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Modeling non-linear
relationships in epidemiological
data: The application and
interpretation of spline models
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Objective: Traditional methods to deal with non-linearity in regression analysis

often result in loss of information or compromised interpretability of the

results. A recommended but underutilized method for modeling non-linear

associations in regression models is spline functions. We explain spline

functions in a non-mathematical way and illustrate the application and

interpretation to an empirical data example.

Methods: Using data from the Amsterdam Growth and Health Longitudinal

Study, we examined the non-linear relationship between the sum of four

skinfolds and VO2max, which are measures of body fat and cardiorespiratory

fitness, respectively. We compared traditional methods (i.e., quadratic

regression and categorization) to spline methods [1- and 3-knot linear spline

(LSP) models and a 3-knot restricted cubic spline (RCS) model] in terms of the

interpretability of the results and their explained variance (r2
adj

).

Results: The spline models fitted the data better than the traditional methods.

Increasing the number of knots in the LSP model increased the explained

variance (from r2
adj

= 0.578 for the 1-knot model to r2
adj

= 0.582 for the

3-knot model). The RCS model fitted the data best (r2
adj

= 0.591), but results in

regression coe�cients that are harder to interpret.

Conclusion: Spline functions should be considered more often as they

are flexible and can be applied in commonly used regression analysis. RCS

regression is generally recommended for prediction research (i.e., to obtain

the predicted outcome for a specific exposure value), whereas LSP regression

is recommended if one is interested in the e�ects in a population.
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Introduction

In epidemiological research, regression analysis is often used

to examine the association between an outcome and an exposure

(1). A principal assumption of regression analysis is that the

continuous exposure is linearly related to the outcome. In other

words, a one-unit difference in the exposure is associated with

a fixed difference in the outcome, regardless of the values of the

exposure (2). However, linearity should not be assumed without

assessing that the association is indeed linear (3–5). If the

linearity assumption is violated and associations are estimated

as linear nonetheless, then the effect estimate might not be a

good representation of the true underlying effect and bias might

be introduced. In order to obtain unbiased effects, the non-

linear association requires explicit modeling. Failing to estimate

a truly non-linear relationship as non-linear may lead to over- or

underestimation of the exposure effect. However, it is important

to note that the estimation of complex models may come at cost

of increase uncertainty, especially in small samples. Therefore,

in practice, one may want to consider the balance between

model complexity and model uncertainty when choosing an

appropriate method to model non-linear relationships.

There are different methods available to model non-linear

associations. Simple methods such as polynomial regression

(e.g., quadratic or cubic regression) and categorization of the

exposure variable are widely used, largely due to historical

precedent (6). With quadratic regression, for instance, the

outcome is modeled as a quadratic function of the exposure

(i.e., as a function of exposure x and the quadratic term x2)

(2, 7, 8). Adding higher order terms (such as a quadratic term)

to a basic linear function increases the flexibility of the model,

but simultaneously complicates the interpretability of the results

as the regression coefficients of the terms cannot be interpreted

separately from each other.

With categorization, the exposure variable is grouped (e.g.,

based on percentile values) and subsequently analyzed as a

categorical variable with one of the groups as the reference

category. However, categorization is associated with multiple

issues, such as loss of information, discontinuity in the estimated

average outcome value when moving from one category to the

other, and difficulties with comparing results across studies as

the cut-off points may be data dependent (2, 6, 8–13). Filardo et

al. found that study findings were inconsistent under different

exposure categorization schemes identified in the literature,

which suggests that the way the exposure is categorized may

impact conclusions (14). This emphasizes the importance of

correctly modeling non-linear relationships.

A different approach to model non-linear associations is the

use of spline functions in the regression model (2, 3, 8, 11, 12,

15, 16). Spline functions are transformations of the continuous

exposure variable and can be added to any regression analysis.

They are available in different forms, such as simple linear spline

(LSP) functions, more complex restricted cubic spline (RCS)

functions and B-splines (2). Spline functions estimate exposure

effects for specific intervals of the exposure variable and are

subject to continuity restrictions (i.e., the interval functions

meet at the common interval edges so that—in contrast to

categorization—there are no jumps in the line at these points)

(17). In this paper, we focus on LSP and RCS functions.

LSP functions assume that the exposure effects within each

interval follow a linear shape, but across the intervals the effect

may be non-linear. Therefore, LSP functions are more flexible

than simple linear regression and categorization. RCS functions

assume that the exposure effects within each category are cubic

functions, allowing for more flexibility than other methods.

Although spline functions are broadly accessible in the

software packages commonly used by epidemiologists, they

are not widely used (3, 18). Most papers published on spline

functions present these as complex mathematical functions

(15, 19, 20) and do not discuss their interpretation. This may

be one of the reasons that researchers default to less optimal

methods for estimating non-linear effects, such as quadratic

terms and categorization.

The aim of this paper is to describe linear and restricted

cubic spline functions in a step-by-step and non-mathematical

manner, and to demonstrate the advantages of these methods

over simple linear regression, quadratic regression and

categorization using an empirical data example. First, we

provide an introduction into spline regression and describe

linear- and restricted cubic spline regression in the context of

an empirical data example. Then, we illustrate the application

of traditional methods and spline methods to model non-linear

relationships to that same data example. Finally, we discuss the

interpretation of the effect estimates from different methods and

describe the context in which the use of LSP and RCS models

may be relevant.

Methods

Example dataset

Spline functions will be explained by using an empirical data

example from the Amsterdam Growth and Health Longitudinal

Study (AGHLS). The AGHLS is an ongoing cohort study

that was set up to examine the growth, health and lifestyle

among teenagers (21). We use data from the third round of

measurements, when the participants were 15 years old, because

it contains a clear non-linear relationship.

Throughout this paper, we analyze the non-linear

relationship between the sum of four skinfolds (SFS) and

cardiorespiratory fitness (VO2max). SFS is an often used

estimate of body fat and is calculated by summing the biceps-,

triceps-, subscapular-, and suprailiac skinfolds (in millimeters)

(22). VO2max is defined as the absolute maximal oxygen uptake

in centiliter per kilogram bodyweight (21). The relationship
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FIGURE 1

Non-linear relationship between SFS and VO2max in AGHLS

data. SFS, sum of four skinfolds; AGHLS, Amsterdam Growth and

Health Longitudinal Study.

FIGURE 2

Graphical depiction of the important properties of a spline

model. The gray points represent the observed data, and the

black line is the fitted linear spline model. The vertical dotted

lines represent the knots (located at k1, k2, and k3). i1, i2, i3, and

i4 represent the four intervals for which the exposure e�ect

is estimated.

between SFS and VO2max in our data is shown in Figure 1. Only

subjects with complete data on both variables were included

in the analysis (n = 315, 6 subjects were excluded because of

incomplete data).

Spline functions

Splines can be applied to any statistical model that linearly

relates the exposure to the outcome, such as linear, logistic,

and Cox regression. With spline models, the continuous

independent variable is divided into multiple intervals, and

for each interval the relationship between the exposure and

outcome is estimated separately. The relationship between the

exposure and the outcome in each interval can, for example,

be estimated with a linear function (resulting in linear spline

regression) or with a cubic function (resulting in cubic spline

regression). The use of so-called spline basis functions makes

it possible to estimate the relationship between the exposure

and the outcome for each of the intervals in the same model.

The values of the exposure based on which the intervals are

created are referred to as knots. Thus, each knot defines the

end of one interval and the start of the next. In 3-knot models,

the exposure is divided into four intervals. Subsequently, for

each interval the exposure effect is estimated, resulting in four

spline coefficients. Corresponding confidence intervals can, for

example, be calculated with the standard errors or be obtained

by bootstrapping (23).

In general, a small number of knots (i.e., 3 to 5) is sufficient

to model a non-linear relationship. If the sample size is large

and the relationship that is studied changes quickly, then more

knots might be required (2, 24, 25). Increasing the number of

knots generally improves the fit of the model, but may also lead

to overfitting of the model to the data. If that is the case, the

fitted function does not only follow the main features of the data

but also small and random fluctuations (2, 7, 25). Wand presents

an overview of statistical methods for establishing the number

of knots (26).

Often, the locations of the knots are pre-specified based on

the quantiles of the independent variable. For 3-knot models,

Harrell recommends knots at the 10th, 50th, and 90th percentile.

For 4-knot models, they are recommended at the 5th, 35th,

65th, and 95th percentile (2). In some cases, knot locations are

suggested by theory or by study design (e.g., an interrupted

time series design). However, generally the fit of a spline

model is more dependent on the number of knots than on the

knot locations (25).

In this paper, for illustrational purposes, we demonstrate 1-

and 3-knot linear spline models and a 3-knot restricted cubic

spline model using the knot locations recommended by Harrell.

Figure 2 shows the most important properties of a spline model.

The gray points in Figure 2 represent the observed data, and the

black line is the fitted 3-knot linear spline model. The vertical

dotted lines represent the three knots (labeled as k1, k2, and

k3) and the lines in between the knots represent the estimated

exposure effect for the four intervals between the knots. Spline

models are based on continuity restrictions, which ensures that

the line is smooth at the knots. For example, the line for the first

interval is smoothly connected to the line of the second interval,

and the line of the second interval is smoothly connected to the

line of the third interval, etcetera. An interactive visualization

of LSP and RCS models and the influence of the continuity

restrictions, number of knots and location of knots on the

estimated line can be found elsewhere (27, 28).

Linear spline models

In the 1-knot LSP model, the knot is located at the 50th

percentile (SFS = 330 mm). The corresponding linear spline
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model is

VO2max = β0 + β1 ∗ SFS+ β∗
2 ∗ (SFS− 330)+ + ε (1)

where β0 represents the intercept and ε represents an error

term. To provide valid inference via e.g., confidence intervals

for coefficients, it is assumed that the error terms for each

observation are uncorrelated and follow a Gaussian distribution

with expected value of zero. The term (SFS− 330)+ represents

the spline basis function. This function is assigned a value of zero

when SFS−330 ≤ 0. Because of this, coefficient β1 represents the

exposure effect estimate for individuals whose SFS is ≤330mm.

Coefficient β∗
2 represents the difference in the effect estimates

between the individuals whose SFS is≤330mm and those whose

SFS is >330mm. Thus, for individuals whose SFS is >330mm,

their exposure effect estimate is represented by β1+β∗
2 . The 95%

confidence interval corresponding to β∗
2 can be used to assess

whether the slopes for the two intervals of SFS are statistically

significantly different.

In the 3-knot LSP model, the knots are located at the 10th,

50th, and 90th percentiles, i.e., at SFS= 212, 330, and 621.4mm,

respectively. The corresponding LSP model is

VO2max = β0 + β1 ∗ SFS+ β∗
2 ∗ (SFS− 212)+

+ β∗
3 ∗ (SFS− 330)+ + β∗

4 ∗ (SFS− 621.4)+ + ε

(2)

In Equation 2, spline coefficient β∗
2 is only used whenever

an individuals’ SFS value is larger than 212, otherwise it is

multiplied by zero and thus plays no role in the equation. For

coefficient β∗
3 this is for SFS > 330 and for coefficient β∗

4 this is

for SFS > 621.4, respectively. Thus, coefficient β1 represents the

exposure effect estimate for individuals whose SFS is ≤212mm,

while β1 + β∗
2 represents the effect estimate for individuals

whose SFS is >212 and≤330mm. The exposure effect estimates

for individuals in the third and fourth interval (i.e., individuals

whose SFS is >330mm and ≤621.4mm, and individuals whose

SFS is >621.4mm) are represented by β1 + β∗
2 + β∗

3 and β1 +

β∗
2 + β∗

3 + β∗
4 , respectively.

For both the 1- and 3-knot LSP models, fitting the spline

models is straightforward once the spline basis functions have

been established. Appendix A contains a step by step description

of how to estimate these models, including R software code.

Restricted cubic spline models

Although LSP models can approximate many relationships,

they do not draw smooth lines and do not fit highly curved

relationships well. This can be resolved by fitting a cubic spline

model, which joins smoothly at the knot locations because

the slopes are restricted to be equal at the boundaries (8). To

improve the performance of the spline model in the tails of

the exposure variable, where little data is located, additional

constraints are imposed in restricted cubic spline models. In RCS

models, the spline functions are linear in the tails (i.e., before the

first and after the last knot) (2, 29). Whereas, in LSPmodels each

interval is represented by a spline basis function, in RCS models

k − 2 spline variables are fitted, where k is the number of knots.

Thus, in a 3-knot restricted spline function, a single spline basis

function is fitted (Equation 3).

VO2max= β0 + β1 ∗ SFS+ β
†
2 ∗ SFS

†
2 + ε (3)

where SFS
†
2 and β

†
2 represent the spline basis function and

corresponding cubic spline coefficient (2). Each participant’s

value for the spline basis function is estimated as a function of

the observed exposure value and the knot locations (i.e., SFS

= 212, 330, and 621.4, respectively). The exact formula with

which spline basis function SFS
†
2 is calculated is presented in

Appendix B. Equation 3 can also be expressed as Equation 4,

which contains the interval functions and has the same form as

the 3-knot LSP model. The only difference between the LSP and

RCS models is that for RCS regression all spline basis functions

are raised to the power of three:

VO2max = β0 + β1 ∗ SFS+ β∗
2 ∗ (SFS− 212)3+

+ β∗
3 ∗ (SFS− 330)3+ + β∗

4 ∗ (SFS− 621.4)3+#+ ε

(4)

Equation 5 to 7 can be used to convert cubic spline

coefficient β
†
2 into regression coefficients for each of

the intervals:

β∗
2 =

β
†
2

(621.4− 212)2
(5)

β∗
3 =

β∗
2 ∗ (212− 621.4)

(621.4− 330)
(6)

β∗
4 =

β∗
2 ∗ (212− 330)

(330− 621.4)
(7)

In Equation 5, β∗
2 represents the coefficient for the interval

between the first and the second knot and β
†
2 is the cubic spline

basis function coefficient from Equation 3. In Equation 6, β∗
3

represents the coefficient for the interval between the second and

third knot and β∗
2 is the regression coefficient from Equation 4.

In Equation 7, β∗
4 represents the coefficient for the interval after

the third and β∗
2 is the regression coefficient from Equation 4.

Subsequently, coefficients β∗
2 , β∗

3 and β∗
4 can be plugged into

Equation 4.

Like in quadratic regression, the exposure effect estimates

differ across exposure values, whichmakes it less straightforward

to interpret the coefficients from an RCS model.
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TABLE 1 Regression- and interval coe�cients for the relationship

between VO2max and SFS derived from linear- and quadratic

regression, categorization, 1- and 3-knot linear spline regression and

3-knot restricted cubic spline regression.

Estimate Regression

coefficient

Interval coefficient

Linear regression

β0 64.0658

β1 −0.0304

Quadratic regression

β0 73.2212

β1 −0.0746

β2 0.00004

Categorization

β0 60.1339

β1 −4.9870

β2 −10.0695

β3 −15.1727

1-knot linear spline regression

β0 77.5648

β1 −0.0810 SFS ≤ 330 : −0.0810

β*
2 0.0632 SFS > 330 : −0.0810+ 0.0632 = −0.0178

3-knot linear spline regression

β0 64.1788

β1 −0.0156 SFS ≤ 212 : −0.0156

β*
2 −0.0671 212 < SFS ≤ 330 : −0.0156− 0.0671 =

−0.0827

β*
3 0.0601 330 < SFS ≤

621.4 : −0.0156− 0.0671+ 0.0601 = −0.0226

β*
4 0.0128 SFS > 621.4 : −0.0156− 0.0671+ 0.0601+

0.0128 = −0.0098

3-knot restricted cubic spline

β0 75.9306

β1 −0.0738

β
†
2 0.0740 β*

2 : 0.0000004

β*
3 :−0.0000006

β*
4 : 0.0000002

β*
2 , β*

3 , and β*
4 represent spline coefficients that correspond to spline basis functions.

β
†
2 represents the cubic spline coefficient that corresponds to spline variable SFS†2 .

Results

We illustrate the interpretation and compare the

performance of different methods to model non-linear

relationships using the data example from the AGHLS. Table 1

presents the regression coefficients for each method. For the

spline models, these regression coefficients are used to calculate

the effects for each interval of SFS. These effects are presented

under “interval coefficient.” Table 2 presents the adjusted r2

(i.e., the proportion of variance in VO2max explained by SFS)

of each method (30).

TABLE 2 Explained variance of each model.

Model Adjusted r
2

Linear regression 0.487

Quadratic regression 0.558

Categorization 0.537

1-knot linear spline regression 0.578

3-knot linear spline regression 0.582

3-knot restricted cubic spline regression 0.591

For illustrative purposes we first estimated a simple linear

regression model. Linear regression fits a straight line to the

data (Figure 3A) and assumes that the effect of the exposure

on the outcome is the same for every value of the exposure. In

our data, the exposure effect estimate was −0.0304, meaning

that a 1mm difference in SFS was associated with a 0.0304

cl/kg lower VO2max, regardless of the compared values of SFS.

Naturally, this regression line was not a good representation

of the relationship between SFS and VO2max, which was also

reflected in the lowest explained variance (r2
adj

= 0.487) of all

estimated models.

Quadratic regression

With quadratic regression, VO2max was estimated by

SFS and the quadratic term SFS2. As shown in Figure 3B

and reflected in the explained variance (r2
adj

= 0.558),

the quadratic model fitted the form of the relationship

between SFS and VO2max quite well relative to the other

models. However, the regression coefficients do not have a

straightforward interpretation because the effect of SFS on

VO2max is a function of both regression coefficients. That

is, the effect of a one unit difference in SFS on VO2max

differs across SFS. For example, the average difference

in VO2max was −0.0506 cl/kg when SFS changed from

300 to 301 [i.e.,
(

−0.0746 ∗ 301+ 0.00004 ∗ 3012
)

−
(

−0.0746 ∗ 300+ 0.00004 ∗ 3002
)

], while the average

difference in VO2max was −0.0266 cl/kg when SFS changed

from 600 to 601 [i.e.,
(

−0.0746 ∗ 601+ 0.00004 ∗ 6012
)

−
(

−0.0746 ∗ 600+ 0.00004 ∗ 6002
)

]. Compared to simple

linear regression (Figure 3A), the confidence interval for the

line estimated using quadratic regression becomes wider for

higher values of SFS (Figure 3B). This reflects the additional

uncertainty in the effect estimates from quadratic regression for

higher SFS values. However, the wider confidence interval does

not affect the conclusion that SFS is associated with VO2 max.

Categorization

We divided SFS into four intervals based on quartiles.

Because we used the lowest quartile as the reference category, the
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FIGURE 3

The estimated association between SFS and VO2max plotted against the observed values, with the shading representing the 95% confidence

intervals based on standard errors. (A) simple linear regression, (B) polynomial regression, (C) categorization, (D) 1-knot LSP regression, (E)

3-knot LSP regression, (F) 3-knot RCS regression. SFS, sum or four skinfolds; LSP, linear spline; RCS, restricted cubic spline.

intercept represented the mean VO2max in cl/kg for individuals

in that interval. The regression coefficients represented themean

difference in VO2max between individuals in the lowest quartile

and the other quartiles. For example, −4.9870 was the mean

difference in VO2max in cl/kg between subjects in the first

and second quartile. The explained variance was slightly lower

relative to the other models (r2
adj

= 0.537).

Figure 3C illustrates the assumed homogeneity within

groups and the discontinuity in VO2max (i.e., the change in

average VO2max value) when moving from one quartile to the

next. For example, measures of SFS in the last quartile ranged

between 458 and 1,153mm, but all individuals had the same

estimated VO2max of 44.9612 cl/kg (i.e., 60.1339− 15.1727).

1-knot linear spline model

For individuals whose SFS was equal to or <330mm, a

1mm difference in SFS was associated with a 0.0810 cl/kg

lower VO2max. The mean difference in the effect estimate

between individuals in both intervals was 0.0632, meaning that

for individuals whose SFS was >330mm, a 1mm difference

in SFS was associated with a 0.0178 cl/kg lower VO2max

(i.e., −0.0810 + 0.0632). Thus, for individuals whose SFS

was >330mm the association between SFS and VO2max was

less strong than for individuals whose SFS was equal to or

<330mm. This is also illustrated in Figure 3D. The r2
adj

was

0.578. This indicates that the 1-knot linear spline model
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is a better fit to the data than both quadratic regression

and categorization.

3-knot linear spline model

For individuals whose SFS was≤212mm, a 1mm difference

in SFS was associated with a 0.0156 cl/kg lower VO2max. For

individuals whose SFS was between 213 and 330mm, a 1mm

difference in SFS was associated with a 0.0827 cl/kg lower

VO2max (i.e., −0.0156 − 0.0671). The interval coefficients for

the other intervals can be found in Table 1.

Increasing the number of knots from 1 to 3 resulted in a

slightly higher explained variance (r2
adj

= 0.578 vs. r2
adj

=

0.582, respectively). Furthermore, compared to simple linear

regression (Figure 3A) and the 1-knot model (Figure 3D), the

confidence interval for the line estimated using a 3-knot model

becomes wider for higher values of SFS (Figure 3E). This

reflects the additional uncertainty in the effect estimates from

the 3-knot model for higher SFS values. However, the wider

confidence interval based on the 3-knot model does not affect

the conclusion that SFS is associated with VO2 max.

3-knot restricted cubic spline regression

Like with quadratic regression, separate interpretation of

the coefficients is of no practical value with RCS regression, as

the effect of SFS on VO2max is a function of multiple regression

coefficients. For example, the average decrease in VO2max

was 0.0644 cl/kg when SFS changed from 300 to 301mm

[i.e.,
(

75.9306− 0.0738 ∗ 301+ 0.0000004 ∗ (301− 212)3
)

−
(

75.9306− 0.0738 ∗ 300+ 0.0000004 ∗ (300− 212)3
)

], while

the average decrease in VO2max was 0.0244 cl/kg when SFS

changed from 600 to 601mm [i.e., (75.9306 − 0.0738 ∗ 601 +

0.0000004 ∗ (601− 212)3 − 0.0000006 ∗ (601− 330)3)

− (75.9306 − 0.0738 ∗ 600 + 0.0000004 ∗ (600− 212)3 −

0.0000006 ∗ (600− 330)3)]. Figure 3F illustrates the restrictions

(i.e., the function is linear for SFS ≤ 212 and SFS > 621.4)

and shows that the model fits the data quite well. This is also

reflected in the explained variance (r2
adj

= 0.591).

Discussion

The aim of this paper was to explain linear and

restricted cubic spline functions in a step-by-step and non-

mathematical manner and to demonstrate the advantages of

these methods over simple linear regression, quadratic terms

and categorization using an empirical data example. Although

spline regression is easy to implement with most statistical

programs, epidemiologists still often apply traditional methods

(e.g., quadratic regression and categorization) to model non-

linear relationships.

In the data example, the spline models resulted in

higher explained variance than the traditional methods. Both

categorization and spline regression divided the continuous

exposure variable into intervals. Categorization only allows for

variation between categories, so that the estimated outcome is

the same for each individual in an interval regardless of their

individual exposure value. This explains the stepwise pattern

in Figure 3C. Spline regression, on the other hand, allows

for variation between and within intervals. As a result, the

regression line shifts between knot locations, and regression

lines meet at the knot locations. Although polynomial regression

is easy to model, it suffers from a lack of smoothness and can

lead to implausible curvatures, in particular at the edges. Splines

provide a good alternative as they control for this curvature via

the continuity restrictions. In addition, RCS models are linear

before and after the last knot. LSPmodels provide a good balance

between modeling the non-linear association and providing

results that are relatively easy to interpret. Furthermore, RCS

models provide a flexible method for modeling the non-linearity

of an association, but come at the cost of regression coefficients

that are less easy to interpret than LSP models. In our data

example, the explained variance in the LSP model and the RCS

model were comparable. If one is interested in reporting the

association between sum of four skinfolds and VO2max, then

LSP models provide easier interpretations than the RCS models.

For both quadratic regression and RCSmodels, the increased

complexity of the interpretation of the regression coefficients

makes it less straightforward to summarize the exposure effect

at the population level, because the exposure effect estimates

differs in magnitude across exposure values. However, this

is not necessarily a problem when the aim of a study is to

make individual-level predictions of the outcome, as it remains

relatively straightforward to compute the predicted outcome

value for a specific exposure value using Equation 7 (8). Thus,

in our data example, if one is interested in predicting VO2max

based on specific values of the sum of four skinfolds, then RCS

models may be preferred. Two things that might help with

interpreting the results are the reporting of figures (such as

Figure 3) and calculating the effect for a number of different

exposure contrasts (i.e., the two exposure values that are being

compared). The latter was done for the interpretation of the 3-

knot RCS model, and showed that the decrease in VO2max was

greater when SFS changed from 300 to 301mm, then when it

changed from 600 to 601 mm.

A strength of this paper are the non-mathematical

explanations of LSP and RCS models. Although there are

many other sources that describe spline models, most of these

sources contain a high level of mathematical detail, which

may discourage applied researchers from learning about these

methods. In this paper, we tried to explained spline functions

in a non-mathematical manner and in the context of an
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empirical data example. Furthermore, although we illustrated

the application of spline models using cross-sectional data and

within a linear regression context, the spline functions presented

can be applied to all kinds of regression models, for example

logistic and Cox regression. Further, they can also be used in

longitudinal models such as generalized linear mixed models

(GLMM) and generalized estimation equations (GEE).

Besides the methods discussed in the present paper, there

are also other methods available that can be used to estimate

non-linear associations. A method that we did not discuss is

quadratic spline regression, in which the spline basis functions

are quadratic functions. Although quadratic splines are often

overlooked and not mentioned in known reference books

(2), like cubic splines they result in smooth functions at the

knot locations and can occur in restricted and unrestricted

form. When the number of degrees of freedom are the same

and the knots are located at comparable exposure values,

restricted quadratic and cubic spline models might even

yield similar results (31). SAS code for the estimation of

restricted quadratic splines is provided by Howe et al. (31).

Furthermore, we also did not discuss generalized additive

models (GAMs), LOESS smoothing, penalized splines and

fractional polynomials (32, 33), which are all capable of

capturing non-linear relationships. However, these methods are

relatively complicated and therefore, not much used in practice.

In this paper, we explained spline models based on a

single exposure. However, in practice, researchers may want to

adjust their association model for potential confounders of the

exposure-outcome association. Most researchers are unaware

that, if these confounders are continuous, then the linearity

assumption also applies to these variables (34). Failing to

explicitly model a non-linear confounder-outcome association

may result in an under- or overestimation of the true exposure

effect. Therefore, the linearity assumption should be assessed for

each continuous confounder in a regression model, and splines

can be applied when necessary.

Spline regression is easy to implement with most statistical

software programs often used by epidemiologists. Table 3

contains a (non-exhaustive) overview of packages and macros

available in different software programs. The analyses in this

paper were conducted using the R programming language

version 4.0.3 (35) and the “rms” package by Harrell (23).

The R package “splines” is part of the basic distribution of

R (29). Other frequently downloaded packages include “gss”

(36) and “polspline” (37). An overview of spline methods and

other R packages that may be used to fit spline models is

presented elsewhere (29). In STATA, spline functions can be

fitted using, among others, the STATA package “rmkspline”

and the user-made package “RCsplines” (38). In SPSS, spline

functions have to be fitted by hand and can be applied using

the REGRESSION procedure. In SAS, the “effect” statement

in “proc glimmix” provides an automated implementation for

fitting splines. Documentation including syntax commands

TABLE 3 Spline regression options by software program.

Software program Packages/procedures

R rms, splines, gss, polspline

STATA mkspline, RCsplines

SPSS REGRESSION

SAS TRANSREG

are available from the IBM support page (39) and the SAS

Help Center (40).

Although splines are easy to implement, they require certain

choices to be made by the researcher. This concerns, for

example, the number and location of the knots and the type of

basis function (2). In addition, not all non-linear relations are

“equally harmful” and the choice of spline model (e.g., linear

or cubic) might depend on what’s considered more important:

LSP models might be used to model relations that only have a

slight bend and that can be approximated by piecewise linear

functions, whereas RCS might be used for maximum model

accuracy. Another thing to consider is that some choices, such

as increasing the number of knots, might introduce additional

uncertainty to the model, especially in small samples. If the

number of knots is too large, then the model overfits the data:

it then describes the random error rather than the relationship

between the variables. This affects the generalizability of the

model outside of the data that it is based on (29). In our example,

the confidence intervals were generally wider for more complex

models, illustrating the additional model uncertainty introduced

by more complex models. In some situations, the additional

uncertainty might be a reason to use a more simple model.

Conclusion

Spline functions should be considered more often in the

analysis of non-linear relationships as they allow for more

flexibility in estimating non-linear associations than traditional

methods such as quadratic regression and categorization and can

be used in all kinds of regression analyses. With RCS models the

exposure effect estimates differ across exposure values, making

them more suitable for prediction (i.e., to obtain the predicted

outcome for a specific exposure value). If one is interested in the

effects in a population, then LSPmodels are more suitable due to

the straightforward interpretation of the regression coefficients.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary materials, further

inquiries can be directed to the corresponding author/s.

Frontiers in Epidemiology 08 frontiersin.org

https://doi.org/10.3389/fepid.2022.975380
https://www.frontiersin.org/journals/epidemiology
https://www.frontiersin.org


Schuster et al. 10.3389/fepid.2022.975380

Ethics statement

The studies involving human participants were reviewed

and approved by VU Medical Center. The patients/participants

provided their written informed consent to participate in

this study.

Author contributions

NS andMH designed the study. NS performed the statistical

analyses and drafted the manuscript. All authors contributed

to data interpretation, critically revised the manuscript, and

approved the final version of the manuscript.

Conflict of interest

The authors declare that the research was conducted in

the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be

found online at: https://www.frontiersin.org/articles/10.3389/

fepid.2022.975380/full#supplementary-material

References

1. Lash TL, VanderWeele TJ, Haneuse S, Rothman KJ. Modern Epidemiology. 4
ed. Lippincott Williams &Wilkins (2021).

2. Harrell FE. Regression Modeling Strategies With Applications to Linear Models,
Logistic and Ordinal Regression, and Survival Analysis. Switzerland: Springer
International Publishing AG (2015).

3. Marrie RA, Dawson NV, Garland A. Quantile regression and restricted cubic
splines are useful for exploring relationships between continuous variables. J Clin
Epidemiol. (2009) 62:511–7.e1. doi: 10.1016/j.jclinepi.2008.05.015

4. Philippe P, Mansi O. Nonlinearity in the epidemiology of
complex health and disease processes. Theoret Med Bioethics. (1998)
19:591–607. doi: 10.1023/A:1009979306346

5. Rapoport J, Teres D, Lemeshow S, Avrunin JS, Haber R. Explaining variability
of cost using a severity-of-illness measure for ICU patients. Medical Care. (1990)
28:338–48. doi: 10.1097/00005650-199004000-00005

6. Bennette C, Vickers A. Against quantiles: categorization of continuous
variables in epidemiologic research, and its discontents. BMC Med Res Methodol.
(2012) 12:21. doi: 10.1186/1471-2288-12-21

7. Ruppert D, Wand MP, Carroll RJ. Semiparametric Regression. Cambridge:
Cambridge University Press (2003).

8. Greenland S. Dose-response and trend analysis in epidemiology:
alternatives to categorical analysis. Epidemiology. (1995) 6:356–
65. doi: 10.1097/00001648-199507000-00005

9. Altman DG, Lausen B, Sauerbrei W, Schumacher M. Danger of using
“optimal” cut points in the evaluation of prognostic factors. J Natl Cancer Inst.
(1994) 86:829–35. doi: 10.1093/jnci/86.11.829

10. Gauthier J, Wu QV, Gooley TA. Cubic splines to model relationships
between continuous variables and outcomes: a guide for clinicians. Bone Marrow
Transplant. (2020) 55:675–80. doi: 10.1038/s41409-019-0679-x

11. Greenland S. Avoiding power loss associated with categorization and
ordinal scores in dose-response and trend analysis. Epidemiology. (1995) 6:450–
4. doi: 10.1097/00001648-199507000-00025

12. Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous
predictors in multiple regression: a bad idea. Stat Med. (2006)
25:127–41. doi: 10.1002/sim.2331

13. Boucher KM, Slattery ML, Berry TD, Quesenberry C, Anderson K.
Statistical methods in epidemiology: a comparison of statistical methods to analyze

dose–response and trend analysis in epidemiologic studies. J Clin Epidemiol. (1998)
51:1223–33. doi: 10.1016/S0895-4356(98)00129-2

14. Filardo G, Hamilton C, Hamman B, Ng HKT, Grayburn P.
Categorizing BMI may lead to biased results in studies investigating
in-hospital mortality after isolated CABG. J Clin Epidemiol. (2007)
60:1132–9. doi: 10.1016/j.jclinepi.2007.01.008

15. Durrleman S, Simon R. Flexible regression models with cubic splines. Stat
Med. (1989) 8:551–61. doi: 10.1002/sim.4780080504

16. James G, Witten D, Hastie T, Tibshirani R. An Introduction to Statistical
Learning: With Applications in R. New York, NY: Springer (2013).

17. Marsh LC, Cormier DR. Spline Regression Models. Thousand Oaks, CA: Sage
Publications, Inc. (2002).

18. O’Brien SM. Cutpoint selection for categorizing a continuous predictor.
Biometrics. (2004) 60:504–9. doi: 10.1111/j.0006-341X.2004.00196.x

19. de Boor CR. A Practical Guide to Splines. New York, NY: Springer-Verlag
New York (1978).

20. Smith PL. Splines as a useful and convenient statistical tool. Am Stat. (1979)
33:57–62. doi: 10.1080/00031305.1979.10482661

21. Wijnstok NJ, Hoekstra T, van Mechelen W, Kemper HCG, Twisk JWR.
Cohort profile: the Amsterdam growth and health longitudinal study. Int J
Epidemiol. (2013) 42:422–9. doi: 10.1093/ije/dys028

22. Wijnstok NJ, Serné EH, Hoekstra T, Schouten F, Smulders YM, Twisk
JWR. The relationship between 30-year developmental patterns of body fat
and body fat distribution and its vascular properties: the Amsterdam Growth
and Health Longitudinal Study. Nutr Diabetes. (2013) 3:e90. doi: 10.1038/nutd.
2013.31

23. Harrell FE. rms: Regression Modeling Strategies. R package version 6.0-1
(2020). Available online at: https://cran.r-project.org/package=rms (accessed July
31, 2022).

24. Korn EL, Graubard bI. Analysis of Health Surveys. 1 ed. New York, NY:
Wiley-Interscience (1999).

25. Stone CJ, Koo C. Additive splines in statistics. In: American Statistical
Association Proceedings of the Statistical Computing Setting. Washington, DC:
American Statistical Association (1985). p. 45–8.

26. Wand MP. A comparison of regression spline smoothing procedures.
Comput Stat. (2000) 15:443–62. doi: 10.1007/s001800000047

Frontiers in Epidemiology 09 frontiersin.org

https://doi.org/10.3389/fepid.2022.975380
https://www.frontiersin.org/articles/10.3389/fepid.2022.975380/full#supplementary-material
https://doi.org/10.1016/j.jclinepi.2008.05.015
https://doi.org/10.1023/A:1009979306346
https://doi.org/10.1097/00005650-199004000-00005
https://doi.org/10.1186/1471-2288-12-21
https://doi.org/10.1097/00001648-199507000-00005
https://doi.org/10.1093/jnci/86.11.829
https://doi.org/10.1038/s41409-019-0679-x
https://doi.org/10.1097/00001648-199507000-00025
https://doi.org/10.1002/sim.2331
https://doi.org/10.1016/S0895-4356(98)00129-2
https://doi.org/10.1016/j.jclinepi.2007.01.008
https://doi.org/10.1002/sim.4780080504
https://doi.org/10.1111/j.0006-341X.2004.00196.x
https://doi.org/10.1080/00031305.1979.10482661
https://doi.org/10.1093/ije/dys028
https://doi.org/10.1038/nutd.2013.31
https://cran.r-project.org/package=rms
https://doi.org/10.1007/s001800000047
https://www.frontiersin.org/journals/epidemiology
https://www.frontiersin.org


Schuster et al. 10.3389/fepid.2022.975380

27. Lambert P. Spline Continuity. Available online at: https://pclambert.net/
interactivegraphs/spline_continuity/spline_continuity (accessed July 31, 2022).

28. Lambert P. The Number and Location of Knots. Available online at: https://
pclambert.net/interactivegraphs/spline_eg/spline_eg (accessed July 31, 2022).

29. Perperoglou A, Sauerbrei W, Abrahamowicz M, Schmid M. A
review of spline function procedures in R. BMC Med Res Methodol. (2019)
19:46. doi: 10.1186/s12874-019-0666-3

30. Ezekiel M. Methods of Correlation Analysis. New York, NY: John Wiley and
Sons (1930).

31. Howe CJ, Cole SR, Westreich DJ, Greenland S, Napravnik S, Eron JJ Jr.
Splines for trend analysis and continuous confounder control. Epidemiology.
(2011) 22:874–5. doi: 10.1097/EDE.0b013e31823029dd

32. Eisen EA, Agalliu I, Thurston SW, Coull BA, Checkoway H. Smoothing
in occupational cohort studies: an illustration based on penalised splines. Occup
Environ Med. (2004) 61:854–60. doi: 10.1136/oem.2004.013136

33. Binder H, Sauerbrei W, Royston P. Comparison between splines and
fractional polynomials for multivariable model building with continuous
covariates: a simulation study with continuous response. StatMed. (2013) 32:2262–
77. doi: 10.1002/sim.5639

34. Groenwold RHH, Klungel OH, Altman DG, van der Graaf Y, Hoes AW,
Moons KGM, et al. Adjustment for continuous confounders: an example of how to
prevent residual confounding. CMAJ. (2013) 185:401–6. doi: 10.1503/cmaj.120592

35. R Core Team. R: A Language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing (2019).

36. Gu C. Smoothing spline ANOVA models: R package gss. J Stat Softw. (2014)
58:1–25. doi: 10.18637/jss.v058.i05

37. Kooperberg C. Polspline: Polynomial Spline Routines. R package version
1.1.20 (2022). Available online at: https://CRAN.R-project.org/package=polspline
(accessed July 31, 2022).

38. Cox NJ. RCSPLINE: Stata Module for restriced cubic spline smoothing.
Statistical Software Components S456884 (2007).

39. IBM SPSS Statistics. Spline Regression With Estimated Knots in SPSS. (2020).
Available online at: https://www.ibm.com/support/pages/spline-regression-
estimated-knots-spss#:~:text=Regression%20models%20in%20which%20the,with
%20the%20SPSS%20REGRESSION%20procedure

40. SAS Programming Documentation. The TRANSREG Procedure. (2019).
Available online at: https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.4/
statug/statug_transreg_details03.htm

Frontiers in Epidemiology 10 frontiersin.org

https://doi.org/10.3389/fepid.2022.975380
https://pclambert.net/interactivegraphs/spline_continuity/spline_continuity
https://pclambert.net/interactivegraphs/spline_continuity/spline_continuity
https://pclambert.net/interactivegraphs/spline_eg/spline_eg
https://pclambert.net/interactivegraphs/spline_eg/spline_eg
https://doi.org/10.1186/s12874-019-0666-3
https://doi.org/10.1097/EDE.0b013e31823029dd
https://doi.org/10.1136/oem.2004.013136
https://doi.org/10.1002/sim.5639
https://doi.org/10.1503/cmaj.120592
https://doi.org/10.18637/jss.v058.i05
https://CRAN.R-project.org/package=polspline
https://www.ibm.com/support/pages/spline-regression-estimated-knots-spss#:~:text=Regression%20models%20in%20which%20the,with%20the%20SPSS%20REGRESSION%20procedure
https://www.ibm.com/support/pages/spline-regression-estimated-knots-spss#:~:text=Regression%20models%20in%20which%20the,with%20the%20SPSS%20REGRESSION%20procedure
https://www.ibm.com/support/pages/spline-regression-estimated-knots-spss#:~:text=Regression%20models%20in%20which%20the,with%20the%20SPSS%20REGRESSION%20procedure
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.4/statug/statug_transreg_details03.htm
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.4/statug/statug_transreg_details03.htm
https://www.frontiersin.org/journals/epidemiology
https://www.frontiersin.org

	Modeling non-linear relationships in epidemiological data: The application and interpretation of spline models
	Introduction
	Methods
	Example dataset
	Spline functions
	Linear spline models
	Restricted cubic spline models

	Results
	Quadratic regression
	Categorization
	1-knot linear spline model
	3-knot linear spline model
	3-knot restricted cubic spline regression

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Conflict of interest
	Publisher's note
	Supplementary material
	References


