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Background: Most existing clinical prediction models do not allow predictions
under interventions. Such predictions allow predicted risk under different
proposed strategies to be compared and are therefore useful to support
clinical decision making. We aimed to compare methodological approaches
for predicting individual level cardiovascular risk under three interventions:
smoking cessation, reducing blood pressure, and reducing cholesterol.
Methods: We used data from the PREDICT prospective cohort study in New
Zealand to calculate cardiovascular risk in a primary care setting. We
compared three strategies to estimate absolute risk under intervention:
(a) conditioning on hypothetical interventions in non-causal models; (b)
combining existing prediction models with causal effects estimated using
observational causal inference methods; and (c) combining existing prediction
models with causal effects reported in published literature.
Results: The median absolute cardiovascular risk among smokers was 3.9%; our
approaches predicted that smoking cessation reduced this to a median between
a non-causal estimate of 2.5% and a causal estimate of 2.8%, depending on
estimation methods. For reducing blood pressure, the proposed approaches
estimated a reduction of absolute risk from a median of 4.9% to a median
between 3.2% and 4.5% (both derived from causal estimation). Reducing
cholesterol was estimated to reduce median absolute risk from 3.1% to
between 2.2% (non-causal estimate) and 2.8% (causal estimate).
Conclusions: Estimated absolute risk reductions based on non-causal methods
were different to those based on causal methods, and there was substantial
variation in estimates within the causal methods. Researchers wishing to estimate
risk under intervention should be explicit about their causal modelling assumptions
and conduct sensitivity analysis by considering a range of possible approaches.
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ATM, anti thrombotic medication; BPLM, blood pressure lowering medication; CPM, clinical prediction
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1 Background

Prognostic clinical prediction models (CPMs) provide

assessments of individual risk of future adverse outcomes,

conditional on characteristics available at the time that the

prediction is made (1). CPMs have a wide range of uses; among

these is to provide clinical decision support. For example, QRISK

is a CPM for cardiovascular disease, used in UK primary care, to

determine whether it is appropriate to offer a patient a statin (2),

according to whether a patient exceeds an absolute risk of 10%

within a 10-year timeframe. Decision rules such as this are

commonly used, based on the common finding that benefits

from intervention are higher in patients with higher absolute

risk, while harms (or costs) are fixed or increase more slowly (3).

CPMs are used to guide intervention choices (4), but do not tell

us how those interventions will affect the individual’s risks of future

adverse outcomes. As noted by Hernán et al. (5) “predictive

algorithms inform us that decisions have to be made, but they

cannot help us make the decisions.”

One way in which this might be done, as observed in practice

(6), is by modifying the inputs to the predictive algorithm from the

actual characteristics of the patient to the expected characteristics

after an intervention—which we call here conditioning on

interventions in non-causal models. We believe this approach is

widespread in healthcare practice (7). However, this approach is

not expected to provide an accurate estimate of the change in

predicted risk as a result of a planned intervention (8); to do so

requires causal inference techniques (9, 10).

CPMs are rarely developed with explicit consideration of

prediction under intervention [with notable exceptions (8, 11)].

However, methods are emerging to allow for this (12). In a

recent scoping review on methods enabling prediction under

intervention, two main classes of approach were identified: to use

externally estimated causal effects (e.g., from clinical trials)

combined with a standard prediction model, or to develop a

CPM that allows for prediction under intervention by combining

CPM development techniques with causal inference methods for

observational data.

To the best of our knowledge, no studies have empirically

compared different methods for prediction under intervention.

Therefore, we aimed to demonstrate and compare methods, both

from the two main classes of approach, and the approach of

conditioning on interventions in non-causal models (since this is

an approach likely used in practice), in terms of their estimated

absolute risks.
2 Methods

2.1 Data source

PREDICT is a prospective open cohort study set in New

Zealand (13). Participants are automatically enrolled when

primary healthcare practitioners complete standardised

cardiovascular disease (CVD) risk assessments using a web-based

CVD risk assessment and management decision support system.
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New Zealand CVD risk management guidelines recommend such

CVD risk assessments begin on men aged 45 years and women

aged 55 years (or 10 years earlier for people of higher CVD risk

ethnicities), with the frequency of subsequent assessment and

intensity of risk management informed by their calculated 5-year

CVD risk. Participant risk factor profiles captured by the

software are regularly linked to national databases documenting

drug dispensing and ICD-coded hospitalisations and deaths

related to cardiovascular diseases. The cohort is representative of

the source population and the PREDICT system is now being

used in about one third of New Zealand’s population. Data is

complete on the mandatory variables required for CVD risk

assessment: age, sex, ethnicity, previous diagnosis of CVD,

diabetes, atrial fibrillation, a self-reported family history of

premature ischaemic CVD, smoking status, systolic and diastolic

blood pressure (SBP, mean of two measures) and total

cholesterol to high-density lipoprotein-cholesterol ratio (TC/

HDL-C ratio, one measure). Other lipid fractions, body mass

index (BMI) and dispensed cardiovascular medications [classified

into blood pressure (BP)-lowering and lipid-lowering

medications, antiplatelet and anticoagulant agents] may also be

filled in but are not compulsory for CVD risk assessment. These

variables are routinely entered if clinicians require individualised

guideline-based recommendations for patient management.

Dispensed cardiovascular medications, hospitalizations, deaths,

along with New Zealand Index of Socioeconomic Deprivation

(i.e., NZDep scores) can also be obtained from the linked

national databases. For the current study, we used data collected

between 20 October 2004 and 11 October 2018.

We defined the primary outcome to be CVD-related hospital

admission or death, in line with existing PREDICT models (14)

predicting 5-year incident CVD risk. Time on study was the time

from each patient’s first (baseline) PREDICT assessment to the

first of the following: hospital admission or death related to

CVD, death from other causes, or end of follow-up (31

December 2018). The cohort has almost complete ascertainment

of CVD events, as more than 95% of patients with an acute

CVD event in New Zealand are managed by public health

services (13), and therefore we assume that all patient outcomes

before the cohort cut-off time are known.
2.2 Overview of statistical approach

We focus on the pragmatic approach of augmenting a standard

prediction model with the ability to predict under intervention, as

opposed to developing an entirely new model with causal

consideration from the beginning.

The PREDICT model (14) was developed using Cox

proportional hazards modelling with all pre-specified variables in

Table 1. Using standard prediction modelling techniques, we first

refitted the PREDICT model to our study cohort as the cohort

was updated compared with that used to fit the published

PREDICT model. This was done by re-calculating the coefficients

and the baseline hazard while keeping the same structure of the

PREDICT equations. Models are separate for males and females.
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TABLE 1 Baseline characteristics and outcomes of the PREDICT cohort.

Total With follow-up within 2 years
from baseline

No follow-up within 2 years
from baseline

(N = 453,451) (N = 110,250) (N = 343,201)
Age(years), mean (SD) 53 (9.8) 55 (10) 53 (9.6)

Sex

Female 199,256 (44%) 47,752 (43%) 151,504 (44%)

Male 254,195 (56%) 62,498 (57%) 191,697 (56%)

SBP, Mean mmHg (SD) 130 (15) 130 (16) 130 (15)

TC/HDL, mean (SD) 4.1 (1.2) 4.3 (1.3) 4.0 (1.2)

Incident total CVD within 5 yearrs from
baseline

15,577 (3%) 4,531 (4%) 11,046 (3%)

Ethnicity

European 244,543 (54%) 55,077 (50%) 189,466 (55%)

Others 208,908 (46%) 55,173 (50%) 153,735 (45%)

NZ Dep, mean (SD) 3.0 (1.5) 3.1 (1.5) 2.9 (1.5)

Smoking

Current smoker 66,458 (15%) 18,258 (17%) 48,200 (14%)

Ex-smoker 76,539 (17%) 20,779 (19%) 55,760 (16%)

Never smoker 310,454 (68%) 71,213 (65%) 239,241 (70%)

Family history of premature CVD 46,819 (10%) 14,179 (13%) 32,640 (10%)

Diabetes 48,992 (11%) 31,589 (29%) 17,403 (5%)

Atrial fibrillation 6,107 (1%) 1,808 (2%) 4,299 (1%)

Medications at baseline

Lipid-lowering medication 75,485 (17%) 32,023 (29%) 43,462 (13%)

Antithrombotic medication 45,479 (10%) 20,446 (19%) 25,033 (7%)

BP-lowering medication 105,705(23%) 41,342(37%) 64,363(19%)

The table describes both the complete cohort (N= 453,451) as well as the groups that were included (N= 110,250) and excluded (N= 343,201) in the IPW approach, where

we included only people with at least 2 years of follow-up. Data are N (%) unless indicated otherwise. NZ Dep =New Zealand Index of Socioeconomic Deprivation (a

numeric value from 1 to 5, lowest to highest deprivation quintile). SBP = systolic blood pressure. TC/HDL= total cholesterol to HDL cholesterol ratio.
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Note in the PREDICT model, interaction terms, such as those

involving blood pressure and medication, were included if they

met a strict predetermined threshold statistical significance of

p < 0.001 and were clinically plausible and if the plotted data

suggested effect modification. For more details on the

development of the PREDICT model, refer to (14).

For each relevant individual, we wish to estimate the absolute

CVD risk with and without interventions for the following

scenarios. In each case, we are interested in the situation where

the intervention is made at or shortly after an individual has

their baseline CVD risk assessment. (I) Smoking cessation: a

current smoker stops smoking, (IIa) Reducing blood pressure: a

patient with high blood pressure (> = 140 mmHg systolic, stage 2

hypertension) reduces their blood pressure to 130 mm Hg or

below through means other than medication (such as lifestyle

modification), (IIb) Blood pressure lowering medication (BPLM)

initiation: a patient with untreated hypertension initiates BPLM,

(IIIa) Reducing cholesterol: a patient with high cholesterol (TC/

HDL-C ratio > = 5) reduces their cholesterol ratio to 3.5 or below

through means other than medication (such as lifestyle

modification), and (IIIb) Lipid lowering medication (LLM)

initiation: patient with high cholesterol initiates LLM.

We compared three main modelling strategies. (a)

Conditioning on interventions in non-causal models, in which

the intervention was simulated by changing the relevant

predictor variable(s) as an input to the CPM. (b) A CPM with
Frontiers in Epidemiology 03
intervention effects estimated separately (but using the same

data) via inverse probability weighting (IPW). Finally, (c)

combining a CPM with causal effects reported in published

studies. For approaches (b) and (c), once the intervention effect

is estimated or obtained from external studies, for example in the

form of relative risk (RRint), risk under intervention can be

obtained as Riskint ¼ Riskoriginal � RRint. Therefore, these

approaches assume that treatment effects remain constant on the

relative scale. We assess the three approaches by comparing their

estimated relative risk (RR) and absolute risk under intervention

within both the overall target population and specific population

subgroups, including distinctions based on gender (male vs.

female), age (<= 50 vs. >50), and ethnicity (European vs.

non-European).

We now describe each of these approaches in detail. Details

regarding intervention definition, target population, and target

estimand are summarised in Table 2.
2.3 Approach (a): conditioning on
interventions in non-causal models

In this approach, hereafter the “non-causal approach”, we

represented the intervention risk for an individual by modifying

the relevant baseline covariate(s) in the refitted PREDICT model.

Specifically, the refitted PREDICT model was used with
frontiersin.org

https://doi.org/10.3389/fepid.2024.1326306
https://www.frontiersin.org/journals/epidemiology
https://www.frontiersin.org/


TABLE 2 Target population, estimand and intervention definition for different approaches in five scenarios: smoking cessation, reducing BP through
means other than medication (such as lifestyle), BP lowering medication, lowering cholesterol through lifestyle, and lipid-lowering medications.

Scenarios Target population for
CVD prevention

Target estimand Non-causal approach to
estimate absolute risk under

intervention

Causal approach (IPW)
Treatment groups for patients
in the target population at

baseline:
(I) Smoking
cessation

All current smokers at baseline Effect of current smoker
quitting smoking now.

Change the value of “smoking” from
current smoker to ex-smoker while
keeping the remaining risk factors the
same

A ¼ 1 “ex-smoker” observed at follow-
up within two years of the baselineb;
A ¼ 0 “current smokers” observed at
follow-up

(IIa) Lowering SBP All patients with hypertension
(SBP> = 140) at baseline

Effect of patients with
hypertension reducing BP to
normal (< = 130).

Change the value of SBP from whatever its
current value is to 130 while keeping the
remaining risk factors the same.

A ¼ 1: SBP reduction to <= 130 at
follow-up within two years of the
baselineb;
A ¼ 0: otherwise

(IIb) Blood
pressure lowering
medication

All patients with untreated
hypertension (i.e., SBP> = 140
& BPLM = 0) at baseline

Effect of patients with
untreated hypertension
initiating BP lowering
medications

Change the value of BPLM from 0 to 1
and the value of SBP to 130 while keeping
the remaining risk factors the same.a

A ¼ 1: BPLM =1 at follow-up within
two years of the baselineb;
A ¼ 0: otherwise

(IIIa) Lowering
TC/HDL-C

All patients with high
cholesterol (TC/HDL-C> = 5) at
baseline

Effect of patients with high
cholesterol reducing TC/
HDL-C to normal.

Change the value of TC/HDL-C from
whatever its current value is to 3.5 while
keeping the remaining risk factors the
same.

A ¼ 1 TC/HDL-C reduction to <= 3.5 at
follow-up within two years of the
baselineb;
A ¼ 0: otherwise

(IIIb) Lipid
lowering
medication

All patients with untreated high
cholesterol (TC/HDL-C> = 5 &
LLM = 0) at baseline

Effect of patients with
untreated high cholesterol
initiating lipid lowering
medications

Change the value of LLM from 0 to 1 and
the value of TC/HDL-C to 3.5 while
keeping the remaining risk factors the
same.a

A ¼ 1 LLM =1 at follow-up within two
years of the baselineb;
A ¼ 0: otherwise

aAlternatively, one can calculate the risk from keeping the value of SBP (or TC/HDL-C) the same and only changing the value of medication.
bRecords from the latest follow-up visit within two years of the baseline were used. The same applied for IPW approach in all five scenarios.
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adjustments made to all relevant baseline covariates for a given

intervention, for all relevant patients. For example, for smoking

cessation scenario (I), given a risk factor profile of a current

smoker, we used the refitted PREDICT model to get an absolute

risk prediction if no action was taken. We then changed the

value of “smoking” from current smoker to ex-smoker while

keeping the remaining risk factors the same to obtain an absolute

risk prediction under quitting smoking. For blood pressure

lowering medication scenario (IIb), we changed the value of

BPLM from 0 to 1 and the value of SBP to 130 while keeping

the remaining risk factors the same. Alternatively, one can also

calculate the intervention risk by keeping the value of SBP and

only changing the value of medication. This also applied for

lipid-lowering medication scenario (IIIb); for these two scenarios,

we include results from both options in this study for

comparison. Table 2 details how intervention risks were

calculated for all scenarios.

This approach readily provides absolute risks and absolute risk

reductions. To estimate the overall relative risks, we first computed

the individual relative risk as the ratio of the intervention risk with

the modified baseline covariate(s), divided by the individual’s

absolute risk prediction under no action. We then averaged them

to obtain the overall relative risk. We emphasise that this

approach is not based on causal theory; it assumes that the

model coefficient coincides with the causal effect, which will only

be the case under very restrictive assumptions, including that the

other variables included in the model form a valid adjustment

set (6). It has been found to have reasonable performance in

specific scenarios (6), but there are no general guarantees. It is

included as it is likely used widely in practice.
Frontiers in Epidemiology 04
2.4 Approach (b): models with treatment
effect estimated via inverse probability
weighting (IPW)

We propose a 2-stage method where the absolute risk without

intervention, and relative causal treatment effect, are estimated

separately. As in the non-causal method, we took the actual risk

from the refitted PREDICT model as “absolute risk without

intervention”. We then combined this risk with a single average

treatment effect estimated from the same data using inverse

probability weighting (IPW), as explained below, to obtain

“absolute risk under intervention”. In contrast to methods like

stratification using estimated propensity scores for estimating

causal effects, IPW-based methods demonstrate consistency with

sample sizes and offer approximately unbiased inference for

practical sample sizes, and are therefore recommended for

routine use in practical applications (15). This approach requires

correct specification of the causal structure of the problem,

and three key assumptions: exchangeability, consistency,

and positivity (16).

For estimating causal effects using IPW, the initial step involves

defining the treatment groups (both treated and untreated),

followed by identifying potential confounders to adjust for. In

our approach, the statuses of being treated and untreated are

determined based on both baseline and follow-up data. This

approach guarantees that the intervention time closely follows

the risk assessment. In the PREDICT cohort, the follow-up

period was aligned with routine clinical practices. Repeated

assessments of risk factors were performed and documented

when considered relevant by either the patient or the
frontiersin.org
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TABLE 3 Variables used in the treatment model logit Pr (A ¼ 1jL) and the censoring model logit Pr (Ck ¼ 0jCk�1 ¼ 0, A, L, X0) (see supplementary materials)
in the IPW approach for each case.

Treatment A IPW approach: use post-baseline data to obtain sample treatment status

X0 L
(I) Smoking cessation • Baseline diabetes status, atrial fibrillation status, SBP, TC/HDL-C, BPLM, ATM (anti

thrombotic medication), LLM
• Sex, age, ethnicity, socioeconomic status, family

history of CVD
• Baseline diabetes status, atrial fibrillation status
• Baseline SBP, TC/HDL-C, ATM, LLM, BPLM

(IIa) Lowering SBP • Baseline diabetes status, atrial fibrillation status, ATM, LLM • Sex, age, ethnicity, socioeconomic status, and family
history of CVD

• Baseline smoking status
• Baseline diabetes, atrial fibrillation
• Baseline SBP, TC/HDL-C, ATM, LLM, BPLM

(IIb) BP lowering
medication

• Baseline diabetes status, atrial fibrillation status, ATM, LLM • Sex, age, ethnicity, socioeconomic status, and family
history of CVD

• Baseline smoking status
• Baseline diabetes, atrial fibrillation
• Baseline SBP, TC/HDL, ATM, LLM

(IIIa) Lowering TC/HDL-C • Baseline diabetes status, atrial fibrillation status, ATM, BPLM • Sex, age, ethnicity, socioeconomic status, and family
history of CVD

• Baseline smoking status
• Baseline diabetes, atrial fibrillation
• Baseline SBP, TC/HDL-C, ATM, LLM, BPLM

(IIIb) Lipid lowering
medication

• Baseline diabetes status, atrial fibrillation, BPLM, ATM • Sex, age, ethnicity, socioeconomic status, and family
history of CVD

• Baseline smoking status
• Baseline diabetes, atrial fibrillation
• Baseline SBP, TC/HDL, ATM, BPLM
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practitioner. For each patient, we utilised clinical data from the

two-year window following their initial assessment visit. If

multiple visits occurred during this time frame, the data from the

one closest to the 2-year mark were used. If no follow-up visits

took place, the patient was excluded from the analysis.

Consequently, the index date was established as the latest follow-

up visit within two years of the baseline.

To address potential selection bias within the included group,

we calculated the probability of patients returning for visits

within the two-year timeframe. These probabilities were

incorporated as weights for the subsequent IPW analysis. Further

information about the variables used to determine the weight for

each selected individual is in the Supplementary Materials. Since

the choice of various cut-off times may result in over/under-

estimated effects, as a sensitivity analysis, we also present

findings from analyses that utilised data from the first follow-up

for effect estimation.

For example, when examining smoking cessation, our focus

was on current smokers at baseline. Here, we designated A ¼ 1 if

we observed the status “ex-smoker” at the follow-up visit,

indicating successful cessation. Conversely, we assigned A ¼ 0 if

individuals remained “current smokers” at follow-up. Detailed

definitions for all treatments are outlined in Table 2.

For each intervention, after defining the treatment group, we

identified confounding factors using a practical variable selection

approach based on background knowledge when the causal

structure was only partially known, as recommended in (17). We

adjusted for all pre-treatment covariates that could be risk factors

for the outcome (18). Known causal structures were used to

exclude strong instruments and colliders, as these could

otherwise introduce biases (19, 20). See the Supplementary
Frontiers in Epidemiology 05
Material for detailed confounder identification methods, with

relevant confounder variables listed in Table 3.

Once the treatment and confounders were established, the next

step involved specifying models for estimating inverse probability

weights and effects. Given that the confounding factors for

different treatments varied (21), we constructed models for each

intervention (I-III) separately. Let L represent the set of identified

confounding factors for intervention A, and let X0 denote the

other prognostic factors for the outcome (Figure E1). We applied

standard IPW methods (16) with stabilised treatment weights,

W(A) ¼ Pr(A)=Pr(AjL), calculated via the treatment probability

Pr(A ¼ 1) and the conditional probability Pr(A ¼ 1jL) given the

variables in L. These probabilities are calculated by fitting the

following logistic models.

logit Pr (A ¼ 1) ¼ g0,
logit Pr (A ¼ 1jL) ¼ a0 þ a1l1 þ a2l2 þ � � � þ adld:

To minimise the risk of model misspecification, we compare linear

models with more flexible cubic spline specifications and asses the

models using the Akaike Information Criterion (AIC). The

estimated stabilised IP weight is then Pr (A ¼ 1)=Pr (A ¼ 1jL)
for the treated and (1� Pr (A ¼ 1))=(1� Pr (A ¼ 1jL)) for the

untreated. Further details and advantages of using stabilised

weights can be found in (22, 23). Selection bias due to

administrative cut-off and loss to follow-up (including competing

events) was adjusted for by conceptualising censoring as a time-

varying treatment and applying standard IPW for time-varying

treatments (22, 23). With the calculated weights for both

treatment and censoring, we then estimated treatment effect in a
frontiersin.org
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hazard model for the outcome. Briefly, we applied an inverse

probability weighted pooled logistic model to estimate the

following parameters.

logit Pr (Da
kþ1 ¼ 1jDa

k ¼ 0) ¼ b0 þ b1kþ b2aþ b3a� k,

where Dk indicate CVD status at time k (months of follow-up).

Then the probability of survival that would have been observed,

i.e., Pr (Da
kþ1 ¼ 0), with a ¼ 1 for under treatment or a ¼ 0

for no treatment, can be obtained by multiplying

1� Pr (Da
kþ1 ¼ 1jDa

k ¼ 0) over the time k. Further details of

the weight and effect models can be found in the

Supplementary Materials.
TABLE 4 Relative risks (RR) for interventions estimated by the different
methods: means and 95% confidence intervals (CI).

Non-causal
approach using
refitted PREDICT,
mean RR (95% CI)

IPW
approach RR
(95% CI)

Effects from
other sources
RR (95% CI)

(I) Smoking
cessation

0.63 (0.56–0.70) 0.70 (0.20–1.20) 0.73 (0.62–0.85)c

d

2.5 Approach (c): combining with causal
effects measured externally

This approach is similar to approach (b) in that risks without

intervention were estimated from the refitted PREDICT model,

and combined with relative effect estimates of interventions for

computing risk under intervention. In this case, relative effect

estimates were obtained from the literature rather than the data

in hand. The approach assumes that the estimated effect has

external validity in the population of interest. We used the same

effect estimates as the Million Hearts tool [Table 3 (8)], which

was informed by an overview of systematic reviews (24). The

overview selected a total of 35 systematic reviews investigating

the effects of several interventions in primary prevention of

atherosclerotic cardiovascular. Specifically, the estimated overall

CVD risk reduction, expressed as relative risk (RR), for smoking

cessation was 0.73. Blood pressure-lowering therapy resulted in

an overall CVD risk reduction of 0.73, and the RR for lowering

SBP (by changing lifestyle) was 0.65. Both the use of lipid-

lowering medication (statins) and reducing lipid levels through

lifestyle changes yielded a 25% decrease in major CVD events.

All the methods and comparisons in this study were

implemented in R version 4.1.1, and the code is available on

GitHub (https://github.com/manchester-predictive-healthcare-

group/predictions-under-intervention).

(IIa) Lowering
SBP

0.70 (0.47–0.94) 0.93 (0.54–1.31) 0.65 (0.57–0.75)

(IIb) BP
lowering
medication

1.12 (0.85–1.40)a 1.16 (0.69–1.62) 0.73 (0.67–0.81)

(IIIa)
Lowering TC/
HDL-C

0.73 (0.58–0.88) 0.91 (0.24–1.53) 0.75 (0.70–0.80)e

(IIIb) Lipid
lowering
medication

0.71 (0.57–0.86)b 1.02 (0.43–1.58) 0.75 (0.70–0.81)

aEffect estimated for patients taking medication and reducing SBP to reduce to

130; if the SBP reduction was not imposed, the RR was 1.41 (1.30–1.52).
bEffect estimated for patients taking medication and reducing TC/HDL-C to reduce

to 3.5; if the TC/HDL-C reduction was not imposed, the RR was 0.97 (0.92–1.03).
cThe original paper did not include a 95% CI; we calculated an estimate using the

provided data.
dFor lowering blood pressure, external effects are RR for patients reducing per

10 mm Hg after taking medication.
eFor lowering cholesterol, external effects are treatment effects standardized per

1 mmol/L reduction in levels of low-density lipoprotein cholesterol.
3 Results

3.1 Baseline information

The study population comprised 453,451 participants aged

30–74 years at the time of their recruitment to the study between

20 Oct, 2004, and 11 Oct, 2018. The baseline characteristics for

the cohort are provided in Table 1. Kaplan-Meier plots of

survival probabilities in different patient subgroups are in the

Supplementary Figure E2. As noted in Methods, there was no

missing data for these mandatory variables required for the CVD

risk assessment using PREDICT software. For estimating average

treatment effects using the IPW, only patients followed up within

2 years were used. Table 1 reports the baseline characteristics for
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the excluded vs. included patients; there were significant differences

between the two groups. The selection bias was corrected by IP

weighting as described in Methods. Additionally, among individuals

with follow-up data, 2019 of the 18,258 baseline current smokers

quit smoking. In other words, 11% transitioned from being current

smokers to ex-smokers between baseline and follow-up. The average

changes in SBP and TC/HDL-C among these individuals were a

reduction of 1.06 mmHg and 0.08, respectively, between baseline

and follow-up (Supplementary Table E1).
3.2 Refit the PREDICT CPM

The original PREDICT model (14) predicting incident CVD

risk was developed using Cox regression models including risk

factors listed in Table 1. The regression coefficients of the

original PREDICT model and of the refitted PREDICT model

from the cohort used in this study are compared in the

Supplementary Table E2. The largest relative change in

regression coefficients between two models was in the coefficient

for Pacific ethnic group. The predicted 5-year CVD risks in the

current study cohort from refitted PREDICT model were 4.28%

for men and 3.01% for women on average.
3.3 Causal effects reported in the literature

The effects of interventions that correspond to our different

scenarios, as derived from (8) are summarised in Table 4. The

relative risk for smoking cessation was 0.73 (95% CI, 0.62–0.85).
frontiersin.org
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The original paper lacked a 95% confidence interval; we derived an

estimate using the provided data.

Blood pressure-lowering therapy reduced overall CVD risk by a

RRR (relative risk reduction) of 0.73 (95% CI, 0.67–0.81), and a

RRR of 0.65 (95% CI, 0.57–0.75) was observed per 10 mmHg

actual SBP lowering. We therefore used the RRR of 0.65 for

blood pressure lowering scenario (IIa) and RRR of 0.73 for blood

pressure medication scenario (IIb) in this study.

The use of lipid lowering medication (statins) led to a 25%

reduction in major CVD events (RRR 0.75; 95% CI, 0.70–0.81); a

1 mmol/L reduction in LDL-cholesterol had a RRR of 0.75 (95%

CI, 0.70–0.80). Of note, we did not find papers estimating direct

effects of TC/HDL-C ratio reduction on CVD risk. We therefore

used the RRR of 0.75 for lipid-lowering medications scenario

(IIIb), and the effect of per 1 mmol/L reduction in LDL-

cholesterol on CVD (RRR 0.75) for cholesterol lowering scenario

(IIIa), given the lack of direct evidence available on this scenario.
3.4 Relative risk estimates

Table 4 reports the relative effects of intervention (in terms of

relative risk of the treated vs. untreated) estimated from the

compared approaches. All approaches generated similar estimates

for the effects of smoking cessation on CVD risk. For the effects

of lowering SBP (IIa) and lowering TC/HDL-C (IIIa), the IPW

approach produced the most conservative treatment effect

estimates among all approaches.

When estimating the effects of initiating blood pressure

lowering medication (IIb) or lipid lowering medication (IIIb) on

CVD risk, regardless of actual blood pressure or cholesterol

reduction within a certain timeframe, estimated treatment effects

varied. Estimates from IPW indicated an elevation in an

individual’s CVD risk upon initiating medication. Notably, for

the blood pressure lowering medication intervention, only the

approach of incorporating a trial estimated effect led to a

reduced risk, whereas all other approaches estimated an increase

in risk. The sensitivity analysis results reveal minimal differences

in the estimated relative risks using the IPW approach when

comparing data from the 1st follow-up after baseline and data

from the visit closest to the 2-year mark after baseline

(Supplementary Table E3). The Supplementary Figure E3 shows

the estimated stabilised IP weights for each intervention. Upon

comparing linear treatment models with more flexible cubic
TABLE 5 Absolute risk: median and lower and upper quartiles (LQ, UQ) acros

Current risk (without
intervention): median (LQ, UQ)

(I) Smoking cessation 3.89% (2.30%, 7.11%)

(IIa) Lowering SBP 4.88% (2.97%, 7.96%)

(IIb) BP lowering medication 3.91% (2.47%, 6.20%)

(IIIa) Lowering TC/HDL-C 3.06% (1.74%, 5.69%)

(IIIb) Lipid lowering medication 2.79% (1.65%, 5.02%)
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spline specifications, the AIC indicated that the additional

complexity introduced by the spline terms did not enhance the

model fit (Supplementary Table E4). Figure E4 shows the

estimated survival curves for untreated vs. treated participants

under each IPW hazard model.
3.5 Absolute risk under interventions

Absolute risks without intervention, and under each

intervention based on each approach, are summarised in Table 5

(visualised in the Supplementary Figure E5), while absolute risk

change (ARC) distributions are visualised in Figure 1 (ARC = risk

without intervention—risk under intervention; numerical results

in the Supplementary Table E5). The median absolute risks

without intervention varied as the target populations differ. For

(I) smoking cessation, absolute risk reduction median varied

from 1.0% to 1.4% depending on methodological approach

(Figure 1). For (IIa) lowering SBP, absolute risk reductions varied

substantially between approaches, while for (IIb) BP lowering

medication, absolute risk changes were both positive and

negative, and highly variable. Similar findings were observed for

the cholesterol scenarios (IIIa) and (IIIb).

The median absolute risk changes varied across different

patient subgroups, i.e., Female vs. Male, Age < = 50 vs. Age >50,

and European vs. Non-European (Table 6). For all five scenarios,

the largest group difference in absolute risk change estimated

from the IPW approach was observed in Age < = 50 vs. Age

>50 groups.
4 Discussion

4.1 Main findings

Existing CPMs can inform us that decisions have to be made,

but the support they can offer in making those decisions is

limited because they do not allow predictions under

interventions (5). We have compared different methodological

approaches for predicting individual level cardiovascular risk

under a range of interventions: smoking cessation, reducing

blood pressure, reducing cholesterol, blood pressure lowering

medication initiation, and lipid-lowering medication initiation.

Our work makes two key contributions to the literature.
s the target population, estimated from different approaches.

Absolute risk under hypothetical interventions median (LQ, UQ)

Non-causal
approach

Causal approach
(IPW)

Using external effect
estimates

2.46% (1.45%, 4.54%) 2.73% (1.61%, 4.97%) 2.84% (1.68%, 5.19%)

3.68% (2.15%, 6.28%) 4.54% (2.76%, 7.40%) 3.18% (1.93%, 5.17%)

3.93% (2.46%, 6.42%) 4.53% (2.87%, 7.20%) 2.85% (1.81%, 4.53%)

2.24% (1.28%, 4.15%) 2.78% (1.58%, 5.18%) 2.29% (1.31%, 4.27%)

1.99% (1.18%, 3.58%) 2.85% (1.68%, 5.12%) 2.09% (1.23%, 3.77%)
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FIGURE 1

Distribution of absolute risk changes (ARC) estimated from different approaches in different scenarios: (I) smoking cessation, (IIa) lowering SBP, (IIb) BP
lowering medication, (IIIa) lowering TC/HDL-C, and (IIIb) lipid lowering medication. ARC= risk without intervention—risk under intervention. Red
dashed lines: lower and upper quartiles; blue solid lines: median.
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First, we illustrate and provide code for a range of “causal

prediction” methods (9)—including conditioning on intervention

in a non-causal model, estimating causal effects from the data

using inverse weighting and combining these causal effects with

a prediction model, and combining externally estimated effects

with a prediction model. The approach of conditioning on

intervention in a non-causal model is simple in that it readily

provides risk under interventions for each individual using

existing clinical prediction models; however, this approach is not

grounded in any causal theory so highly vulnerable to bias when

targeting any causal estimand. Causal estimation using inverse

probability weighting assumes all variables needed to adjust for

confounding are identified and correctly measured; the validity of

the proposed procedure requires correct specification of both the

treatment model and the marginal hazards model. The approach

combining externally measured effects is a simple way to

combine causal effects with an existing clinical prediction model;

however, transportability of the trial effect needs to be assumed.

Second, we illustrate that each of these approaches can give

different results, sometimes in contrasting directions, depending

on the interventions under consideration. For example, all the

approaches estimated similar effects for smoking cessation. The

small difference between the non-causal and IPW methods could

be attributed to a substantial overlap in the variables already

considered in prediction and those used as confounders. On the

other hand, for the blood pressure lowering medication

intervention, only the approach of incorporating a trial estimated

effect led to a reduced risk, with all other approaches estimated

an increase in risk, which is implausible so almost certainly
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reflects residual confounding. Our findings regarding the

variations in the estimated effects of different interventions on

CVD risk in different subgroups suggest that group-level

estimates of changes in risk are likely to be more precise. This

precision can be beneficial in clinical practice, aiding in the

decision-making process for optimal interventions to those in

whom they will provide the best benefit.
4.2 Relation with other studies

We are not aware of other studies that have compared different

approaches to calculating risk under intervention as we have done

here. However, there are studies that used the same, or very similar,

approaches described in this paper.

Conditioning on intervention in a non-causal model has a long

history, recommended, for example, over 20 years ago by

Hingorani and Vallance (6). They acknowledge that the approach

is prone to bias, but demonstrate that, for the examples they

consider, the results appear to be in line with evidence from

randomised controlled trials. This was reflected in our study

where we found results for the non-causal approach to often be

in line with the causal approaches. Change in risk score is also

often used as an endpoint in clinical trials [e.g., (25, 26)], which

implicitly assumes that the reduction is an accurate

representation of the true risk reduction.

The approach of combining a CPM with externally estimated

causal effects was also implemented in the “Million Hearts”

study for primary prevention of CVD, and we used their
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externally estimated causal effects here (8). This approach

implicitly assumes that the baseline absolute risk estimate from

the CPM represents the “untreated” intervention. This

assumption may be violated due to treatment drop-in (27).

A breast cancer model (11) (also called PREDICT but different

from the CVD PREDICT model that we focused on) fixed treatment

coefficients to estimates from published trials, which is similar to our

approach except that we separately estimated treatment coefficients

for the prognostic model from those used to estimate risk under

intervention. This reflects a slightly different context since the

PREDICT breast cancer model is applied at a well-defined time

point (immediately after surgery when considering treatment),

rather than arbitrary timepoints as is the case with PREDICT-CVD.

The approaches that we have considered in this paper all

assume that treatment effects are constant on the relative scale,

with heterogeneity on the absolute scale occurring because of

variation in baseline absolute risk. This can be extended with

individual patient data from randomised trials, for example by

fitting separate models in treated and untreated groups to allow

full flexibility in treatment contrasts at all covariate levels (28).

There are numerous approaches in the machine learning

literature addressing this problem—for example, causal forests

(29). These approaches can also be applied to observational data

under the assumption of conditional exchangeability given all of

the included prognostic variables (30).

Consideration of how treatment should be handled when

predicting treatment-naïve risk was considered by Groenwold

et al. (31), who recommended including a variable for treatment

at baseline. This work did not consider comparing absolute risk

under different treatments, and indeed did not invoke any causal

inference machinery.

Here, we focused on the simpler point treatment case, but

similar ideas have also been explored in the context of time-

dependent treatment estimation, specifically to address treatment

drop-in, where particularly careful consideration of target

estimands is required (10). The approach of inverse probability

weighting was applied to clinical prediction in Sperrin et al. (27),

and similarly, Xu et al. (32) addressed treatment drop-in using

externally estimated causal effects.
4.3 Strengths and limitations

A strength of the analysis is that we used a real observational

dataset that has already been used to develop a prediction model

that is used in practice, PREDICT. We also considered a range of

interventions—stopping smoking, lowering blood pressure, lowering

lipid level, and blood pressure/lipid-lowering medication initiation.

A limitation in terms of generalising these results is that the

ground truth is unknown. We cannot assume that externally

measured causal effects constitute the ground truth, even if they

were obtained from randomised controlled trials—it is not always

possible to identify studies evaluating the exact intervention of

interest and we cannot assume that results from tightly

controlled trials generalise to real-world settings. Nevertheless, we

have highlighted the disagreements between different approaches.
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Throughout the paper, we have taken the risk from a standard

predictive model as absolute risk without intervention. This is not

accurate as this is the risk under usual care rather than no

intervention; many people in the PREDICT cohort will have

received one of the interventions of interest during the follow-up

period [so-called treatment drop-in (27)]. A more accurate (but

more complex) approach is to directly target risk without

intervention using causal considerations (10, 27). This involves

estimating a combined model for the prediction and causal parts.

We focused here on the more pragmatic approach of augmenting

an existing “standard” prediction model with the ability to

estimate causal contrasts through a two-stage approach.

We adopted a practical approach to identify confounders for

adjustment in the causal model based on causal structure that is

only partially known and this is not intended to be definitive.

Accurate causal inference would require a robust approach to

selecting variables for adjustment with a full causal structure for

the domain of interest, including input from experts and a

detailed assessment of the literature.

Some of the interventions we propose are non-specific,

particularly reducing blood pressure and cholesterol through

lifestyle modification. This can lead to violation of the

consistency assumption in the causal modelling approaches.

Different lifestyle interventions (e.g., targeting diet vs. exercise)

are likely to have different effects. However, evidence for lifestyle

interventions in general is lacking, and therefore the non-specific

approach we have taken may represent the best evidence

currently available. We see this as a step forward compared with

the non-causal approach, but encourage the use of evidence

around more specific interventions where this is available.

We only considered the average treatment effects in the causal

models and therefore did not allow treatment effect heterogeneity.

However, the IPW procedure can be generalised by including some

pre-treatment covariates into the hazard model to allow for effect

modification. Conditional average treatment effects can be

derived if trial data is available (28). Moreover, approaches are

emerging in which trial data and observational data can be

formally combined, thereby fully exploiting the complementary

strengths of the two sources (33).

A final limitation is that we considered interventions individually

and not in combination. It may be that interventions interact with

each other to produce larger than expected, or smaller than

expected, changes in absolute risk. However, this was studied by

Lloyd-Jones et al. (8) who found no strong evidence of interactions.
4.4 Implications

The results of this work demonstrate that even with

incorporation of causal machinery, considerable thought and care

is needed to produce models that can reliably make predictions

under interventions, given the inconsistency between approaches.

These inconsistencies are explainable by the different

assumptions made by each of the studied methods. We reiterate

that the non-causal approach is not grounded in any causal

theory, so this approach should be used with extreme caution. It
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should first be checked that specific input modification leads to

results that are in line with expectations given e.g., randomised

controlled trial findings (6). As is well established, the inverse

probability weighting approach requires a full understanding of

the causal structure of the problem, and therefore its use should

be accompanied by expert input, and sensitivity analyses to

explore the impact of unverifiable assumptions such as

conditional exchangeability. The approach of using causal effects

estimated elsewhere assumes that the estimated effect has

external validity in the population of interest [target validity

(34)]. Therefore, trials that are as similar as possible to the target

population should be preferred when using this approach, and

methods for reweighting populations to overcome a mismatch in

measured characteristics should also be used (35).

The methods described make different, complementary,

assumptions. While the compatibility of estimates across different

methods can be seen as reassuring (16), the inconsistencies

between approaches, if any, could provide insight into the validity

of the underlying causal assumptions in the models. Therefore, to

make clinical predictions under intervention, we suggest that

researchers carefully consider the causal knowledge available for the

problem, consider all of the methods described here, report the

range of potential results, and inspect the resulting effect estimates

if incompatible. To facilitate this, we make the code for methods

and comparison analyses conducted in this work available.
4.5 Unanswered questions and further
research

Given the variety of results that this study has found,

triangulation of estimated effects from different methodological

approaches (both qualitatively and quantitatively) is a key area

requiring development and translation to ensure that robust

effects are reported, and uncertainty is appropriately represented.

Similarly, methods are needed to translate estimated treatment

effect heterogeneity on the relative scale to absolute risk, while

minimising overfitting and other biases.

An outstanding challenge in this field is validating models that

involve making counterfactual predictions. In contrast to “factual”

predictions, which can be validated by comparing with observed

data, counterfactual models rely on unverifiable assumptions and

therefore new approaches need to be identified to validate these

models. New methods are emerging for validating counterfactual

prediction models, given their critical role in decision-making,

particularly in healthcare settings (36–39). In a recent study on

validating causal models (37), the authors proposed a qualitative

solution that could serve as a causal analogue to the conventional

train/test split validation methods used in prediction models. In

(38), Boyer et al. examine the conditions under which tailoring a

model for counterfactual prediction is possible using training

data alone, and further on how to assess the model’s

performance, and how to perform model and tuning parameter

selection. In (39), Keogh and van Geloven, focusing on

predictions of time-to-event outcomes, describe how to extend a

set of performance measures used in the standard prediction
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setting to allow for counterfactual performance measurement using

artificial censoring and inverse probability weighting.
5 Conclusions

Predicting under intervention is clearly desirable when using

clinical prediction models for decision support. To do so, it is

necessary that the underlying models are carefully constructed based

on expert knowledge and using causal inference techniques. Urgent

progress is required to increase the robustness of these models given

their huge potential impact in decision support scenarios.
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