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Introduction: Mpox (formerly monkeypox) is an infectious disease that spreads
mostly through direct contact with infected animals or people’s blood, bodily
fluids, or cutaneous or mucosal lesions. In light of the global outbreak that
occurred in 2022–2023, in this paper, we analyzed global Mpox univariate
time series data and provided a comprehensive analysis of disease outbreaks
across the world, including the USA with Brazil and three continents: North
America, South America, and Europe. The novelty of this study is that it delved
into the Mpox time series data by implementing the data-driven methods and
a mathematical model concurrently—an aspect not typically addressed in the
existing literature. The study is also important because implementing these
models concurrently improved our predictions’ reliability for infectious diseases.
Methods:We proposed a traditional compartmental model and also implemented
deep learning models (1D- convolutional neural network (CNN), long-short term
memory (LSTM), bidirectional LSTM (BiLSTM), hybrid CNN-LSTM, and CNN-
BiLSTM) as well as statistical time series models: autoregressive integrated
moving average (ARIMA) and exponential smoothing on the Mpox data. We also
employed the least squares method fitting to estimate the essential
epidemiological parameters in the proposed deterministic model.
Results: The primary finding of the deterministic model is that vaccination rates can
flatten the curve of infected dynamics and influence the basic reproduction
number. Through the numerical simulations, we determined that increased
vaccination among the susceptible human population is crucial to control disease
transmission. Moreover, in case of an outbreak, our model showed the potential
for epidemic control by adjusting the key epidemiological parameters, namely the
baseline contact rate and the proportion of contacts within the human
population. Next, we analyzed data-driven models that contribute to a
comprehensive understanding of disease dynamics in different locations.
Additionally, we trained models to provide short-term (eight-week) predictions
across various geographical locations, and all eight models produced reliable results.
Conclusion: This study utilized a comprehensive framework to investigate
univariate time series data to understand the dynamics of Mpox transmission.
The prediction showed that Mpox is in its die-out situation as of July 29,
2023. Moreover, the deterministic model showed the importance of the Mpox
vaccination in mitigating the Mpox transmission and highlighted the
significance of effectively adjusting key epidemiological parameters during
outbreaks, particularly the contact rate in high-risk groups.

KEYWORDS

epidemiology, Mpox, univariate time series, deterministic model, neural networks
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fepid.2024.1334964&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fepid.2024.1334964
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fepid.2024.1334964/full
https://www.frontiersin.org/articles/10.3389/fepid.2024.1334964/full
https://www.frontiersin.org/articles/10.3389/fepid.2024.1334964/full
https://www.frontiersin.org/articles/10.3389/fepid.2024.1334964/full
https://www.frontiersin.org/journals/epidemiology
https://doi.org/10.3389/fepid.2024.1334964
https://www.frontiersin.org/journals/epidemiology
https://www.frontiersin.org/


Das 10.3389/fepid.2024.1334964
1 Introduction

In the past 20 years, the world has experienced several epidemics that occurred throughout history, as mentioned in the previous studies

by Piret and Boivin (1). Although many diseases, such as H1N1 influenza, COVID-19, and the current Mpox virus, have posed a major public

health threat (2), mathematical and data-driven modeling can help to control and prevent the spread of disease by understanding the

dynamics of disease. Moreover, a model can predict the potential course of disease progression and offer the best and most practical

solutions to prevent pandemics when it incorporates fundamental features (3). In the initial stages of an outbreak, researchers paid

widespread attention to mathematical modeling, with the general anticipation that deterministic models would accurately forecast the

pandemic’s course, as it helps to understand the exponential increase of infections. This resurgence of disease modeling is not new.

However, data-driven modeling opens a new era to explore the dynamics of diseases using real-world data. While numerous data-driven

models have interpretability issues, focusing solely on a single data-driven approach may mislead decision-makers. In spite of having

some limitations, data-driven techniques have increased their popularity in disease modeling for controlling epidemics using real-world

data (4), particularly in epidemiological data. On the other hand, the deterministic model offers a structured and mathematically tractable

framework for understanding the spread of infectious diseases, helping disease control, and enabling informed public health decisions.

Therefore, integrating mathematical models and data-driven approaches becomes imperative for effective public health data

implementation and control strategies, allowing for a more comprehensive and adaptive response to dynamic health challenges.

Mpox is a viral zoonotic infection disease caused by the monkeypox virus, and its transmission is considered one of the threats to

human health, which may happen due to increased animal-to-human contact (5), human-to-human transmission (6), and climate

change as it influences the environment of their vectors (7). More specifically, transmission through environmental factors can

occur when a person or an animal touches surfaces or materials recently contaminated with the virus, whether from infected

humans or animals (8). Another zoonotic virus related to Mpox has also been found to be transmitted from animals to humans (9).

The virus is a member of the genus Orthopoxvirus (10, 11), and it is related to smallpox (12), but it is generally less severe in

humans (13). The disease was first identified in 1958 during an outbreak in an animal facility in Copenhagen, Denmark (14). It was

later recognized as a cause of human illness in 1970 in the Democratic Republic of Congo (14–16). The natural reservoir of the

virus is believed to be rodents, such as squirrels and prairie dogs, but it has also been identified in other animals, including

monkeys, porcupines, and Gambian giant rats (13). However, the ongoing Mpox virus is an emergent human pathogen recently

studied by Emily and Sassine (17), Khan et al. (18), and John et al. (19). It has been found that the disease spreads from person to

person through close contact with respiratory or other bodily fluids (13). The symptoms of Mpox include fever, headache, muscle

aches, and a rash that spreads from the face to other parts of the body and eventually forms a scab before falling off (13). As of

July 10, 2023, no specific treatment has been approved for Mpox, but the disease can be prevented through vaccination proposed by

Andrea et al. (11), avoiding close contact with infected animals or people, and generally practicing good hygiene (13).

Recently, Kanj et al. (20), Hasan and Saeed (21), and Jeta et al. (22) reviewed nineteen diseases, of which nine employed compartments

compartmental (deterministic) models to analyze the transmission dynamics of the Mpox virus in populations comprising both humans

and non-humans. These studies explored variations of the classical SIR (Susceptible-Infected-Recovered) vector-borne models (23–25)

within the context of human and non-human interaction and utilized them to study Mpox disease transmission. Incorporating

vaccination classes (26) is essential for the disease’s accurate representation of progression and incubation. Moreover, the lessons from

COVID-19 highlight that vaccinating susceptible populations can address the threats of Mpox and other emerging infectious diseases.

Thus, we attempted to introduce a Mpox vaccination class and integrate the smallpox vaccine or dose-1 vaccine into the deterministic

model proposed by Mesady et al. (27), Yuan et al. (24), and Esteban et al. (25) to provide human protection strategies along with the

model fitting for reported Mpox cases across locations.

The rapid spread of Mpox has disrupted the globe when the COVID-19 disease transmission is declining. During this time, only a few

articles have been published on detecting Mpox disease using deep learning on the image data (28). Many articles utilize machine learning

techniques to forecast COVID-19 (29, 30) time series such as extreme machine learning (ELM), multilayer perceptron (MLP), long short-

term memory (LSTM) networks, gated recurrent unit (GRU), convolution neural network (CNN), and deep neural network (DNN)

methods on time series data used to forecast COVID-19 cases and predict a possible ending point of the outbreak. Although LSTM is

the most popular neural network model for time series prediction, CNNs can also perform this task effectively. Moreover, CNNs have

been shown to outperform RNNs in various tasks involving sequential data (31). CNNs can also learn long-term dependencies in time

series data through a combination of multiple 1D convolution layers. In 2022, Ketu and Mishra (19) used CNN-LSTM, a hybrid deep-

learning prediction model, to forecast the COVID-19 pandemic across India. While some analytical studies have used the Mpox

disease transmission models for understanding the dynamics of this disease (2, 27), less attention has been given to predicting the

Mpox virus infection using data-driven modeling (28, 32).

In this study, we forecast Mpox disease transmission for short-term predictions across diverse geographical areas by utilizing

concurrently the deterministic modeling and advanced deep learning techniques (including 1D-CNN, LSTM, BiLSTM, hybrid

CNN-LSTM, and CNN-BiLSTM) alongside statistical time series models like ARIMA and exponential smoothing. We employed a

deterministic model and ran simulations to gain valuable insights into the dynamics of the Mpox outbreak and evaluate the impact

of vaccination on disease control. Our analysis incorporated real Mpox data from ourworldindata (33), which helped to identify the
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disease spread across diverse global locations using our epidemiological model. Furthermore, we estimate critical epidemiological

parameters through data fitting within the deterministic model. The consistent outcomes from the eight models utilized in this

study indicate reliable results. Moreover, our study highlights the significance of time series models and demonstrates that

vaccination rates have the potential to “flatten the curve” of infected cases and influence the basic reproduction number. Increased

vaccination among susceptible populations is pivotal in effectively managing disease transmission. While the threat of outbreaks

persists, reducing contact rates among high-risk groups can mitigate the disease’s impact in specific regions or communities.

Importantly, our eight employed models provide an eight-week short-term prediction showing that Mpox is currently in a declining

phase. These findings contribute to a comprehensive understanding of disease dynamics across various locations, guiding targeted

intervention strategies for controlling and mitigating infectious disease outbreaks.

The remainder of this paper is divided into six sections. Section 1. provides an account of the datasets and summarizes the

global and regional Mpox cases. Section 3. briefly describes deterministic and data-driven models. Section 4. implements the

univariate Mpox dataset in the time series models and fits the deterministic model to find the epidemiological parameters.

Fitting the data is performed using MATLAB and its optimization toolbox, such as fmincon. Section 5. concludes with a

discussion, and the conclusion is drawn in Section 6.
2 Materials

According to the Mpox data ourworldindata (33), the current Mpox virus spread globally, surpassing previous outbreaks and

raising severe public health concerns in 2022–2023 by spreading to many regions (112 countries) worldwide. Excluding 27 cases

reported before May 1, 2022, our study focuses on ourworldindata (33), which spans from May 1, 2022, to May 31, 2023,

comprising 87,875 global new confirmed cases with 143 deaths. Moreover, this study employs various methodologies to predict

the trajectory of the 2022–2023 Mpox epidemic in different regions, which is later verified with an additional eight weeks of

Mpox cases from June 2023 to July 2023. The current transmission of Mpox has been reported on all continents except for

Antarctica (Figure 1), as of May 31, 2023. The continents reporting the most cases are mainly North America (37,058), Europe
FIGURE 1

Distribution of the global population sizes, Mpox cases, and incidence: Panel (A) displays the population of each continent, where the world population is
7,795,237,030, and panel (B) shows the distribution of total Mpox cases in seven continents by the pie chart. Panel (C) presents incidence per 100 k individuals
across the seven continents, where the maximum incidence occurs in North America (6.26 per 100 k), South America (5.19 per 100 k), and Europe (3.43 per
100 k). Panel (D) shows that Spain has a higher incidence of Mpox cases (greater than 15 per 100 k) compared to the other countries. Specifically, USA,
Portugal, and Luxembourgmaintain an incidence rate of 8 cases per 100 k, while the incidence rate in the remaining countries is below8 per 100 k.
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(25,624), and the South Americas (22,357). Like coronavirus disease 2019 (COVID-19), the United States of America still leads the

total confirmed cases at 30,225 as of May 31.
2.1 Mpox dataset description

The research materials and methods involve data pre-processing and building predictive models for time series data from May 1, 2022,

to May 31, 2023. The first phase involves converting the daily dataset into a weekly time series, as shown in Figure 2, normalizing the data

using Equation 1, visualizing mpox cases in global and US regions in Figures 3 and 4, respectively, and splitting the data into training and

test sets, as depicted in Figure 5. The second phase involves optimizing and training the models using the best hyperparameters on a train

set, which starts on week 0 (May 1, 2022) and ends on week 40 (February 11, 2023). Then, the trained models are evaluated on a test set

from week 40 (February 11, 2023), to week 56 (May 31, 2023). Figures 2, 5 provide an overview of the entire procedure. Furthermore, a year

is conventionally classified as an epidemic year for a given region if the incidence of Mpox exceeds 100 cases per 100,000 individuals in a

given year, for example, a year between May 2022 and May 2023. A non-epidemic year when the incidence of Mpox remains below this

threshold like Stolerman et al. (34). In this work, we use this threshold to identify which country has the epidemic year for Mpox and then

use the model fitting using the deterministic model in some regions. From Figures 1, 4, we see no locations that may be considered

epidemic years for Mpox disease, but the District of Columbia in the USA, is close to this threshold. Figure 3 visualizes global

confirmed human Mpox cases by country, continent, and geographic region, and it reveals that Mpox is transmitted more in some

regions of the world. It also reveals that the majority of cases are reported in the USA.
2.2 Processing the time series data

Many real-world disease datasets exhibit temporal patterns, representing the number of infected cases at regular intervals,

such as daily or weekly, naturally forming time-series data. Figures 2A,B and A1 (appendix) illustrate common issues

stemming from insufficient or low reported data on weekends, particularly around Sundays. To mitigate the impact of
FIGURE 2

Preparing time series data: This figure shows five important phases: data pre-processing steps (panels A and B, top left), weekly time series of reported
cases (panel C, top right), weekly time series of reported cases on a normalized scale (panel D bottom right), and the decomposition of the confirmed
cases to check seasonality and stationarity (panel E, bottom left). Given the ADF Statistic of �2.04679, which is negative, and a p-value of 0.26644,
exceeding the significance threshold of 0.05, we can infer that the EPI weekly worldwide data exhibits non-stationarity. Panel E also demonstrates the
seasonality patterns, as the seasonal decomposition shows the rise and fall, with a period of seven. We observe an increasing trend in the number of
reported cases until the EPI week of 14 (between July and August, during the summer), then started decreasing. Panel E displays the additive
decomposition, where the seasonal chart scales between �100 to 100 and the trend chart scales between �1,000 to 1,000.

Frontiers in Epidemiology 04 frontiersin.org

https://doi.org/10.3389/fepid.2024.1334964
https://www.frontiersin.org/journals/epidemiology
https://www.frontiersin.org/


FIGURE 3

Visualization of globally reported Mpox cases: Panel (A) displays the confirmed Mpox cases across 112 countries using a treemap visualization. Panel (B)
shows the global and regional spread of confirmed Mpox cases on a world map. Among all countries, the USA has recorded the highest number of
cases (30,225), followed by Brazil (10,941), Spain (7,555), France (4,146), Colombia (4,090), and Mexico (4,017).
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reduced weekend reporting, we adopted the epidemiological week (EPI week) or CDC week (where each EPI week begins on

Sunday and ends on Saturday) as depicted in Figure 2B. By filtering the data using the EPI week, as shown in Figure 2B,

we aimed to reduce the noise inherent in the daily data shown in Figures 2A and A2. This resulted in grouping 395 data

points into EPI weeks for each region, providing a dataset spanning 57 weeks.

2.2.1 Data normalization
Modeling time series data presents challenges due to its dynamic and nonlinear nature, as highlighted by Tealab et al. (36) in 2017 and

McFarland et al. (37) in 2018. Data normalization techniques, such as the Min-Max formula (Equation 1), are commonly used to address

this issue. Notably, data normalization plays a crucial role in ensuring the quality of data prior to model training, and as such, it can

significantly impact the performance of any subsequent analysis or modeling effort. The Min-Max formula (Equation 1) described by

Wibawa et al. (38) in 2022 is used to normalize data in Figure 2D, resulting in smaller intervals within 0–1. Following (36, 37), we

define the data normalization equation as

ynormt ¼ yt � ymin

ymax � ymin
, (1)

where ynormt is the result of normalization, and yt is the data to be normalized, while ymin and ymax stand for the minimum and

maximum value of the data. The deterministic model, ARIMA, and Exponential smoothing models are independent of any other

variable; hence, this study does not require normalization for these models. The only normalized data was used in the deep

learning models such as CNN, LSTM, BiLSTM, and hybrid CNN-LSTM and CNN-BiLSTM, as normalization can help prevent

vanishing and exploding gradients during training.

2.2.2 Split time series data
We define the training, testing, and validation datasets. In 2018, Kuhn and Johnson (39) introduced a section titled “Data

Splitting Recommendations,” and later in 2021 Nguyen et al. (40) outlined the limitations of using a sole “test set.” Of course,

there are no fixed rules for separation training and testing data sets, nor is there an “ideal” ratio for splitting a dataset, but

experts commonly used ratios such as 70:30; 80:20; 65:35; 60:40, etc. Given our current small dataset size, this experiment uses

the first 60 percent of the data points in the time series as the training set, 10 percent as validation, and the last 30 percent

of the data points as the “test set,” as depicted in Figure 5. Additionally, to validate the predictions made by the models, we

consider another eight weeks of cases from June 2023 to July 2023 accessed this data on August 01, 2023.
Frontiers in Epidemiology 05 frontiersin.org

https://doi.org/10.3389/fepid.2024.1334964
https://www.frontiersin.org/journals/epidemiology
https://www.frontiersin.org/


FIGURE 5

Data partitioning into training, validation, and testing sets: This figure illustrates the decomposition of the training, validation, and testing data based on
the EPI week for deep learning (1D-CNN, LSTM, BiLSTM, hybrid CNN-LSTM, and CNN-BiLSTM), statistical (ARIMA and exponential smoothing), and
deterministic models. Note that data from May 01 to May 31, 2023, was accessed on June 03, 2023. Later, new data for comparing model
predictions were accessed on August 01, 2023.

FIGURE 4

Visualization the spread of Mpox cases in the USA: Panel (A) displays the distribution of Mpox cases (left top) across the US map (35) . Panel (B) shows
the time series of confirmed Mpox cases (right top) from week 0 to 51, covering the period from June 4, 2022, to May 27, 2023. Panel (C) illustrates the
states with the highest incidence of Mpox per 100,000 (100 k) people in the United States. This panel also shows that the District of Columbia (77.01%
per 100 k) has higher Mpox incidence from May 2022 to May 2023. Next, the other states such as New York (18.61% per 100 k), California (14.58% per
100 k), Florida (13.44% per 100 k), Maryland (12.1% per 100 k), Illinois (11.48% per 100 k), Nevada (10.04% per 100 k), and Texas (10.33% per 100 k) are
the higher risk of an epidemic. Additionally, Washington (9.06% per 100 k), Arizona (8.28% per 100 k), and New Jersey (25.57% per 100 k) have a higher
chance of an epidemic compared to the other states.
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3 Methods

This section briefly outlines several time series prediction models: a deterministic model and various data-driven methods,

including deep learning models such as CNN, LSTM, BiLSTM, hybrid CNN-LSTM, and CNN-BiLSTM along with two classical

statistical models: ARIMA and exponential smoothing. We aim to demonstrate how to build and choose the optimal predictive

models; Figures 6 and 7 show the building blocks of these methods used to analyze Mpox time series data.
FIGURE 6

Building Blocks of deterministic and data-driven models: (A) displays different methods and demonstrates how to build the predictive models.
(B) identifies the best predictive models by evaluating those models.

FIGURE 7

Building Blocks of data-driven models: This figure was adapted from Crick (41), illustrating how a model optimizer is generally used in model training.
The loss function L(y, �y) is computed by comparing predicted values (�y) and true values (y), and model parameters are adjusted to minimize L(y, �y) that
enhances the accuracy of prediction model f .
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3.1 Performance metrics

In this study, we used three performance criteria (42, 43), namely mean absolute error (MAE), root mean square error (RMSE), and

normalized RMSE (nRMSE) to evaluate the predictive accuracy of the developed models, where lower values indicate better performance

(44). To define these performance metrics, we set y as the actual data value, �y as the forecast value, and n as the number of observations.

Then the mathematical formulas for these error evaluation measures are as follows:

MAE ¼
Pn
t¼1

y � �yj j
n

, RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
t¼1

(y � �y)2

n

vuuut
, and nRMSE ¼ RMSE

(ymax � ymin)
: (2)

One can also compute nRMSE based on the average (�y) of the actual data values, calculated as RMSE
�y .
3.2 Deterministic model

We built a model to analyze the transmission of Mpox within and between human and rodent (non-human) populations. Extending

the SEIR-like vector-borne models (24, 25), we introduce a deterministic model and then observe how monkeypox spreads through the

human population over time by inputting different values for these variables and running simulations. The models are based on

the following assumptions: (1) All individuals are identical, that is, age, sex, social status, and other characteristics do not affect the

probability of infection; (2) Human population mixing is homogeneous; (3) There is no inherited immunity; (4) With these

assumptions, we consider the population sizes N(t) with a per capita birth rate Q in susceptible class and death rate m in all classes.

Also, u ¼ QN(t) represents the new birth in the susceptible class. Therefore, the rate of change of a population is proportional to the

total population size, i.e. (Equation 3),

_N(t) ¼ QN(t)� mN(t) ¼ rN(t), where r ¼ Q� m is the population growth rate. (3)

We now propose a deterministic model on the transmission dynamics of monkeypox consisting of two groups: the human population and the

rodent (non-human) population. The high-risk group will increase transmission in the low-risk group, and the low-risk group will decrease

transmission in the high-risk group. These interactions can be represented using the following form (Equation 4):

l ¼ lh
lr

� �
¼ bhh bhr

brh brr

� �
Ih
Ir

� �
¼ bhhIh þ bhrIr

brhIh þ brrIr

� �
, (4)

where the group-specific force of infections, l ¼ lh
lr

� �
, the transmission matrix, T ¼ bhh bhr

brh brr

� �
, and the infectious class, I ¼ Ih

Ir

� �
.

The diagonal and off-diagonal of T represent within-group and between-group interactions, respectively, and we assume that det(T) � 0, as it

is reasonable to disease transmission. Additionally, the first component h of bhr indicates the infected group , and the second component r

indicates the infectious group. In this model, each population can infect the other, but the infection moves through the populations separately.

To model the spread of Mpox in a metropolitan area, Yuan et al. (24) suggest a transmission risk and control strategy for Mpox using a matrix

of contracts among the groups. With that, we assume the transmission rates are greater within groups than between them, and

bhr ¼ brh ¼ c0(1� k1), bhh ¼ c0k1, and brr ¼ c0k2, where c0 the baseline contact rate among the overall population and k1 and k2 are

the proportion of contacts within the human and rodent (non-human) overall contacts, respectively. Moreover, the current outbreak of

Mpox suggests that sustained human-to-human transmission is quite feasible, and smallpox vaccination protects against Mpox. As of

June 2023, similar to the smallpox vaccination (13), Mpox vaccines such as (45) JYNNEOS (46) and ACAM2000 (47) are recommended

for individuals at higher risk during the ongoing Mpox outbreak (45). Therefore, incorporating the vaccination class V with a rate f of

susceptible populations into the models Peter et al. (48, 49) is required for the Mpox model, which has been proven effective in

preventing Mpox infections. Moreover, the smallpox vaccine and dose-1 Mpox vaccination may not offer complete protection against

Mpox; therefore, t converts the vaccinated class back to a susceptible class. Additionally, besides the two groups, the human population

is further subdivided into seven compartments: susceptible humans Sh(t), exposed humans Eh(t), infected humans Ih(t), hospitalized

humans H(t), smallpox or dose-1 Mpox vaccinated humans V1(t), dose-2 vaccinated humans V2(t), and recovered humans Rh(t). The

rodent population is also subdivided into three compartments: susceptible rodents Sr(t), exposed rodents Er(t), infected rodents Ir(t), and

recovered rodents Rr(t) (Table 1).
Frontiers in Epidemiology 08 frontiersin.org

https://doi.org/10.3389/fepid.2024.1334964
https://www.frontiersin.org/journals/epidemiology
https://www.frontiersin.org/


TABLE 1 Model’s parameters of Figure A2.

Parameters Description
Nh Total size of the human population

Nr Total size of rodent population

Qh Human recruitment rate

Qr Rodent recruitment rate

l Group-specific force of infections

mh Natural death rate of human

mr Natural death rate of rodent

dh Weekly disease-induced death rate in the human populations

dr Weekly disease-induced death rate in the rodent populations
1
ah

Average incubation period of Mpox in the human population

1
ar

Average incubation period of Mpox in the rodent population

1
g1

Average number of weeks of recovery needed for infectious individuals

1
g2

Average number of weeks of recovery needed for dose-2 vaccinated individuals

h Proportion of hospitalization
1
gh

Average number of weeks between symptom onsets and hospitalization

1
d

Average number of weeks of recovery needed for hospitalized individuals

1
gr

Average number of weeks of recovery needed for infectious rodent

f Smallpox or dose-1 vaccine rate

s Dose-2 vaccine rate

t Smallpox or dose-1 vaccine failure rate

c0 Baseline contact rate among the overall population

k1 Proportion of contacts within the human in overall contacts

k2 Scaling factor of contact rate among the rodent compared to baseline contact

Das 10.3389/fepid.2024.1334964
Employing the parameters listed in Table 1 and referring to the compartmental diagram (Figure A2) provided in Appendix A, we can

derive the following system of differential equations:

Group A: Humanpopulation
_Sh ¼ uh � lh

Sh
Nh

� (mh þ f)Sh þ tV1

_Eh ¼ lh
Sh
Nh

� (mh þ ah)Eh
_Ih ¼ ahEh � [(1� h)g1 þ hgh þ (mh þ dh)]Ih
_H ¼ hghIh � (d þ mh þ dh)H
_V1 ¼ fSh � (tþ mh þ s)V1

_V2 ¼ sV1 � (mh þ s2)V2

_Rh ¼ g2V2 þ (1� h)g1Ih þ dH � mhRh

Group B: Rodent population
_Sr ¼ ur � lr

Sr
Nr
� mrSr

_Er ¼ lr
Sr
Nr
� (mr þ ar)Er

_Ir ¼ arEr � (mr þ dr þ gr)Ir
_Rr ¼ grIr � mrRr

(5)

with the initial conditions in a biologically feasible region Gh � Gr , where Gh and Gr are defined by the Equation 6 below:

Gh ¼ {(Sh, Eh, Ih, H, V1, V2, Rh) [ R7
þ : Sh þ Eh þ Ih þ H þ V1 þ V2 þ Rh � Nh} and

Gr ¼ {(Sr , Er , Ir , Rr) [ R4
þ : Sr þ Er þ Ir þ Rr � Nr}:

(6)

3.2.1 Model analysis
By summing the first seven equations of group A in the (Equation 5), we have _Sh þ _Eh þ _Ih þ _H þ _V1 þ _V2 þ _Rh ¼

uh � mh(Sh þ Eh þ Ih þH þ V1 þ V2 þ Rh)� dh(Ih þ H) ¼ uh � mhNh � dh(Ih þH). Using uh ¼ QhNh, the differential equation for

the human population Nh is given as follows:

_Nh ¼ (Qh � mh)Nh � dh(Ih þ H) (7)
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Moreover, Figure 12 illustrates the significance of vaccination for the US population. Similarly, for the non-human population, Nr , we have
_Sr þ _Er þ _Ir þ _Rr ¼ ur � mr(Sr þ Er þ Ir þ Rr)� drIr ¼ ur � mrNr � drIr , and using ur ¼ QrNr the corresponding differential is given

as follows:

_Nr ¼ (Qr � mr)Nr � drIr: (8)

Here, Nh and Nr are sums of state variables for human and rodent populations, respectively, which are not constants in general. However,

they are constants when Qh ¼ mh, dh ¼ 0, and Qr ¼ mr , dr ¼ 0 as _Nh ¼ 0, _Nr ¼ 0, respectively (Equations 7–8).

3.2.2 Equilibrium state
There are two types of equilibrium points for the model given in (Equation 5). One is the Disease-Free Equilibrium

(DFE) or Mpox-Free equilibrium point, e0 ¼ (S0h, E
0
h, I

0
h , H

0, V0
1 , V

0
2 , R

0
h, S

0
r , E

0
r , I

0
r , R

0
r ) ¼ (

uh(mh þ sþ t)
mh(mh þ sþ t)þ f(mh þ s)Þ , 0,

0, 0,
uhf

mh(mh þ sþ t)þ f(mh þ s)
,

uhsf

(g2 þ mh)(mh(mh þ sþ t)þ f(mh þ s))
,

g2uhsf

mh(g2 þ mh)(mh(mh þ sþ t)þ f(mh þ s))
,
ur
mr

, 0, 0, 0),

which corresponds to the absence of infectious individuals. The second equilibrium point is called endemic equilibrium, represented by

(S�h, E
�
h , I

�
h , H

�, V�
1 , V

�
2 , R

�
h, S

�
r , E

�
r , I

�
r ), which can be obtained by equating the right-hand side of the system (Equation 5) with zero. We use

the symbolic packages of the software Mathematica for the analytic computations in our deterministic model. Using the notation

T1 ¼ mh þ ah, T2 ¼ (1� h)g1, T3 ¼ mh þ dh, T4 ¼ tþ mh þ s, T5 ¼ mr þ ar , T6 ¼ mr þ dr , and T7 ¼ mh þ s in the system (Equation

5), we obtain the endemic equilibrium point as follows:

S�h ¼
NhT4uh

T4(lh þ Nh(mh þ f))� Nhtf
, E�

h ¼
T4uhlh

T1T4(lh þ Nhmh)þ NhT1(T4 � t)f

I�h ¼ T4ahuhlh
T1(h�gh þ T2 þ T3)(T4(lh þ Nh(mh þ f))� Nhtf)

, H� ¼ hghT4ahuhlh
T1(d þ T3)(hgh þ T2 þ T3)(T4(lh þ Nh(mh þ f))� Nhtf)

V�
1 ¼ Nhuhf

T4(lh þ Nh(mh þ f))� Nhtf
, V�

2 ¼ Nhuhsf

(g2 þ mh)(T4(lh þ Nh(mh þ f))� Nhtf)

R�
h ¼

(d(hgh þ T2)þ T2T3)T4ahuhlh(g2 þ mh)þ NhT1(d þ T3)(hgh þ T2 þ T3)g2uhsf
T1(d þ T3)(hgh þ T2 þ T3)mh(g2 þ mh)(T4(lh þ Nh(mh þ f))� Nhtf)

S�r ¼
Nrur

lr þ Nrmr
, E�

r ¼
urlr

T5lr þ NrT5mr
, I�r ¼ arurlr

T5(T6 þ gr)(lr þ Nrmr)
, R�

r ¼
argrurlr

T5(T6 þ gr)(lr þ Nrmr)
:

3.2.3 Basic reproduction number
In our proposed Mpox model (Equation 5), compartments Sh, V1, V2, Rh, and Sr represent the disease-free states , while compartments

Eh, Ih, H, Er , and Ir represent the disease class. To investigate whether an infected individual will promote an epidemic outbreak in a

susceptible population, we analyze the number of secondary infections produced by an infected individual during the transmission

period, called the basic reproduction number R0, at the DFE e0. Using the technique (50, 51), the next-generation matrix (NGM),

k ¼ FV�1 at the DFE is defined as

k ¼

ahbhhuhT4

NhT1(hgh þ T2 þ T3)(mhT4 þ fT7)
bhhuhT4

Nh(hgh þ T2 þ T3)(muhT4þ T7f)
0

arbhruhT4

NhT5T6(mhT4 þ fT7)
bhruhT4

NhT6(mhT4 þ fT7)

0 0 0 0 0

0 0 0 0 0
ahbrhur

mrNrT1(hgh þ T2 þ T3)
brhur

mrNr(hgh þ T2 þ T3)
0

arbrrur
mrNrT5T6

brrur
mrNrT6

0 0 0 0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

,

(9)
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where the notations T1 ¼ mh þ ah, T2 ¼ (1� h)g1, T3 ¼ mh þ dh, T4 ¼ tþ mh þ s, T5 ¼ mr þ ar , T6 ¼ mr þ dr , and T7 ¼ mh þ s are

used in the matrices

F¼

0
bhhuh(mhþsþt)

Nh(mh(mhþsþt)þf(mhþs))
0 0

bhruh(mhþsþt)
Nh(mh(mhþsþt)þf(mhþs))

0 0 0 0 0

0 0 0 0 0

0
brhur
mrNr

0 0
brrur
mrNr

0 0 0 0 0

0
BBBBBBBBB@

1
CCCCCCCCCA
,

V¼

ahþmh 0 0 0 0

�ah dhþg1(1�h)þhghþmh 0 0 0

0 �hgh dþdhþmh 0 0

0 0 0 arþmr 0

0 0 0 �ar drþmr

0
BBBBBB@

1
CCCCCCA
, and

V�1¼

1
ahþmh

0 0 0 0

ah

(ahþmh)(dhþg1(1�h)þhghþmh)
1

dhþg1(1�h)þhghþmh
0 0 0

hahgh
(ahþmh)(dþdhþmh)(dhþg1(1�h)þhghþmh)

hgh
((dþdhþmh)(dhþg1(1�h)þhghþmh)

1
dþdhþmh

0 0

0 0 0
1

arþmr
0

0 0 0
ar

(arþmr)(drþmr)
1

drþmr

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

The NGM (Equation 9) is a non-negative matrix, and, as such, we expect that there will be a single, unique eigenvalue that is positive, real, and

strictly greater than all the others. The corresponding characteristic equation of Equation 9 is det(k�lI)¼0, and this gives the eigenvalues

(Equation 10)

l1¼0,0, 0,l2¼B1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2þB2

3

p
B4

,l3¼B1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2þB2

3

p
B4

, (10)

where, B1 :¼ (arbrrurNhT1(hghþT2þT3)(f(mhþs)þmhT4)þahbhhuhmrNrT4T5T6,

B2 ¼ 4aharuhurmrNhNrT1T4T5T6(hgh þ T2 þ T3)(bhrbrh � bhhbrr)(f(mh þ s)þ mhT4),

B3 ¼ (ahbrrurNhT1(ghhþ T2 þ T3)(f(mh þ s)þ mhT4)þ ahbhhuhmrNrT4T5T6), and

B4 ¼ (2mrNhNrT1T5T6(hgh þ T2 þ T3)(f(mh þ s)þ mhT4).

Since det (T) � 0, B2 þ B2
3 is well defined and positive, that implies l3 � l2. Now, the basic reproduction number is defined as the

largest eigenvalue (spectral radius) of the NGM (Equation 9), and it can be obtained as follows:

R0 ¼ B1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ B2

3

p
B4

: (11)

Remark 1. From an epidemiological perspective, an epidemic outbreak will occur if and only if R0 . 1. Moreover if det (T) ¼ 0, then

B2 ¼ 0, and the new basic reproduction number becomes

R0 ¼ B1 þ B3

B4
¼ ahbhhuhT4

NhT1(ghhþ T2 þ T3)(f(mh þ s)þ mhT4)
þ arbrrur
mrNrT5T6

: (12)

By substituting the values of Ti for i ¼ 1, . . . , 6, uh ¼ QhNh, and ur ¼ QrNr into (Equation 12), we derive the resulting

R0 ¼ ahbhhQh(mh þ sþ t)
(ah þ mh)(mh(mh þ sþ t)þ f(mh þ s))(dh þ g1(1� h)þ ghhþ mh)

þ arbrrQr

mr(ar þ mr)(dr þ mr)
: (13)
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Remark 2. Increasing the vaccination rate f among susceptible individuals Sh leads to an increase in B4. This increase in vaccination is

particularly significant as it results in a reduction of R0, which plays a pivotal role in effectively controlling the transmission of the disease.
3.2.4 Sensitivity analysis of basic reproduction R0

As epidemiological models often involve estimated or fitted parameters, the inherent uncertainty lies in the values of these parameters

when making conclusions about the underlying epidemic. Therefore, we carried out a sensitivity analysis of this model parameter

concerning the basic reproduction number. The normalized sensitivity index of R0 used in Ngungu et al. (52) and Samuel et al. (53)

with respect to parameter p is given by

SR0
p ¼ p

R0

@R0

@p
: (14)

When SR0
p is positive for the parameter p, it indicates an increase in R0, while a negative value of SR0

p for the parameter p suggests a

decrease in R0. Due to complexity of the actual R0 (Equation 11), we consider the normalized sensitivity index (Equation 14) of R0

(Equation 13) with respect to the parameter p ¼ (bhh, ah, Qh, mh, dh, h, gh, g1, s, t, f, brr , ar , Qr , mr , dr) as follows:

SR0
ah

¼ ah

R0

bhhQh(mh þ sþ t)
(ah þ mh)(mh(mh þ sþ t)þ f(mh þ s))(g1 þ dh � hg1 þ ghhþ mh)

SR0
bhh

¼ bhh

R0

ahQh(mh þ sþ t)
(ah þ mh)(mh(mh þ sþ t)þ f(mh þ s))(g1 þ dh � hg1 þ ghhþ mh)

SR0
Qh

¼ Qh

R0

ahbhh(mh þ sþ t)
(ah þ mh)(mh(mh þ sþ t)þ f(mh þ s))(g1 þ dh � hg1 þ ghhþ mh)

SR0
mh

¼ mh

R0

A

(ah þ mh)
2(mh(mh þ sþ t)þ f(mh þ s))2(g1 þ dh � hg1 þ hgh þ mh)

2

SR0
dh

¼ � dh
R0

ahbhhQh(mh þ sþ t)

(ah þ mh)(mh(mh þ sþ t)þ f(mh þ s))(g1 þ dh � hg1 þ gh þ mh)
2

SR0
h ¼ h

R0

ahbhhuh(g1 � gh)(mh þ sþ t)

Nh(ah þ mh)(mh(mh þ sþ t)þ f(mh þ s))(g1 þ dh � hg1 þ hgh þ mh)
2

SR0
gh

¼ � gh
R0

ahbhhhQh(mh þ sþ t)

(ah þ mh)(mh(mh þ sþ t)þ f(mh þ s))(g1 þ dh � hg1 þ hgh þ mh)
2

SR0
g1

¼ � g1
R0

ahbhh(1� h)Qh(mh þ sþ t)

(ah þ mh)(mh(mh þ sþ t)þ f(mh þ s))(g1 þ dh � hg1 þ hgh þ mh)
2

SR0
s ¼ � dh

R0

ahbhhQhtf

(ah þ mh)(mh(mh þ sþ t)þ f(mh þ s))2(g1 þ dh � hg1 þ hgh þ mh)

SR0
t ¼ t

R0

ahbhhQhf(mh þ s)

(ah þ mh)(mh(mh þ sþ t)þ f(mh þ s))2(g1 þ dh � hg1 þ hgh þ mh)

SR0
f ¼ � f

R0

ahbhhQh(mh þ s)(mh þ sþ t)

(ah þ mh)(mh(mh þ sþ t)þ f(mh þ s))2(g1 þ dh � hg1 þ hgh þ mh)

SR0
brr

¼ brr

R0

arQr

mr(ar þ mr)(dr þ mr)

SR0
ar

¼ ar

R0

brrur

Nr(ar þ mr)
2(dr þ mr)

SR0
Qr

¼ Qr

R0

arbrr

mr(ar þ mr)(dr þ mr)

SR0
mr

¼ � mr

R0

arbrrQr 2mr(ar þ dr)þ ardr þ 3m2
r

� �
m2
r (ar þ m� r)2(dr þ mr)

2

SR0
dr

¼ � dr
R0

arbrrQr

mr(ar þ mr)(dr þ mr)
2

A ¼ ahbhhQh(� (ah þ mh)(mh þ sþ t)(mh(mh þ sþ t)þ f(mh þ s))

� (ah þ mh)(mh þ sþ t)(2mh þ sþ tþ f)(g1 þ dh � hg1 þ ghhþ mh)

þ (ah þ mh)(mh(mh þ sþ t)þ f(mh þ s))(g1 þ dh � hg1 þ hgh þ mh)

� (mh þ sþ t)(mh(mh þ sþ t)þ f(mh þ s))(g1 þ dh � hg1 þ hgh þ mh))
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FIGURE 8

Mpox model sensitivities to its associated parameters for six different locations: Panel (A) and (B) illustrate the sensitivity index of R0 (Equation 13) for
t ¼ 0 and t ¼ 0:01, respectively. These are computed with the fitted parameters described in Table 3, variable parameters listed in Table 4, and
remaining parameters given in Table 2. The figure demonstrates that the sensitivity index of the parameters bhh , uh , g1 , mh , t, and f changes when
the parameter values change, while the remaining parameters remain unchanged. In other words, the parameters ah , gh , dh , s, and h are almost
constant and do not depend on another parameter, but the remaining parameters show the dependence on a second parameter, affecting the
varying sensitivity index. The simulation depicts the sensitivity index of R0 (Equation 13) for six different locations using six different colors and
sizes of circles.
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For our Mpox model (Equations 5 and 6), we analyze the sensitivity index to its associated parameter for six locations to find the most

sensitivity parameters in Figure 8.
3.3 Data-driven models

We have now introduced two statistical time series models (ARIMA and exponential smoothing) and five deep learning models

(Figure 9). The primary objective of these models is to analyze Mpox data/patterns and make predictions.
3.3.1 ARIMA model
ARIMA is a widely used time series model that is suitable for all kinds of data, including changing trends, seasonality, periodic changes,

and random disturbances, i.e., it deals with non-stationary time series. Suppose yt is the actual observation and dth difference is Yt ¼ Ddyt .

ARIMA is represented as ARIMA(p, d, q), where p is the autoregression order, d is the degree of difference, and q is the moving average

order. The ARIMA model addresses non-stationary time series by modeling the difference stationary time series using an ARMA model

(44). It can function as an ARMA, AR, I, or MA model. The AR(p) model linearly relates the current value or observed value yt at time t of
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the time series to its past values yt�1, yt�2, . . . , yt�p and current residuals et , while the MA(q) model linearly relates the current value of

the time series to its current et and past residual et�1, et�2, . . . , et�q values. The ARIMA model is basically an ARMA model fitted on d-th

order differenced time series such that the final differenced time series is stationary. Yt is p’th order autoregressive process, written AR(p)

and is defined as

Yt ¼ f1Yt�1 þ f2Yt�2 þ . . .þ fpYt�p þ et: (15)

Furthermore (Equation 15), Yt constitutes a general linear process when expressed as Yt ¼ et þ c1et�1 þþc2et�2 þ � � �, with the

condition that
P1

i¼1 c
2
i , 1. When this equation has only a finite number of non-zero c coefficients, it is referred to as a moving

average process. Specifically, the moving average of order q is (Equation 16):

Yt ¼ �u1et�1 � u2et�2 � . . .� uqet�q þ et : (16)

Finally, Yt is an autoregressive moving average of orders p and q, written ARMA(p,q), if it can be written

Yt ¼ f1Yt�1 þ f2Yt�2 þ . . .þ fpYt�p þ et � u1et�1 � u2et�2 þ . . .� uqet�q, (17)

where the autoregressive and moving average parameters are f and u, respectively. Note that Equation 17 represents the ARIMA(p,q,d)

model with yt , where the d-th order difference Yt ¼ Ddyt is substituted into Equation 17. We have used the auto arima function to fit the

ARIMA model for the univariate time series according to a provided information criterion (either AIC, BIC, or HQIC).
3.3.2 Exponential smoothing model
The Exponential Smoothing model is a simple but effective method for forecasting time series data. It depends more on the

most recent observations for predicting future time series values compared to older observations. The smoothing parameter a

controls the weight given to the most recent observation vs. the previous forecasted value, and it is typically chosen by

optimization techniques to minimize the forecast error. The basic Exponential Smoothing model, as denoted by Equation 18, is

presented as follows:

�ytþ1jt ¼ ayt þ (1� a)�ytjt�1, for t ¼ 1, � � � , T , (18)

where, �ytþ1jt is the one-step-ahead forecast for the next time period t þ 1, yt is the actual observation at time t, �ytjt�1 is the forecast

for time period t based on the information available up to time t � 1, and a is the smoothing parameter, which takes values

between 0 and 1 and controls the weight given to the most recent observation.
3.3.3 CNN, LSTM, and bidirectional LSTM models
CNN is short for Convolutional Neural Network, which is a deep learning algorithm primarily used for image and video processing, as

well as other types of data. For time series forecasting, a 1D-CNN architecture is used, consisting of an input layer, convolutional layer,

pooling layer, flattened layer, fully connected layer, and output layer. The convolutional layers apply filters to the input data to identify

features, while the pooling layers reduce the data’s dimensions to reduce computation. A flattened layer converts the reduced-size

feature map into a one-dimensional array. Finally, the fully connected layers perform classification or regression based on the input

data’s features. We have used ReLU as the activation function in the convolutional layer.

The Long Short-Term Memory (LSTM) model architecture is a type of recurrent neural network (RNN) designed to handle the

vanishing gradient problem often encountered in traditional RNNs. LSTM networks have a complex structure that allows them to

capture long-term dependencies in sequential data. Briefly, the basic structure of the LSTM unit has a memory cell, and three primary

gates: an input gate, an output gate, and a forget gate. These gates determine whether to allow information to pass through the cell or

forget it. The input gate decides which information from the current input and the previous hidden state should be passed to the

current cell state, while the forget gate determines which information from the previous cell state should be retained or forgotten.

Finally, the output gate determines the amount of output that should be passed to the next LSTM cell or the final output. The

internal architecture of the LSTM model can be observed in Esmail et al. (54).

Unlike standard LSTM, the bidirectional LSTM (BiLSTM) is a recurrent neural network (RNN) architecture that processes sequential

data in both forward and backward directions. It combines two LSTMs, one processing the input sequence in the forward direction and the

other in the reverse direction. By considering each element’s past and future context in the sequence, BiLSTM can capture more

comprehensive information. The main advantage of using BiLSTM is that they can capture both past and future context for each
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FIGURE 9

Neural network architecture: CNN, LSTM, BiLSTM, CNN-LSTM, and CNN-BiLSTM architectures involve neural network layers for feature extraction on
input data. Model descriptions for time series prediction problems from sequences of data are provided in the Appendix (Tables A4–A9).
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element in a sequence, allowing the model to make more informed predictions. However, BiLSTMs also have some limitations. They

require processing the entire input sequence in both forward and backward directions, which can be computationally expensive and

time-consuming. Overall, bidirectional LSTMs provide a powerful tool for capturing context and dependencies in sequential data by

considering both past and future information.
3.3.4 Hybrid deep learning models (CNN-LSTM, CNN-bidirectional LSTM)
The hybrid deep learning model, CNN-LSTM, combines the strengths of CNNs and LSTM networks for sequence classification,

including natural language processing and time series analysis. Similarly, CNN-BiLSTM is a neural network architecture that
TABLE 2 Description of the parameters with the values used in the deterministic modeling of Mpox transmission.

Parameter Definition Value References
Nh Total size of the human population variables (35)

Nr Total size of rodent population 8 000 000 (24)

Qh Human recruitment rate 0:3640=(52�104) per weeks (25)

Qr Rodent recruitment rate 0:2=52 per weeks (48)

mh Natural death rate of human 1.5/52 per weeks (48)

mr Natural death rate of rodent 0.002/52 per weeks (48)

dh Weekly disease-induced death rate in the human populations (3:6%�7)=21 (24)

dr Weekly disease-induced death rate in the rodent populations (0.35*7)/21 (24)
1
ah

Average incubation period of Mpox in the human population 13=7 weeks (24)
1
ar

Average incubation period of Mpox in the rodent population 7/7 week (48)
1
g1

Average number of weeks of recovery needed for infectious individuals 3 weeks (48)
1
g2

Average number of weeks of recovery needed for dose-2 vaccinated individuals 1 week assumed
1
d Average number of weeks of recovery needed for hospitalized individuals 3 weeks assumed, (48)
1
gh

Average number of weeks between symptom onsets and hospitalization approx. 1 week (59)
1
gr

Average number of weeks of recovery needed for infectious rodent 3 weeks (48)

h Proportion of hospitalization 3:2 to 9:4% (60)

f Smallpox or dose-1 vaccine coverage rate variables (58)

s Dose-2 vaccine coverage rate variables (58)

t Smallpox or dose-1 vaccine failure rate 0:15 variables (58)

c0 Baseline contact rate among the overall population 10.8 (24)

k1 Proportion of contacts within the human in overall contacts 0.6 (48)

k2 Scaling factor of contact rate among the rodent compared to baseline contact 1.3 (48)
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combines CNNs with BiLSTM layers. The combination of CNN and BiLSTM layers in this architecture allows the model to effectively

capture both spatial and sequential dependencies in the input data. The CNN layer extracts relevant features and reduces

dimensionality, while the LSTM layer captures temporal dependencies and models sequence data. The model takes input data,

passes it through the CNN layer, and feeds the output into the LSTM or BiLSTM layers to produce the final output using the

dense layer. Various applications such as speech recognition, sentiment analysis, and weather forecasting have successfully utilized

the CNN-LSTM model. It is a powerful tool for analyzing complex sequential data requiring feature extraction and sequence

modeling (Figure 9).
4 Results

We implement five deep learning models: CNN, LSTM, BiLSTM, hybrid CNN-LSTM, and CNN-BiLSTM prediction model

to forecast the Mpox virus transmission. A 60-10-30 split in training, validation, and test data will be applied. We evaluate the

performance of the data-driven models on test data. We also compare five deep learning models with the statistical time series

ARIMA and Exponential Smoothing models. Finally, we evaluate model predictions with the real Mpox data.
4.1 Results on deterministic model

Vaccination for all individuals globally is really challenging, but vaccination is one of the effective strategies to prevent any

epidemic like COVID-19. Note that the smallpox vaccine is 85% effective against Mpox due to its genetic similarity to the

smallpox virus (55, 56). Since no vaccine is 100% effective (57), and people who have been Mpox vaccinated can still get

Mpox, so we assume the failure rate, t in our proposed deterministic model given in Equation (5). However, CDC (58)

reported that approximately 1,233,453 people in the USA received the Mpox vaccine as of June 20, 2023, and only 23% of the

population at risk has been fully vaccinated in the USA. Moreover, there are limited vaccinations in many areas of the world;
FIGURE 10

Data fitting for the Mpox deterministic model in various locations: The presented figure illustrates the Mpox data fitting of the deterministic model in
various locations. As a mathematical model of the Mpox spread, we use the deterministic model shown in Figure A2. Also, Table 2 provides the initial
data used for the fitting, while Table 3 contains the corresponding fitting parameters for each location. Additionally, Table 4 shows various variable
parameters using the testing errors defined in Equation 2.
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TABLE 4 Variable parameters and errors in deterministic model fitting.

Deterministic model fitting Variable parameters Test errors and test domain

Location h f s h MAE RMSE nRMSE Test domain
World 10�1 0.35 0.0010 0.022 760.90 1283.30 1.16 Feb. 11–June 3 (2023)

North America 10�1 0.35 0.0012 0.032 258.77 494.07 9.50 Feb. 18–May 27 (2023)

South America 10�1 0.35 0.0012 0.032 139.09 215.21 7.17 Feb. 18–May 27 (2023)

Europe 10�1 0.35 0.0010 0.022 650.52 1136.3 45.45 Feb. 11–June 3 (2023)

Brazil 10�1 0.35 0.0012 0.032 51.91 81.14 7.38 Feb. 18–May 27 (2023)

USA 10�1 0.35 0.0012 0.032 107.02 168.91 3.31 Feb. 18–May 27 (2023)

TABLE 3 Population size and fitted parameters in deterministic model fitting.

Location Nh c0 k1 k2 ah ar t
World 7,795,237,030 3.2000 0.2839 0.6499 0.9845 0.7550 0.0000

North America 592,072,212 2.7679 0.6455 0.9726 0.7843 0.6620 0.0000

South America 430,759,766 2.9452 0.8640 1.2464 0.5787 0.6235 0.0000

Europe 747,636,026 6.3535 0.8873 0.4026 1.0000 0.9988 0.0000

Brazil 212,559,417 4.3212 0.9602 0.7526 1.0000 0.7217 0.0000

USA 331,002,651 2.3433 0.7978 1.2046 1.0000 0.9989 0.0000
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for example, the Africa Centre for Disease Control stated that the continent, with a population of over 1.2 billion people, had no

access to Mpox vaccines (55). Moreover, Figure 11 illustrates the significance of vaccination for the US population.

We obtained values from the literature for most biological parameters, which in this model are either constant (Table 2) or data fitting

with our model (Table 3). To simulate our model, we initialize the week one infected individual by one, i.e., Ih(0) ¼ 1, Ir(0) ¼ 1 by ignoring

the scenario of whether there were any reported cases or not. We then fit our Mpox model with the reported data and uncover the fitted

parameters in Table 3 and the variable parameters in Table 4.

4.1.1 Fitting deterministic model
Suppose we are given the data {(t1, y1), . . . (tn, yn)}, where yn is the n-th observed data point, and n is the total number of data points.

We want to fit hI(t) of model estimated parameter q, where h is a “reporting rate.” Then the sum of squared errors (SSE) between hI(t)

and the data can be measured by

L : ¼ SSE(q) ¼
Xn
j¼1

kyj � hI(tj)k2: (19)

In the least-square fitting, we find the value q̂ of the model parameter q such that SSE(q) is the minimum. We use the Matlab

function ode45 to simulate our proposed model, and Matlab’s minimization-constrained function fmincon takes the least-

squares error function SSE(q) and uses a direct search routine to find a minimum value of least squares error. In this

fitting, we fix most of the parameters given in Table 2 and estimate the parameters q ¼ [c0, k1, k2, ah, ar , t] using the

reporting rate h ¼ 10�1 on the model incidence of I. More importantly, Figure 10 presents the Mpox deterministic model

fitting in various locations, and its algorithmic steps are given in Appendix A (Algorithm 1).

To investigate the particular impact of disease transmission of Mpox via inter-group contacts, we now generate colormaps

based on the baseline contact rate c0 within the overall population and the proportion of human contacts, k1. To incorporate

these numerical simulations, an outbreak is defined as in (61, 62) when the maximum value of the function I(t) within a specified

time interval t is greater than or equal to 2, represented as maxt[t I(t) � 2. On the other hand, the absence of an outbreak is

determined when the maximum value of infected cases, I(t), within the same time frame, remains below 2, i.e., maxt[t I(t) , 2,

where minor fluctuations in the total count of infected individuals may arise due to numerical instability. These conditions

produce the epidemic (yellow-colored) vs. non-epidemic (blue-colored) parametric regions in Figure 12.
4.2 Results on data-driven models

We now implement the deep learning model to the EPI weekly time series data and found that the hybrid CNN-LSTM network model

performed best in both test and prediction. We choose different window sizes to group the confirmed cases in the time series data for
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FIGURE 11

Importance of Vaccinations: This figure illustrates the significant impact of vaccination on the USA population size Nh ¼ 331,002,651. Panel (A) depicts the
percentage of epidemic sizes for f0 [ [0, 0:25]. Panel (B) demonstrates a decreasing fraction of incidence with increasing vaccination rates. Panels (C) and
(D) depict the cumulative incidence and the prevalence, respectively, highlighting a substantial reduction when the vaccination rate f0 increases. Overall,
raising the vaccination rate f of Mpox offers a solution to mitigate the risks posed by Mpox as well as other emerging infectious diseases. For these
simulations, we use the parameter values given in Table 2 except the variable parameter values bhh ¼ 5:5, brr ¼ 2:5, bhr ¼ brh ¼ 2:0251. For each simulation,
we also consider the initial conditions Ih(0) ¼ Ir (0) ¼ 1, Sh(0) ¼ Nh � I(0)� V1(0), Eh(0) ¼ H(0) ¼ V1(0) ¼ V2(0) ¼ Rh(0) ¼ Er (0) ¼ Rr ¼ 0, Sr (0) ¼ Nr � Ir (0),
whereNr ¼ 8,000,000.We run simulations over the time range t ¼ [0, 65] with step sizeDt ¼ 0:1.

Das 10.3389/fepid.2024.1334964
training and testing the five neural networks: CNN, LSTM, BiLSTN, and hybrid CNN-LSTM and CNN-BiLSTM. Then, the optimal

window size and hyperparameters were determined by analyzing their errors’ (MAE, RMSE, nRMSE) effect on the network’s

performance. Several studies, such as the one by Sun et al. (63) in 2020, have demonstrated the practical effectiveness of the Adam

optimizer and its favorable performance compared to other adaptive learning rate algorithms. As a result, we have implemented the

Adam optimizer in all of our machine-learning models.
5 Discussion

While recent deep learning studies on the Mpox approach stayed limited to classifying or diagnosing Mpox, for example, (64) and

many more, our study modeled to explore the dynamics of disease transmission. In our modeling framework, we have done model

fitting in Figure 10 and made predictions in Figure 15 and found important epidemiological parameters in Table 3. More importantly,

our findings of the deterministic model (Equation 5) demonstrate that with an increasing vaccination rate, the percentage of the

epidemic size decreases, as depicted in Figure 11. This result also highlights the importance of vaccination for disease control and

prevention. The findings presented in Figure 12 indicate that effective control of the epidemic can be achieved by making strategic

modifications to the baseline contact rate c0 and the proportion of contacts within the human population k1, as depicted in the

accompanying Figure. Additionally, we have constructed the deep learning models and presented a comprehensive visualization of the
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FIGURE 12

Epidemic (yellow colored) vs. non-epidemic (blue colored) parametric regions depending on c0 and k1: The figure shows the colormaps for the
range of c0 ¼ [0, 1], and k1 ¼ [0, 1] with step size Dc0 ¼ Dk1 ¼ 0:1. The epidemic region is depicted in yellow in the figure, while the non-
epidemic parametric region is represented in blue. For these simulations, we use the parameter values given in Table 2, fitted parameter in Table 3, and
variable parameters value in Table 4. This figure also illustrates that with these epidemiological parameters, it is possible to control the epidemic by adjusting
the baseline contact rate c0 and the proportion of contacts within the human population k1 in overall contacts. For each simulation, we also consider the
initial conditions Ih(0) ¼ Ir (0) ¼ 1, V1(0) ¼ Nh�(1=100), Sh(0) ¼ Nh � I(0)� V1(0), Eh(0) ¼ H(0) ¼ V2(0) ¼ Rh(0) ¼ Er (0) ¼ Rr ¼ 0, Sr (0) ¼ Nr � Ir (0), where
Nr ¼ 8,000,000.We run simulations over the time domain t ¼ [0, 65] with step sizeDt ¼ 0:01.
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entire time series dynamics in Figure 13. Next, Figure 14 depicts the disease dynamics observed on the test set for the data-driven models

across various regions: (A) World, (B) North America, (C) South America, (D) Europe, (E) Brazil, and (F) USA. This figure also reveals

that the deep learning models, namely CNN, LSTM, BiLSTM, CNN-LSTM, and CNN-BiLSTM, closely align with the reported incidence

dynamics, capturing the trends effectively. However, the ARIMA and Exponential smoothing models deviate from the real incidence on

test data, particularly on the World data.

In the context of the prediction shown in Figure 15, the hybrid deep learning models, CNN-LSTM and CNN-BiLSTM, exhibit good

performance compared to other models across all test dynamics, demonstrating their potential for accurate disease prediction and

capturing the complexities of the Mpox outbreak in different regions. Notably, most of the predictive models indicate that the Mpox

disease is currently in a decline phase. The predictive trend remarkably mirrors the real data. However, it is worth noting that some

models, for example, CNN, LSTM, BiLSTM, and CNN-BiLSTM indicate the possibility of another peak in the disease’s trajectory in

selected geographical regions. In terms of overall performance, it is evident that both CNN-LSTM and deterministic models exhibit

better predictive capabilities. Their accuracy (Table A10) and effectiveness in forecasting Mpox disease dynamics appear to stand out

among the various models considered in this analysis.
5.1 Modeling limitation

The deterministic model is designed to incorporate explainability and account for real-world scenarios, although it does rely on specific

assumptions. In contrast, data-driven modeling offers less explainability in their predictions but demonstrates good predictive capability

when applied to time series data. We normalized the complete time series dataset using a data normalization approach, which involved

selecting max and min values from each location’s entire time series. Note that this normalization data is only used in deep learning

modeling. Another limitation of the deep learning models is that they are trained on random initial weights during the training.
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FIGURE 13

Deep learning model training for Mpox incidence in different locations: This figure shows the predicted vs. actual incidence per week in six different
locations worldwide using five different deep learning models. We use 60% for the training dataset with 10% for validation during the model building
(details given in the appendix) and then utilize the trained model to predict the incidence (number of new cases) per week for the entire time series
data spanning from 2023-02-11 to 2023-06-03. For example, in the World and Europe time series data, the model was trained on the data from 2022-
05-07 to 2023-02-04 (week 0 to week 39), and the predictions were then extended to cover the entire time whole period from 2022-05-07 to 2023-
06-03 (week 0 to week 56) and compared with the actual data. The actual data are displayed in red in the panel, while the predictions from various
deep learning models, including CNN, LSTM, BiLSTM, CNN-LSTM, and CNN-BiLSTM, are presented in magenta, green, blue, black, and cyan,
respectively. These models were also evaluated using test data from 2023-02-11 to 2023-06-03 (week 40 to week 56), with the model
predictions given in Figure 14 and subsequently used to predict the next eight weeks from 2023-06-10 to 2023-07-29 (week 57 to week 64) in
Figure 15. Similarly, we optimized the model for other locations as provided in the Appendix C.
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6 Conclusion

This paper conducted a comprehensive analysis of global Mpox univariate time series data in diverse geographical locations. We

proposed a deterministic model and utilized advanced deep learning techniques such as 1D-CNN, LSTM, BiLSTM, hybrid CNN-

LSTM, and CNN-BiLSTM, alongside statistical time series models like ARIMA and exponential smoothing, to gain deeper insights

into the Mpox disease dynamics. Moreover, the spatial pattern analysis of global Mpox data from May 1, 2022, to May 31, 2023,

offered insights into the geographical distribution of the disease, helping public health authorities and policymakers focus on areas

with higher risks. Our deterministic model highlighted the critical role of vaccination rates in flattening the curve of infection

dynamics and influencing the basic reproduction number. It underscored the importance of increasing vaccination among susceptible

populations to control disease transmission effectively. Through data fitting, we estimated crucial epidemiological parameters within

our proposed deterministic model. The results showed the importance of reducing contact rates in high-risk groups to mitigate the

disease outbreaks. Additionally, these findings contributed to a comprehensive understanding of disease dynamics across diverse

locations and informed targeted intervention strategies for controlling and mitigating infectious disease outbreaks. Furthermore, our

deterministic and data-driven models extended their utility by providing short-term (eight weeks) predictions across various

geographical locations, including the World, USA, Brazil, and three continents: North America, South America, and Europe. The

findings, verified by real data, suggested that Mpox is approaching its decline phase as of July 29, 2023.
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FIGURE 15

Mpox predictions of different locations using data-driven and deterministic models. Appendix C contains the data-driven model construction process,
along with error measurements on the test data. Additional details, i.e., model parameters and model construction are provided in Tables A1, A2, A3,
A4, A5, A6, A7, A8, and A9. Moreover, the deterministic model used the same parameter values described in Figure 10.

FIGURE 14

Data driven model on test data for Mpox incidence across different locations.
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7 Computer configuration

We performed all experiments in this study using Python programming language on Google Colab with the TensorFlow and Keras

libraries through the Google Chrome browser and MATLAB. Computer info: MacBook Pro; Chip: AppleM2 Pro; Memory: 16 GB.
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Appendix

The purpose of this appendix is to present a few results that are outlined in the main manuscript.

A: Mpox daily incidence and the schematic representation of the deterministic
model
FIGURE A1

Dynamics of daily Mpox incidence: This figure illustrates the daily incidence of Mpox in various locations from May 2022 to May 2023. The figure
exhibits seasonality and includes missing reported data. In contrast, the weekly data in Figure 2C captures the proper disease dynamics, which can
be a pragmatic choice.

FIGURE A2

Schematic representation of the deterministic model: This figure shows a modified SEIR model with two-phase vaccinations (smallpox or dose one
vaccine and dose two vaccines) for mpox virus transmissions.
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B. Algorithm for data fitting via least squares estimation in the
deterministic model
Algorithm 1 Parameter Estimation for a Deterministic Model

Data: Observations: The reported data we want to fit the model;
Deterministic model: The model is defined in (Equation 5);
Objective function: The Sum of Squared Errors (SSE) is formulated in (Equation 19);
Optimization algorithm: Utilize the constrained optimization function “fmincon” available in MATLAB;
Result: Estimated Parameters: The parameter values best fit the model and the observations
1 Initialization;
2 Choose an initial set of parameter values manually;
3 Define a subroutine function for the deterministic model;
4 Write down the mathematical equations that describe the deterministic model;
5 Identify the parameters that need to be initialized;
6 Identify the parameters that need to be estimated to fit the model to the data;
7 while not converged do
8 Step 1: Run the subroutines for the deterministic model to calculate the incidence;
9 Step 2: Define the error and optimization function;

10 Step 3: Find the estimated parameters;
11 Execute the optimization algorithm until convergence;
12 The final parameter values are the estimated values that provide the best fit to the observed data;
13 Check the fitting performance, compute MAE, RMSE and nRMSE using (Equation 2);
14 If necessary, re-run with different initial estimated values to improve the fitting;
C. Parameters and hyperparameters for data-driven modeling

For data-driven modeling, we use different libraries in Python. First, we utilize auto_arima to train the ARIMA model from the

pmdarima library. Next, we fit the Exponential Smoothing model to the data using the ExponentialSmoothing function. Then, we

employ the Keras deep learning library to develop the neural network models.
TABLE A1 Optimized ARIMA model selection based on location and error on test data.

Area Best model Cov type Coef Std err z-Stat P . jzj MAE RMSE nRMSE Neg #s
World ARIMA(1,2,0) AR L(1) �0.6435 0.096 �6.723 0.000 629.66 726.98 3.85 15

sigma2 2.992eþ05 4.94eþ04 6.058 0.000

N.A. ARIMA(1,2,0) AR L(1) �0.7487 0.070 �10.701 0.000 93.87 110.81 1.07 10

sigma2 1.299eþ05 2.41eþ04 5.401 0.000

S.A. ARIMA(2,2,0) AR L(1) �1.0548 0.092 �11.477 0.000 37.63 39.02 0.70 0

AR L(2) �0.5534 0.099 �5.599 0.000

sigma2 2.595eþ04 5,883.388 4.410 0.000

Europe ARIMA(0,2,2) MA L(1) �1.1512 0.108 �10.648 0.000 24.04 25.35 1.21 0

MA L(2) 0.7168 0.098 7.342 0.000

sigma2 1.077eþ05 2.13eþ04 5.068 0.000

Brazil ARIMA(2,2,0) AR L(1) �1.1473 0.107 �10.715 0.000 17.37 19.39 0.61 0

AR L(2) �0.4733 0.111 �4.271 0.000

sigma2 1.885eþ04 3,713.771 5.075 0.000

USA ARIMA(1,2,0) AR L(1) �0.7258 0.062 �11.622 0.000 52.69 64.76 1.32 15

sigma2 1.391eþ05 2.5eþ04 5.566 0.000

TABLE A2 Optimized Exp Smoothing model selection based on location and performance analysis.

Location SM-level-co. SM-trend-co. SM-S-co. S-Periods int.level int.trend MAE RMSE nRMSE
World 0.9087641 0.5155482 0.0049327 2 �666.97 355.01 123.66 161.00 0.85

North America 0.8481840 0.3866436 0.1319115 2 �759.83 378.67 175.03 201.67 1.93

South America 0.6496420 0.5691656 0.0424273 2 �110.01 �1.45 93.34 98.77 1.76

Europe 0.5994405 0.5927621 0.0001492 2 �458.98 245.04 98.37 109.10 5.2

Brazil 0.6983918 0.3348396 0.0172271 2 �123.28 39.91 75.90 86.52 2.70

USA 0.7322763 0.6844459 0.0778146 2 �725.14 375.83 151.18 169.82 3.47
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TABLE A3 Optimized Exp Smoothing model’s initial seasonal coefficients.

Location Periods Season-0 Season-1 Num. of negative-values (Neg #s)
World 2 149.10610 �60.580232 0

North America 2 160.52794 �28.526291 0

South America 2 96.613117 138.40140 0

Europe 2 31.599465 �25.975047 0

Brazil 2 94.130198 22.688328 0

USA 2 185.85629 3.7643548 0

TABLE A4 Hyperparameter tuning on World data using deep learning approach.

Model building on the training data (May 7, 2022, to February 4, 2023) with 10% validation of
training data

Test: Feb.11–June 3 (2023)

Forecasting model Hyperparameter Range Best MAE RMSE nRMSE
CNN window size (2,1) to (12,1) (2,1)

4 conv layers with filters: 256,128,64,32 Batch size (2, 30) 2

and kernel size 2,1,1,1, activation ¼ relu learning rate (0.01, 0.0001) 0.0001 85.29 104.82 0.55

3 MaxPooling, and with flatten Epochs (1,100) 10

3 Dense layers: 512, 256, 128, and 1 output layer

LSTM window size (2,1) to (12,1) (2,1)

1 LSTM layer with 200 neurons Batch size (2, 30) 5

activation ¼ relu learning rate (0.01, 0.0001) 0.001 52.60 66.39 0.35

3 Dense layers with neurons 50, 30, and 10; 1 output layer Epochs (1,100) 5

Bidirectional LSTM window size (2,1) to (12,1) (2,1)

1 BiLSTM layer with 50 units Batch size (2, 30) 5

activation ¼ relu learning rate (0.01, 0.0001) 0.001 49.60 62.77 0.33

3 Dense layers: 50, 30, 10, and 1 output layer Epochs (1,100) 40

CNN-LSTM Hybrid window size (2,1) to (12,1) (2,1)

2 conv layers with filters: 256, 128 Batch size (2, 30) 4

and kernel size 1, activation ¼ relu learning rate (0.01, 0.001) 0.001 46.18 58.52 0.31

1 MaxPooling, and with flatten Epochs (1,100) 19

1 LSTM layer with 150 units

3 Dense layers:50, 30, 10, and 1 output layer

CNN-Bidirectional LSTM Hybrid window size (2,1) to (12,1) (2,1)

4 conv layers with filters: 256, 128 Batch size (2, 30) 4

and kernel size 1,1, activation ¼ relu learning rate (0.01, 0.0001) 0.001 42.44 52.81 0.28

3 MaxPooling, and with flatten Epochs (1,100) 80

1 Bidirectional LSTM layer with 200 units

2 Dense layers: 50, 10, and 1 output layer
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TABLE A5 Hyperparameter tuning on North America data using deep learning approach.

Model building on the training data (June 4, 2022, to Feb. 11, 2023) with 10% validation of
training data

Test: Feb. 18–May 27 (2023)

Forecasting model Hyperparameter Range Best MAE RMSE rRMSE
CNN window size (2,1) to (12,1) (2,1)

4 conv layers with filters: 256,128,64,32 Batch size (2, 30) 2

and kernel size 2,1,1,1, activation ¼ relu learning rate (0.01, 0.0001) 0.001 82.04 86.83 0.83

3 MaxPooling, and with flatten Epochs (1,100) 10

3 Dense layers: 512, 256, 128, and 1 output layer

LSTM window size (2,1) to (12,1) (2,1)

1 LSTM layer with 150 neurons Batch size (2, 30) 5

activation ¼ relu learning rate (0.01, 0.0001) 0.001 77.18 84.89 0.82

3 Dense layers with neurons 50, 30, and 10; 1 output layer Epochs (1,100) 13

Bidirectional LSTM window size (2,1) to (12,1) (2,1)

1 BiLSTM layer with 40 units Batch size (2, 30) 5

activation ¼ relu learning rate (0.01, 0.0001) 0.001 75.25 82.41 0.79

3 Dense layers: 50, 30, 10, and 1 output layer Epochs (1,100) 7

CNN-LSTM Hybrid window size (2,1) to (12,1) (2,1)

2 conv layers with filters: 256, 128 Batch size (2, 30) 10

and kernel size 1, activation ¼ relu learning rate (0.01, 0.001) 0.001 58.95 65.36 0.63

1 MaxPooling, and with flatten Epochs (1,100) 19

1 LSTM layer with 40 units

3 Dense layers:50, 30, 10, and 1 output layer

CNN-Bidirectional LSTM Hybrid window size (2,1) to (12,1) (2,1)

4 conv layers with filters: 256, 128 Batch size (2, 30) 4

and kernel size 1,1, activation ¼ relu learning rate (0.01, 0.0001) 0.0001 61.00 68.62 0.66

3 MaxPooling, and with flatten Epochs (1,100) 5

1 Bidirectional LSTM layer with 500 units

2 Dense layers: 30, 10, and 1 output layer

TABLE A6 Hyperparameter tuning on South America data using deep learning approach.

Model building on the training data (June 4, 2022, to February 11, 2023) with 10% validation of
training data

Test: Feb. 18–May 27 (2023)

Forecasting model Hyperparameter Range Best MAE RMSE nRMSE
CNN window size (2,1) to (12,1) (2,1)

4 conv layers with filters: 256 with MaxPooling 1,128,64,32 Batch size (2, 30) 2

kernel size 2,1,1,1 resp., activation ¼ relu learning rate (0.01, 0.0001) 0.0001 50.31 61.87 1.1

3 MaxPooling, and with flatten Epochs (1,100) 10

3 Dense layers: 512, 256, 128, and 1 output layer

LSTM window size (2,1) to (12,1) (2,1)

1 LSTM layer with 100 neurons Batch size (2, 30) 5

activation ¼ relu learning rate (0.01, 0.0001) 0.001 46.62 52.41 0.94

3 Dense layers with neurons 50, 30, and 10; 1 output layer Epochs (1,100) 13

Bidirectional LSTM window size (2,1) to (12,1) (2,1)

1 BiLSTM layer with 70 units Batch size (2, 30) 5

activation ¼ relu learning rate (0.01, 0.0001) 0.001 48.67 53.96 0.96

3 Dense layers: 50, 30, 10, and 1 output layer Epochs (1,100) 37

CNN-LSTM Hybrid window size (2,1) to (12,1) (2,1)

3 conv layers with filters: 512, 256, 128 Batch size (2, 30) 4

and kernel size 1, activation ¼ relu learning rate (0.01, 0.001) 0.0001 41.58 46.53 0.83

1 MaxPooling, and with flatten Epochs (1,100) 19

1 LSTM layer with 100 units

3 Dense layers:50, 30, 10, and 1 output layer

CNN-Bidirectional LSTM Hybrid window size (2,1) to (12,1) (2,1)

3 conv layers with filters: 512, 256, 128 Batch size (2, 30) 4

kernel size 1,1 resp., activation ¼ relu learning rate (0.01, 0.0001) 0.0001 45.46 51.60 0.92

1 flatten Epochs (1,100) 5

1 Bidirectional LSTM layer with 250 units

2 Dense layers: 50, 10, and 1 output layer
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TABLE A7 Hyperparameter tuning on Europe data using deep learning approach.

Model building on the training data (May 7, 2022, to February 4, 2023) with 10% validation of
training data

Test: Feb. 11–June 3 (2023)

Forecasting model Hyperparameter Range Best MAE RMSE nRMSE
CNN window size (2,1) to (12,1) (2,1)

2 conv layers with filters: 256,128 Batch size (2, 30) 15

and kernel size 2,1, activation ¼ relu learning rate (0.01, 0.0001) 0.001 38.24 38.62 1.84

3 MaxPooling, and with flatten Epochs (1,100) 10

2 Dense layers: 512, 256, and 1 output layer

LSTM window size (2,1) to (12,1) (3,1)

1 LSTM layer with 85 neurons Batch size (2, 30) 10

activation ¼ relu learning rate (0.01, 0.0001) 0.01 14.44 16.19 0.77

3 Dense layers with neurons 50, 30, and 10; 1 output layer Epochs (1,100) 10

Bidirectional LSTM window size (2,1) to (12,1) (3,1)

1 BiLSTM layer with 150 units Batch size (2, 30) 15

activation ¼ relu learning rate (0.01, 0.0001) 0.01 35.81 36.78 1.75

3 Dense layers: 50, 30, 10, and 1 output layer Epochs (1,100) 40

CNN-LSTM Hybrid window size (2,1) to (12,1) (2,1)

2 conv layers with filters: 256, 128 Batch size (2, 30) 15

and kernel size 1, 1 activation ¼ relu learning rate (0.01, 0.001) 0.001 6.76 7.26 0.35

1 MaxPooling, and with flatten Epochs (1,100) 10

1 LSTM layer with 85 units

3 Dense layers:150, 50, 10, and 1 output layer

CNN-Bidirectional LSTM Hybrid window size (2,1) to (12,1) (2,1)

2 conv layers with filters: 256, 128 Batch size (2, 30) 15

and kernel size 1,1, activation ¼ relu learning rate (0.01, 0.0001) 0.001 11.53 12.14 0.58

Flatten Epochs (1,100) 80

1 Bidirectional LSTM layer with 180 units

3 Dense layers: 100, 50, 10, and 1 output layer

TABLE A8 Hyperparameter tuning on Brazil data using deep learning approach.

Model building on the training data (June 4, 2022, to February 11, 2023) with 10% validation of
training data

Test: Feb. 18–May 27 (2023)

Forecasting model Hyperparameter Range Best MAE RMSE nRMSE
CNN window size (2,1) to (12,1) (2,1)

4 conv layers with filters: 256,128,64,32 Batch size (2, 30) 2

and kernel size 2,1,1,1, activation ¼ relu learning rate (0.01, 0.0001) 0.0001 39.97 43.82 1.37

3 MaxPooling, and with flatten Epochs (1,100) 10

3 Dense layers: 512, 256, 128, and 1 output layer

LSTM window size (2,1) to (12,1) (2,1)

1 LSTM layer with 200 neurons Batch size (2, 30) 5

activation ¼ relu learning rate (0.01, 0.0001) 0.001 38.86 41.28 1.29

3 Dense layers with neurons 50, 30, and 10; 1 output layer Epochs (1,100) 13

Bidirectional LSTM window size (2,1) to (12,1) (2,1)

1 BiLSTM layer with 200 units Batch size (2, 30) 5

activation ¼ relu learning rate (0.01, 0.0001) 0.0001 25.01 28.09 0.88

3 Dense layers: 50, 30, 10, and 1 output layer Epochs (1,100) 37

CNN-LSTM Hybrid window size (2,1) to (12,1) (2,1)

4 conv layers with filters: 1024, 512,256, and 128 Batch size (2, 30) 4

1 MaxPooling with pool size 1, kernel size 1, activation ¼ relu learning rate (0.01, 0.001) 0.001 13.44 15.44 0.48

1 Flatten Epochs (1,100) 19

1 LSTM layer with 100 units

3 Dense layers:50, 30, 10, and 1 output layer

CNN-Bidirectional LSTM Hybrid window size (2,1) to (12,1) (2,1)

6 conv: 1024, 512 with MaxPooling 1, 256, 128,64, 32 Batch size (2, 30) 4

kernel size 1,1,1,1,1,1 activation ¼ relu learning rate (0.01, 0.0001) 0.001 15.67 17.06 0.53

Single flatten Epochs (1,100) 5

1 Bidirectional LSTM layer with 250 units

3 Dense layers: 100, 50, 10, and 1 output layer
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TABLE A9 Hyperparameter tuning on USA data using deep learning approach.

Model building on the training data (June 4, 2022, to February 11, 2023) with 10% validation of
training data

Test : Feb. 18–May 27 (2023)

Forecasting model Hyperparameter Range Best MAE RMSE nRMSE
CNN window size (2,1) to (12,1) (2,1)

4 conv layers with filters: 256,128,64,32 Batch size (2, 30) 2

and kernel size 2,1,1,1, activation ¼ relu learning rate (0.01, 0.0001) 0.0001 71.42 72.65 1.48

3 MaxPooling, and with flatten Epochs (1,100) 10

3 Dense layers: 512, 256, 128, and 1 output layer

LSTM window size (2,1) to (12,1) (2,1)

1 LSTM layer with 200 neurons Batch size (2, 30) 5

activation ¼ relu learning rate (0.01, 0.0001) 0.001 35.26 38.41 0.78

3 Dense layers with neurons 50, 30, and 10; 1 output layer Epochs (1,100) 13

Bidirectional LSTM window size (2,1) to (12,1) (2,1)

1 BiLSTM layer with 250 units Batch size (2, 30) 5

activation ¼ relu learning rate (0.01, 0.0001) 0.001 20.21 23.79 0.49

3 Dense layers: 50, 30, 10, and 1 output layer Epochs (1,100) 37

CNN-LSTM Hybrid window size (2,1) to (12,1) (2,1)

2 conv layers with filters: 256, 128 Batch size (2, 30) 4

and kernel size 1, activation ¼ relu learning rate (0.01, 0.001) 0.001 13.44 15.44 0.32

1 Flatten Epochs (1,100) 19

1 LSTM layer with 100 units

3 Dense layers:50, 30, 10, and 1 output layer

CNN-Bidirectional LSTM Hybrid window size (2,1) to (12,1) (2,1)

2 conv layers with filters: 256, 128 Batch size (2, 30) 4

and kernel size 1,1, activation ¼ relu learning rate (0.01, 0.0001) 0.001 13.81 15.79 0.32

Single flatten Epochs (1,100) 5

1 Bidirectional LSTM layer with 150 units

2 Dense layers: 50, 10, and 1 output layer

TABLE A10 Prediction errors for different models.

Location Error CNN LSTM BiLSTM CNN-LSTM CNN-BiLSTM ARIMA exp smooth det model
World MAE 178 81 28 26 26 600 120 860

RMSE 213 88.7 39.5 30.3 30.6 1613 135 864

nRMSE 1.86 0.77 0.34 0.26 0.27 14.03 1.18 7.52

NA MAE 107 276 227 79 160 256 423 50

RMSE 108 310 249 81 172 260 432 53

nRMSE 2.08 5.97 4.79 1.56 3.31 5.01 8.32 1.03

SA MAE 171 191 158 101 126 22 141 46.5

RMSE 185 217 173 108 137 24.5 142 48

nRMSE 6.17 7.24 5.76 3.59 4.58 0.82 4.76 1.61

Europe MAE 38.91 68.90 311 8.80 11.9 36.5 192 85.8

RMSE 40.07 78.5 385 9.54 12.5 37.5 196 87

nRMSE 1.60 3.14 15.38 0.38 0.49 1.5 7.8 3.5

Brazil MAE 104 137 78 42.3 20.7 8.3 116 24

RMSE 107 151 84 48 21 9.7 122 24.4

nRMSE 9.7 13.8 7.7 4.33 1.9 0.88 11.09 2.22

USA MAE 114 105 58 14 14 154 293 24.5

RMSE 117 112 63 17.9 18.2 156 297 27.8

nRMSE 2.29 2.2 1.24 0.35 0.35 3.07 5.83 0.54
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