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Modeling the effect of
observational social learning on
parental decision-making for
childhoodvaccinationanddiseases
spread over household networks
Tamer Oraby* and Andras Balogh

School of Mathematical and Statistical Sciences, The University of Texas Rio Grande Valley, Edinburg,
TX, United States
In this paper, we introduce a novel model for parental decision-making about
vaccinations against a childhood disease that spreads through a contact
network. This model considers a bilayer network comprising two overlapping
networks, which are either Erdős–Rényi (random) networks or Barabási–Albert
networks. The model also employs a Bayesian aggregation rule for
observational social learning on a social network. This new model
encompasses other decision models, such as voting and DeGroot models, as
special cases. Using our model, we demonstrate how certain levels of social
learning about vaccination preferences can converge opinions, influencing
vaccine uptake and ultimately disease spread. In addition, we explore how two
different cultures of social learning affect the establishment of social norms of
vaccination and the uptake of vaccines. In every scenario, the interplay
between the dynamics of observational social learning and disease spread is
influenced by the network’s topology, along with vaccine safety and availability.
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1 Introduction

Human herding behavior, or cascading, is a convergence of opinions driven by social

learning (1, 2). Such herding could also be induced by factors such as payoff externalities,

sanctions, preference interaction, direct communication, and observational influence (2).

Observational influence involves integrating learned behavior or the perception of

others’ opinions into one’s own opinion. This leads to observational social learning,

exerting a subtle pressure on people to conform (3–5). Social learning occurs through

various channels of information exchange, including observation and perception of

public choices (6). However, boundedly rational observational learning occurs in the

presence of incomplete or insufficient information on the behavior of others (7).

Social learning has been shown to play a vital role in decision-making by people, even

in the presence of information (8). Parents learn about the vaccination choices and

attitudes of other parents and look for consensus as signals for vaccination decisions

(9). When parents openly share their opinions about vaccinating their children, it can

exert pressure on other parents (10, 11). Mixed messages and varied vaccination choices

of parents can cause interpretive difficulties for others. Incomplete information about
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vaccines, combined with the opinions of friends on social

networks, creates “boundedly rational social agents.” This

situation can lead to challenges in vaccine acceptance, which can

subsequently affect vaccine uptake and the spread of diseases (12).

People and households are interconnected through various

types of networks. From the perspective of graph theory, there

are several network models, such as the Erdős–Rényi (random)

network (ERN) model and the Barabási–Albert network (BAN)

model (13). These different models represent a range of real-life

systems. Many real-life networks are scale-free networks (SFN),

characterized by a degree distribution that follows a power law

with an exponent in the range 2 , g � 3 (14). Furthermore, the

structure of the network plays a crucial role in determining the

effectiveness of vaccination strategies (15, 16).

Many studies have modeled the spread of diseases on networks

(17–20) and on multiplex network models (21–26) Some have also

considered the structure of the home in their models (27–30).

However, fewer models have explored the spread of diseases and

vaccine decision-making on these networks through approaches like

the voter model (25), DeGroot’s selection model (14), social norms

(31), and social learning (32). Moreover, most mathematical models

assume rational agents making vaccination decisions with complete

information (10, 17, 33, 34) with a few exceptions likeWang et al. (26).

In this study, we consider bilayer networks, focusing on two

overlapping networks of the same type and their mutual

influence. The first network is a physical network, where face-to-

face contacts and pediatric disease transmission occur. The

second network is a social one—bidirectional, weighted network

through which information and opinions about vaccines are

shared, influencing parents’ decisions. A pediatric disease spreads

through the physical network, both within and between

households, while information, opinion, and perceptions are

exchanged on the social network, primarily among parents. The

two networks overlap significantly, with parents connected to a

wide array of other parents, relatives, coworkers, and friends.

However, not all these connections necessarily exist in the

physical network of children. We introduce adjustments to the

network models to better reflect key characteristics of household

networks. First, our model accounts for the number of children

in each household. Second, households without children do not

have connections in the physical network. Essentially, the

expected degree of a household in the network correlates with

the number of children who reside there.

In this paper, we introduce a new model focused on parental

decision-making to protect children from a measles-like disease

spreading through household networks. Our model incorporates

boundedly rational observational social learning, utilizing a

Bayesian aggregation formula distinct from the quasi-Bayesian

model of boundedly rational observational learning in a general

context, as presented by Mueller-Frank and Neri (7). We

demonstrate that our model not only gives rise to social norms

but also encompasses other selection models, including voting

and DeGroot’s models. In our approach, we consider socially

bounded agents—specifically, parents who promote their

children’s wellbeing—who have imperfect information regarding

the vaccination choices of their neighbors in the network.
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We hypothesize that these agents are only capable of perceiving

messages as either correct or incorrect, possibly due to fear of

retribution or confusion. There is a likelihood that agents will

communicate an accurate representation of their opinion with a

probability of q, and conversely, there is a probability of 1� q for

conveying an inaccurate message [see, e.g., Easley and Kleinberg

(35)]. Utilizing this model, we explore the cascading effect of

opinions on vaccination within the context of boundedly rational

observational social learning, and we compare our findings to

other models of social pressure [see Phillips et al. (31) and Oraby

et al. (36); also see, e.g., Oraby and Bauch (12) and Ortega and

Braun (37)]. Furthermore, we examine the impact of such signal

games on the propagation of vaccine-related opinion and diseases

across social and physical networks, especially in scenarios with

limited resources reflected in vaccine efficacy and accessibility, and

safety. Finally, our study investigates how the presence of two

different cultures of social learning influences the establishment of

a social norm and, consequently, vaccine uptake.
2 Model and methods

2.1 Networks

To model the spread of the disease, we employ an agent-based

network model N households serve as nodes. Each household

contains a certain number of children, denoted as Ci (with

0 � Ci � nC , for i ¼ 1, . . . , N), who are interconnected through a

physical network. Here, nC represents the maximum number of

children per household. Parents are interconnected through a

separate bidirectional weighted network—encompassing social,

Internet, and physical connections—through which they exchange

opinions, share information, and observe choices. Notably, parents

in childless households can still be connected to other parents and

influence their opinions. Our model utilizes two types of networks:

the ERN model and the BAN model (13). In the physical network,

we hypothesize that the degree of nodes is proportional to the

number of children in each household. Meanwhile, the parent

network overlaps with the children’s network through random

rewiring, with the probabilities of forming new connections being

higher than those for severing existing ones. The parent network is

assumed to be a weighted bidirectional network, with weights

represented by learning probabilities q j,i, for each social network

link (i, j), where i, j ¼ 1, . . . , N . For comprehensive details about

the network models, refer to the Supplementary Material (SI,

Model). Figure S1 in the Supplementary Material illustrates a

histogram for each type of random network.
2.2 Birth process

We postulate a birth process that depends on the number of

children already residing in a household. The probability of a new

pregnancy is modeled using a logistic function with a median value

of C� and decreasing as the household’s number of children

approaches nC . For detailed information, refer to the Supplementary
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Material (SI Model). The gestation period for a pregnancy is set at

280 days. Upon the birth of a newborn, while the household’s child

count is updated, the number of connections in the children’s

network remains unchanged. Due to their rarity, miscarriages and

child mortality are not included in our model.
2.3 Disease spread

We assume the spread of a new measles-like disease, which is

vaccine-preventable and affects only children. This disease spreads

within and between households. The incubation period has a mean

duration of mp days, with a maximum of ‘ days. The probability of

a new infection occurring in a household is given by

1� (1� bh)
I(i) � (1� b)nI (i)=Ci , where b represents the probability

of infecting a child in a different household (through the physical

network) and bh is the probability of infecting a sibling within the

same household. Here, I(i) denotes the total number of infected

siblings in the same household, while nI(i) is the number of
FIGURE 1

Simulations of sizes of the epidemic, the total number of vaccinated childre
done on the ERN model in (A–C) and on the BAN model in (D–F). In all sim
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infected children connected to the household i through the

network. The number nI(i)=Ci is used to approximate the

probability of infection, based on the assumption that children in a

household, on average, have an equal number of friends. We

assume that the epidemic begins with I0 initially infected children

randomly distributed across different households.
2.4 Vaccination decision-making

Parents are classified into three groups: “never-vaccinators,”who

consistently oppose vaccination; “non-vaccinators,”whomayormay

not choose to vaccinate; and “vaccinators,” who are inclined to

vaccinate. A small percentage of parents are “never-vaccinators,”

yet they continue to share their opinions. In household i, parents

make their decision about vaccinating their children based on the

perceived reward of vaccination, calculated as pi ¼ aiI � giA.

Here, I represents the total number of infected children and A

denotes the total number of adverse events related to the vaccine,
n, and the peak of the epidemic for different values of d. Simulations are
ulations, Padv ¼ 0:0001 and r ¼ 0:01.
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both considered up to the point of decision-making. Parents who

experience an adverse event after vaccinating their children

subsequently become “never-vaccinators.” The parameter ai

indicates the importance of the infectiousness of the disease

(degree of relevance), and gi reflects the importance (degree of

relevance) of vaccine adverse events in shaping the subjective

opinion of the family i. The probability of the household i

accepting vaccination is given by pri ¼ 1=(1þ exp (� pi)), except

for “never-vaccinators,” for whom this probability is zero.

We assume that on day 1 of the epidemic, the vaccine would

not have been used, and therefore no adverse events would have

occurred. Thus, the initial stance of parents in the household i

toward vaccinating their children will be determined solely on

the perceived severity of the disease, that is, using probabilities

pri ¼ 1=(1þ exp (� aiI0)).
2.5 Observational social learning

Let qi,j represent the learningprobability that household i correctly

perceives or learns about household j’s opinion or position on
FIGURE 2

Simulations of sizes of the epidemic, the total number of vaccinated children
Simulations are done using Padv ¼ 0:0001 in (A–C), Padv ¼ 0:001 in (D–F), a
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vaccination. On the contrary, 1� qi,j denotes the probability that

the household i misinterprets the opinion of the household j. This

social learning is not necessarily symmetric, that is, qi,j may not

equal q j,i. For example, followers of a celebrity tend to learn more

from the celebrity than vice versa. n cases of reciprocal or symmetric

social learning, q j,i ¼ qi,j. Let us consider that the household i has a

set of vaccinator neighbors in the social network, denoted as NV (i),

with cardinality nV (i), and a set of non-vaccinator neighbors, NN (i),

with cardinality nN (i). In addition, the total number of neighbors is

given by nS(i) ¼ nV (i)þ nN (i), where NS(i) ¼ NV (i)< NN (i). Then

parents in household i make the decision to vaccinate their children

based on the following posterior probability:

PS(i) ¼
pri �

Q
j[NV (i)

q j,i �
Q

k[NN (i)
(1� qk,i)

pri �
Q

j[NV (i)
q j,i �

Q
k[NN (i)

(1� qk,i)

þ (1� pri) �
Q

j[NV (i)
(1� q j,i) �

Q
k[NN (i)

qk,i

: (1)

This is called Bayesian aggregation rule in observational social

learning. The rationale behind (1) is as follows: the prior

probability of vaccination, pri, is updated based on independent
, and the peak of the epidemic on the ERN model for different values of q.
nd Padv ¼ 0:01 in (G–I). In all simulations, r ¼ 0:01.
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information collected or perceived from neighbors in the

network. A vaccinator is perceived to hold his/her opinion with

a probability of qi,j, while a non-vaccinator is perceived to

favor vaccination with probability 1� qi,j. For more detailed

information on the posterior probability described in Equation

(1) and its connections to other models in the literature, such as

the voting model and the DeGroot model, please refer to the

Supplementary Material titled “SI, Model.”

Each day, parents’ positions on vaccination are updated

randomly based on probabilities PS. In addition, parents who

are vaccinators are selected with a probability r to vaccinate

all their children. This probability r represents the probability

of gaining access to vaccination, which depends on the

available resources.
2.6 Epidemiological measures

To analyze the impact of learning probability q j,i on parents’

opinions and disease spread, we use several epidemiological
FIGURE 3

Simulations of sizes of the epidemic, the total number of vaccinated children
Simulations are done using Padv ¼ :0001 in (A–C), Padv ¼ 0:001 in (D–F), an

Frontiers in Epidemiology 05
measures: the size of the epidemic, the epidemic peak, the uptake

of vaccines, the number of vaccinators, and the basic reproduction

number R0. We specifically use R0 for calibration the ERN,

treating it as an epidemiological measure rather than a threshold

(38). The size of the epidemic is defined as the total number of

children infected by the end of the epidemic, while the uptake of

vaccines refers to the total number of vaccinated children. The

final number of vaccinators is considered to assess whether a

consensus on vaccination emerges by the end of the epidemic.

The basic reproduction number R0 is defined as the average

number of secondary cases in a completely susceptible population.

This definition is used to develop an algorithm to estimate the

value of R0 (see Algorithm 1 in Supplementary Material SIII,

Methods). This algorithm applies Bayes’ theorem to determine the

probability of infection from contact with the index case, which

aids in calculating the average number of infections. To determine

the overall average, we first average the results over multiple

disease transmission simulations, then across the N households

(which may include the index case), and finally over simulations

of various randomly generated networks.
, and the peak of the epidemic on the ERN model for different values of q.
d Padv ¼ 0:01 in (G–I). In all simulations, r ¼ 0:001.
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FIGURE 4

Simulations of sizes of the epidemic, the total number of vaccinated children, and the peak of the epidemic on the BAN model for different values of q.
Simulations are done using Padv ¼ 0:0001 in (A–C), Padv ¼ 0:001 in (D–F), and Padv ¼ 0:01 in (G–I). In all simulations, r ¼ 0:01.
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2.7 Model simulation

The model is implemented using stochastic simulation of 100

runs to investigate the impact of the social learning probability

q j,i on vaccine uptake and the spread of pediatric diseases. We

set q j,i to be uniformly distributed within the range q+ 0:05 for

a pre-specified value of q, where 0 , q , 1. At the beginning of

each time step (day) we update the vaccination stance and the

disease states of the infected children. In the network, multiple

infections can occur on the same day, and the numbers nI(i) and

I(i) are updated daily for all households i, where i ¼ 1, 2, . . . , N .

An infected child on the jth day post-infection either recovers,

making the end of the incubation period, or remains infected,

with the transition to the next day. These transitions are

determined by probabilities calculated from a truncated

exponential distribution. For further details, please refer to the

Supplementary Material SI, Model.

Our simulation codes utilize the NumPy-compatible CuPy

Python library (39), which is accelerated using NVIDIA CUDA

(40) for parallel computations on graphical processing units
Frontiers in Epidemiology 06
(GPUs). Most of our calculations were conducted on a GPU

cluster equipped with eight NVIDIA Tesla (Kepler) K80 GPU

cards; each card boasts 2,496 CUDA Cores and 12 GB of

memory. Furthermore, the code was tested on a GPU cluster

comprising eight NVIDIA A100 SXM GPU cards, each featuring

6,912 CUDA cores and 80 GB of memory. For further

details, please refer to the Supplementary Material SV, Coding

of Simulations.
2.8 Parameter values

We have parameterized our model using reviews of the

literature, calibration, and guesstimation. The model

includes N ¼ 100,000 households, representing a medium-

sized city. Each household randomly contains an average of

two and a half children. In the ERN, the average degree is

assumed to be 40 for the children’s network and 60 for the

parents’ network. The epidemic is postulated to begin with

I0 ¼ 10 initially infected children, randomly dispersed
frontiersin.org
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FIGURE 5

Simulations of sizes of the epidemic, the total number of vaccinated children, and the peak of the epidemic on BAN model for different values of q.
Simulations are done using Padv ¼ 0:0001 in (A–C), Padv ¼ 0:001 in (D–F), and Padv ¼ 0:01 in (G–I). In all simulations, r ¼ 0:001.
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among the N households. The disease is modeled with an

average incubation period of 11 days and a maximum of 16

days [see Vynnycky and White (41, p. 8)]. We calibrated

the value of b using values of R0 ranging from 12 to 18

(41, p. 8). Furthermore, we assume that 5% of the

population, for medical or ideological reasons, will

categorically refuse vaccination (never-vaccinators). A

comprehensive table detailing the definitions of parameters

and their respective values is available in Supplementary

Material SII, Table S1.
3 Results

In our use of voting models of selection, we observed that

the impact of the degree of injunctive social norm or peer

pressure, denoted by d, on epidemic sizes, their peaks, and

vaccine uptake is almost negligible for selected values of d in

the range of [0:025, 0:225], as shown in Figure 1. This effect is

particularly subtle for the ERN model as demonstrated in
Frontiers in Epidemiology 07
Figures 1A–C. It is more pronounced in the Barabási–Albert

network model, as seen in Figures 1D–F. The degree of

injunctive social norm influences vaccine uptake and the sizes

and peaks of epidemics differently in these two types of

networks, as indicated by the contrasting results in the left

and right panels of Figure 1. Notably, vaccine uptake in

Barabási–Albert networks remains higher compared to Erdős–
Rényi networks, regardless of group pressure.

In the case of the ERN model, and using the general Bayesian

aggregation rule as outlined in Equation (1), we observe more

complex dynamical behaviors compared to those resulting from

the voter model with an injunctive social norm or peer pressure

d. First, we assume that there are enough vaccines to vaccinate 1

out of every 100 children daily. When Padv ¼ 0:0001, an increase

in q intensifies the pressure on parents, leading to a higher

vaccine uptake and, consequently, to smaller epidemic sizes and

peaks, as shown in Figures 2A–C. However, as the probability of

an adverse event increases, resulting in more adverse events, we

find that an increase in the correct perception probability q

correlates with a decline in vaccine uptake. Specifically, with
frontiersin.org
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FIGURE 6

Parameter planes of α against q in (A–C) and γ against q in (D–F) for epidemic sizes, the total number of vaccinated children, and the peak of the
epidemic on the ERN model. In all simulations, the median value of the simulations is used to plot the parameter planes that are performed at
Padv ¼ 0:0001 and r ¼ 0:01.
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Padv ¼ 0:001, vaccine uptake continues to rise with values of

q , 0:5, but this pattern shifts for q . 0:5, as illustrated in

Figures 2D–F. At a higher adverse event probability of

Padv ¼ 0:01, vaccine uptake decreases as the value of q increases

beyond approximately q � 0:2. In this scenario, both the size
Frontiers in Epidemiology 08
and the peak of the epidemic grow with an increase in the

probability q, as depicted in Figures 2G–I.

These patterns change when we consider a scenario with

limited vaccine availability, such as the ability to vaccinate only 1

out of every 1,000 children each day. In this case, the uncertainty
frontiersin.org
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FIGURE 7

Parameter planes of α against q in (A–C) and γ against q in (D–F) for epidemic sizes, the total number of vaccinated children, and the peak of the
epidemic on the BAN model. In all simulations, the median value of the simulations is used to plot the parameter planes that are performed in
Padv ¼ 0:0001 and r ¼ 0:01.
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of the results increases; this can be observed by comparing the

panels in Figure 2 with those in Figure 3. The lower the

availability of vaccines, the fewer the number of adverse cases

that occur. A higher probability of an adverse event is required

to effectively discourage parents from vaccinating their children,
Frontiers in Epidemiology 09
as depicted in Figures 3B,E,H. In particular, under these

conditions, the peaks of epidemics do not show significant

changes with variations in the probability of learning.

In the case of the BAN model and using the Bayesian update

rule given in Equation (1), we find that the epidemic sizes are
frontiersin.org
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FIGURE 8

Simulations of the final total number of vaccinators on ERN model when Padv = .0001 in (A), BAN model when Padv = .0001 in (B), and BAN model when
Padv = .01 in (C) for different values of q.
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smaller compared to those in ERNs. This observation can be made

by comparing the panels of Figure 2 with Figure 4, and the panels

of Figure 3 with Figure 5. This finding contradicts the well-known

fact that diseases tend to spread faster in BANs. However, this

discrepancy could be attributed to the increased vaccine uptake

observed in BANs compared to ERNs. This difference between

BANs and ERNs is also evident in the context of different values

of q. For example, when the probability of an adverse event

increases to Padv ¼ 0:01, the levels of vaccine uptake drop from

those observed at Padv ¼ 0:0001 and Padv ¼ 0:001. This can be

seen by comparing panel (H) of Figure 4 with panels (B) and

(E). However, in this scenario, the probability of learning exerts

pressure to increase vaccine uptake, even if it leads to more

adverse events, as illustrated by comparing panel (H) of Figure 4

with panel (H) of Figure 2.

Similarly, these patterns become less pronounced when we

consider a scenario where vaccines are scarce, being available for

only 1 in every 1,000 children each day. As with the ERNs, this

assumption leads to increased outcome uncertainty, which can be

observed by comparing the panels of Figure 4 with Figure 5.
Frontiers in Epidemiology 10
However, in contrast to the ERNs, the learning probability in the

BANs does not significantly influence vaccine uptake, nor does it

affect the size and peak of the epidemics. This can be seen by

comparing panels of Figure 3 with those of Figure 5.

The parameter planes depicted in Figure 6, which represent the

relevance of the disease (a) and the relevance of the adverse event of

the vaccine (g) to the rational choice component for different values

of q, show patterns consistent with the simulation results presented

in Figure 2. This indicates that in ERNs, the effect of learning

significantly influences (suppresses) the rational perception of

parents regarding the benefits of vaccination. The parameter planes

in Supplementary Figures S2 and S3 also show consistent patterns.

In Barabási–Albert networks, similar to Erdős–Rényi networks,
the parameter planes shown in Figure 7 illustrate the relevance of

the disease (a) and the vaccine’s adverse event (g) to the rational

choice component for different values of q. These planes exhibit

patterns that are consistent with the simulations in Figure 4.

Qualitatively, in BANs, both diseases and opinions spread in a

way where vaccine uptake and epidemic responses can be

symmetric to both high and low learning probabilities.
frontiersin.org
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FIGURE 9

Simulations of sizes of epidemic, total number of vaccinated children, and the peak of the epidemic on the ERN model for different proportions of
attribute 1. Simulations are done using r ¼ 0:01 in (A–C), and r ¼ 0:001 in (D–F). In all simulations, Padv ¼ 0:0001.
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Quantitatively, the rational perception of parents regarding the

payoff of vaccination influences vaccine uptake and epidemic

dynamics. As the perceived risk of the disease increases, vaccine

uptake also increases, leading to reduced epidemic sizes and peaks,

as shown in Figures 7A–C. Conversely, as the perceived risk of

adverse events from vaccine increases, vaccine uptake decreases,

which in turn leads to larger epidemic sizes and peaks, as depicted

in Figures 7D–F. The parameter planes in Supplementary Figures

S4 and S5 also show similar consistent patterns.

The probability of learning from parents can lead to a consensus

on vaccination in both ERN and BAN models, as shown in

Figures 8A,B. This is evident in the number of vaccinators on the

last day of the epidemic. However, achieving this consensus in the

ERN typically requires a moderate to high learning probability.

The pattern in ERNs remains consistent with that in Figure 8A

even when Padv ¼ 0:01, though these data are not shown to avoid

redundancy. On the contrary, the pattern changes significantly for

BANs under the same conditions (Padv ¼ 0:01), as shown in

Figure 8C. In this scenario, fewer parents in BANs choose to
Frontiers in Epidemiology 11
vaccinate their children, and acceptance of the vaccine declines as

the probability of learning increases.

Until this point, our model simulations have assumed a

homogeneous culture within the population. Specifically, parents

reveal their actual preference or strategy based on probabilities qi,j
within the range of (q� 0:05, qþ 0:05) for a fixed value of q. In

the next part of our study, we explore the impact of introducing a

cultural attribute to the population. This addition results in a

heterogeneous population, divided into two groups, each

employing probabilities within two distinct ranges: 0:1+ 0:05 and

0:9+ 0:05. We have selected 0:1 and 0:9 to represent extreme

cases. The group associated with the latter range is referred to as

the subpopulation with attribute 1. The proportion of individuals

within this subpopulation can significantly influence the outcomes

of vaccine uptake and the spread of the epidemic.

In the case of an epidemic spreading through an ERN, a small

proportion of parents with attribute 1 leads to a larger epidemic

size and peak, as well as lower uptake of the vaccine. This

outcome is evident in the simulation results presented in
frontiersin.org
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FIGURE 10

Simulations of sizes of the epidemic, the total number of vaccinated children, and the peak of the epidemic on BAN model for different proportions of
attribute 1. Simulations are done using r ¼ 0:01 in (A–C) and r ¼ 0:001 in (D–F). In all simulations, Padv ¼ 0:0001.

FIGURE 11

Simulations of final total number of vaccinators on ERN and BAN models for different proportions of attribute 1. Simulations are done on the ERN
model in (A) and the BAN model in (B). All the simulations are done using Padv ¼ 0:0001 and r ¼ 0:01
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Figure 9. In contrast, when an epidemic spreads through a BAN,

the heterogeneity in the population culture does not significantly

affect the dynamics of the epidemic or the uptake of the vaccine,

as shown in the simulation results in Figure 10.
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If more than half of the parents possess the attribute 1, the

parents reach a consensus to vaccinate in the case of the ERNs,

as shown in Figure 11A. In the case of BANs, vaccination

becomes a consensus in all scenarios, as depicted in Figure 11B.
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4 Discussions and conclusion

In this paper, we introduce a Bayesian aggregation model for

boundedly rational observational social learning, focusing on

decision-making process related to vaccination. This learning

model is based on social observations of neighbors within a social

network, where information dissemination occurs. We

demonstrate that other models in the literature are special cases of

our model. However, some models, such as those based on the

degree of injunctive social norm (d), do not offer the scalability

that our model provides. Using our new model, we investigate

how social learning influences the development of consensus on a

network and examine the impact of cultural heterogeneity in

observational social learning on vaccine uptake. Our approach

involves stochastic simulations of disease and information spread

across two overlapping networks, specifically the ERN model and

the BAN model. The results of observational social learning on

these networks and their mutual influence on disease spread

within the overlapping network varied depending on the type of

network, as well as vaccine safety and availability. In ERNs, an

increase in learning pressure, particularly when q � 0:5 (the

rational agent case), leads to increased vaccine uptake and the

potential establishment of vaccination as a social norm, especially

when adverse events are rare or vaccines are inaccessible. The

uptake of vaccines in BANs is generally higher than in ERNs,

whereas epidemic sizes are smaller. However, in BANs, a higher

learning probability (q � 0:5) results in a reduced uptake of vaccine.

Our simulations of epidemic processes on ERNs and BANs

indicate that degree distribution plays a significant role in vaccine

uptake levels and parental acceptance of vaccination. In the case of

BANs, vaccine uptake is higher compared to ERNs, which can be

attributed to two main reasons. First, since diseases are known to

spread rapidly in BANs, the rapid accumulation of cases increases

the subjective probability of opting for vaccination. Second, the

greater number of neighbors in BANs amplifies the tendency

toward one of the two opinions, even with small values of q.

Vaccine availability and accessibility, along with the likelihood

of adverse events, interact in a way that can significantly influence

parental opinion and, consequently, vaccine uptake. In ERNs,

increased vaccine availability coupled with lower chances of

adverse events helps boost vaccine uptake and establish

vaccination as a consensus. However, in BANs, this paradigm

shifts due to its heavy-tailed degree distribution.

Mixed populations, featuring two different cultures of sharing

and perceiving opinions about vaccination, can greatly affect

vaccine uptake. In a population where a fraction has a lower

learning probability (q1) compared to the rest (q2 . q1), the total

uptake of vaccines may decrease and the size of the epidemic

may increase, compared to a homogeneous population with a

consistent learning probability (q2).

Social studies employing surveys and behavioral game

experiments should consider the personal characteristics of each

parent that lead to directional learning probabilities (qi,j and q j,i).

These population surveys can be used to predict vaccine uptake

levels. To effectively increase vaccine uptake, it is insufficient to
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only consider the degree of parental linkage in the information

network to spread awareness. Enhanced efforts to promote social

information exchange and social norm interventions are

necessary to encourage prosocial vaccination decisions (3–5, 42).

According to our model, such efforts can lead to a consensus on

vaccination opinions and increase vaccine uptake, even in

scenarios with a significant presence of never-vaccinators and

despite challenges related to vaccine safety and availability.
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