AUTHOR=Russel William A. , Perry Jim , Bonzani Claire , Dontino Amanda , Mekonnen Zeleke , Ay Ahmet , Taye Bineyam TITLE=Feature selection and association rule learning identify risk factors of malnutrition among Ethiopian schoolchildren JOURNAL=Frontiers in Epidemiology VOLUME=3 YEAR=2023 URL=https://www.frontiersin.org/journals/epidemiology/articles/10.3389/fepid.2023.1150619 DOI=10.3389/fepid.2023.1150619 ISSN=2674-1199 ABSTRACT=Introduction

Previous studies have sought to identify risk factors for malnutrition in populations of schoolchildren, depending on traditional logistic regression methods. However, holistic machine learning (ML) approaches are emerging that may provide a more comprehensive analysis of risk factors.

Methods

This study employed feature selection and association rule learning ML methods in conjunction with logistic regression on epidemiological survey data from 1,036 Ethiopian school children. Our first analysis used the entire dataset and then we reran this analysis on age, residence, and sex population subsets.

Results

Both logistic regression and ML methods identified older childhood age as a significant risk factor, while females and vaccinated individuals showed reduced odds of stunting. Our machine learning analyses provided additional insights into the data, as feature selection identified that age, school latrine cleanliness, large family size, and nail trimming habits were significant risk factors for stunting, underweight, and thinness. Association rule learning revealed an association between co-occurring hygiene and socio-economical variables with malnutrition that was otherwise missed using traditional statistical methods.

Discussion

Our analysis supports the benefit of integrating feature selection methods, association rules learning techniques, and logistic regression to identify comprehensive risk factors associated with malnutrition in young children.