prevalence was 62.8% in the study population and

61.3% in the target population. Artificially the crude risk

difference in both NINFEA and PBR populations was 24.4%

(95% CI: 23.3%–25.7%). The adjusted observed marginal risk

differences were 14.9% (95% CI: 13.7%–16.5%) in the NINFEA

cohort and 16.3% (95% CI: 15.5%–17.4%) in the PBR data.

When we transported the estimates from the NINFEA cohort

into the PBR population using the TMLE method, the risk

difference was equal to 16.5% (95% CI: 11.9%; 21.0%). In this

example, the transported effect estimate is very close to the effect

estimate in the PBR data (Figure 3).
5 Discussion

In this paper we reviewed the concept of transportability and

showed an example of transporting the results from a birth cohort

study to a target population of interest. A formal approach to

transportability is an area of growing interest in epidemiology,

mainly motivated by the need to apply the results of randomized

controlled trials to specific populations of interest (2, 4, 8). The issue

of external validity is however not limited to situation in which RCTs

are feasible and were conducted (8, 11, 22). For example, in life-

course epidemiology the evidence on the consequences of early-life

exposures on later health outcomes is typically obtained from birth

cohort studies and not from RCTs. We should then discuss not

only if we can interpret causally the estimated associations (i.e.,

internal validity) but often also understand whether the

available results can be used to support the decision-making in

a specific target population (i.e., external validity).

Perhaps too schematically, when we need to obtain estimates in a

given target population we should consider pros and cons of different

options: (i) to run a study in a representative sample of the target

population (ii) to identify the most valid estimate from a study

carried out in a population that is nonoverlapping with the target

and assume that it is applicable also to the target population

without further reasoning on transportability issues, (iii) to formally

transport the study estimates to the target population, which

involves having access to the study and target population data. The

first option is often unfeasible due to its costs, organizational

complexities, and inherent very long lead times. It allows however a

direct estimate of the estimand of interest (what Pearl et al. call

trivial transportability, as described above), with no need of further

assumptions but those used for internal validity. The second option

is widespread, especially as decision making should be timely and

often does not need an estimate of the exposure-outcome effect in

the target population, but just relies on whether the exposure can

cause the effect or not. Consistently, several frameworks have been

suggested to assess causality in the context when multiple

observational studies are available (26). This approach however

does not estimate the population average treatment effect and
frontiersin.org

https://doi.org/10.3389/fepid.2024.1335241
https://www.frontiersin.org/journals/epidemiology
https://www.frontiersin.org/


FIGURE 3

Illustration of transporting an exposure-outcome effect estimate from a study population (the NINFEA cohort study) to a target population (piedmont
population in 2019) in presence of confounders and an effect modifier, which prevalences differ by populations. Ninety-five percent CI of the risk
difference in the study and target populations is obtained by bootstrap, 95% CI of the transported risk difference is obtained by the sample
variance of the estimated efficient influence curve.
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cannot be used to assess the potential impact of a treatment in a

population. The third option, which involves formal transportation

of the study results to the target population is theoretically

appealing but rarely used in practice, possibly because it involves

strong unverifiable assumptions, methodological complexities, and

requires access to some data of the target population.

This paper thus aims at promoting and facilitating the use of

transportability methods in the context of observational

research, and specifically life-course epidemiology. Note that

the scenarios and the described methodology that we have

introduced are far from being exhaustive. For example,

Rudolph and van der Laan (23) analysed the TMLE

performance under several scenarios when models are

misspecified and the sampling positivity assumption is

violated. Dong et al. (21) proposed a doubly-robust method

based on an augmented estimator which combines an

exposure, a sampling, and an outcome model to transport

causal effect estimates from a study population to a target

population. Josey et al. (22) have proposed calibration

estimators to generate complementary balancing and sampling

weights; this approach has strong parametric assumptions but,

as opposed to the TMLE, allows to relax the propensity score

exchangeability assumption, i.e., the hypothesis that the

probability to receive the treatment given a set of measured

covariates is the same in the target and study populations.

Further we performed a complete-case analysis including only

subjects with measured covariates vector in both the study and

the target population. Simulation studies should be carried out

to evaluate the performance of TMLE method, and more

generally of different approaches, in transporting estimates

from a study population to a target population, in particular

when the missingness mechanisms involves both populations.

In conclusion, formally and quantitively transporting causal

study estimates to a target population is an option that should be
Frontiers in Epidemiology 07
considered more systematically. This will involve continued

methodological developments, widespread knowledge of

transportability methods in the community of applied

epidemiologists and closer collaboration between researchers

of the original studies and investigators interested in specific

target populations.
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