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Pandemic “wave” usually refers to the rise and fall of the infections with time,

however, for a large country, the variations due to geographical location could

be considerable. In this work, we investigated COVID-19 infection and fatality

across the U.S. during the pandemic waves in the pre-vaccination period

(January 2020–December 2020). Focusing on counties with a population

≥100,000, the data from the entire period were first segmented into two equal

phases roughly corresponding to the first pandemic wave and subsequent

surge, and each phase was further divided into two zones based on infection

rate. We studied the potential influences of six sociodemographic variables

(population density, age, poverty, education, and percentage of Hispanic and

African American population) and four air pollutants (PM2.5, NO2, SO2, and

O3) on the di�erences in infection and fatality observed among di�erent

phases and zones. We noticed a distinct di�erence in the overall impact of

COVID-19 between the two phases of the pre-vaccination period with a

substantial decrease in the fatality in the second phase despite an increase in

the infection. Analysis using log-linear regression modeling further revealed

a shift in the impact of several risk factors considered in this study. For

example, population density and lesser education were found to be significant

for infection during the first phase of the pandemic alone. Furthermore,

population density and lesser education along with poverty and NO2 level had

a significant contribution to fatality during the first phase of the pandemic,

while age over 65 years was important in both phases. Interestingly, the e�ects

of many of these factors were found to be significant only in the zones

with higher infection rates. Our findings indicate that the impacts of several

well-known sociodemographic and environmental risk factors for COVID-19

are not constant throughout the course of the pandemic, and therefore, careful

considerations should be made about their role when developing preventative

and mitigative measures.
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Introduction

Recent research has shown that elevated levels of various

air pollutants negatively affect the prognosis of COVID-19.

Numerous researchers have also revealed a disproportionate

impact of groups with lower socioeconomic levels in the U.S.

The spread of infectious diseases is usually referred to as a wave

in time, however, the spatial component of the spread can play

an important part in the spread of a disease (1). The spatial

component can not be ignored, especially in a large country

such as the U.S. In this paper, we study the spatiotemporal

nature in pre-vaccination period of the COVID-19 pandemic.

We divide this period into two time-phases, and group the

counties in two zones based on their infection rates. We attempt

to understand the effects of various risk factors in the two

Phases, and the two zones separately. This paper analyzes

the effect of environmental, demographics, and geographical

attributes on COVID-19 infection and fatality across the U.S.

We also aim to quantify the differences in the first two phases of

the pandemic.

Sociodemographic factors a�ecting
COVID-19

High volume of population in one place especially if it is

dense, increases the air pollution. Indeed, Cole and Neumayer

(2) observe that the high population leads to higher levels

of SO2 emission. Moreover, Páez-Osuna et al. (3) find that

higher population density leads to higher COVID-19 mortality.

Hence, we consider population density as one of the factors in

our analysis.

Moreover, other demographic factors such as age, race, and

education play an essential part in the COVID-19 prognosis.

Mueller et al. (4) find that people over 65 years of age represent

80% of COVID-19 hospitalizations. The older population is also

at a much higher risk of mortality than the younger population

(5, 6). Reports exposed a striking case fatality rate of 61.5% for

critical cases in the older population (7).

In April 2020 United Nations published a report (8)

recognizing older persons, people with extreme poverty, and

minorities as high risk groups during the pandemic, which

remained a major concern during the pre-vaccination period

(9). Indeed, numerous metropolitan cities in the U.S. reveal

that African American and Hispanic Americans comprise a

disproportionate number of COVID-19 infections andmortality

relative to their share of the population in the respective cities

(10, 11). To this effect, Dobin et al. (12) showed that the

COVID-19 infection rate is four-fold for the Non-Hispanic

Black (NHB) and Hispanic population in New York state.

Adhikari et al. (13) observe income inequality alone can not

explain the racial and ethnic disparities in COVID-19 infections

and deaths. Finally, Drefahl et al. (14) show that a low educated

population is at higher risk of dying due to COVID-19. In light

of these findings, we chose to include population density, age,

minority population percentage, poverty, and education level as

sociodemographic factors for counties considered in our work.

Understanding the impact of these selected demographic

risk factors and air pollutants within a country is important.

More rigorous investigation of these socioeconomic inequalities

is needed to understand sociodemographic risk factors’

association with COVID-19 severity and fatality. Thus, a

multivariable study can help analyze the contrasting impact

of demographic risk factors and air pollutants to enumerate

their contributions.

E�ect of air pollutants on COVID-19
spread and prognosis

Air pollution exacerbates many of the known comorbidities

responsible for hospitalization and fatality due to COVID-19.

Kampa and Castanas (15) show that chronic exposure to air

pollutants is associated with respiratory and heart conditions,

such as chronic bronchitis, hypertension, ischemic heart disease.

On the other hand, recent studies have revealed that fatality

from COVID-19 is highly associated with chronic obstructive

pulmonary disease (COPD), asthma, diabetes, hypertension,

obesity (16–18).

Fine particulate matter with a diameter<2.5µm, referred to

as PM2.5, are air pollutants that can penetrate the lung, irritating

the alveolar wall (19). Thus, PM2.5 pollution can lead to an

impaired respiratory system. The adverse role of PM2.5 as the

underlying contributor to respiratory diseases is noteworthy (20,

21). Several studies have determined that long-term exposure

to PM2.5 adversely affects the respiratory and cardiovascular

systems and increases mortality risk, as observed for COVID-

19 (22, 23). Indeed, Wu et al. (24) show that an increase of

only 1 µg/m3 in PM2.5 is associated with an 8% increase in the

COVID-19 fatality rate.

Nitrogen dioxide (NO2) is another toxic pollutant prevalent

in urban areas that enters the atmosphere due to fossil fuel

combustion from vehicles, power plants, and natural processes.

High concentrations of NO2 in the environment damages

the human respiratory system (25). Many studies have shown

that elevated exposure to NO2 causes hypertension, COPD,

cardiovascular diseases, lung injury, even diabetes (26). A high

concentration of NO2 under ultraviolet light of around 400 nm

generates ozone (O3) as a secondary pollutant [(27), p. 92].

Indeed, a review by Ali and Islam (28) demonstrated that both

short-term and long-term exposure to air pollution especially

PM2.5 and NO2 may contribute significantly to higher rates of

COVID-19 infections and mortality. However, Ali and Islam
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(28) also call for further research with confounding factors such

as age and population density.

Burning fossil fuels by power plants and other industrial

facilities constitute the primary source of sulfur dioxide (SO2),

one of the air pollutants of concern (29). Wong et al. (30)

show that SO2 pollution increased the risk of hospitalization

due to respiratory disease. Increased level of exposure to O3 is

associated with decreased function of airways (31). Turner et al.

(32) find that long-term O3 exposure contributes to the risk of

respiratory mortality.

Thus, the study of air pollutants which aggravates

the infection and fatality rates for COVID-19 disease has

increasingly become relevant, for which the supporting

evidence is mounting. The understanding of their impact will

help to make informed decisions at all levels. Considering these

recent findings, we aim to quantify the role of PM2.5, NO2, SO2,

and O3 in COVID-19 infections and fatality.

Geographical factors influencing in the
pandemic

Early reports have shown that the geographical patterns

of COVID-19 spread and fatality within and among different

regions of a country closely align with local levels of

air pollutants (33). In addition to temporal studies (34),

spatiotemporal assessment of air quality can help identify

reasons for local transmission of this pathogen, specific

populations who could be at higher risk, and critical factors

that facilitate the spread. To date, spatiotemporal studies are

limited. In case of U.S., it is observed that northeastern part

of the country experienced more cases and deaths compared

to other regions during the initial phase of the pandemic (35).

At present, only area-level counts for COVID-19 infection and

fatality data are publicly available.

Objectives

We aim to advance the understanding of the association of

COVID-19 infection and fatality rates with demographic risk

factors and selected air pollutants for the entire population of

the U.S. through a comprehensive framework. In this work, we

investigate the following questions:

i. To what extent do the demographic variables, such as age,

socio-economic status, and ethnicity, impact COVID-19

transmission and fatality?

ii. Is there a significant difference in the concentration of air

pollutants, such as PM2.5, NO2, SO2, andO3, in the counties

with high COVID-19 infection rates compared to counties

with low infection rates?

iii. On the temporal effect, does chronic exposure of the

pollutants remain constant or differ as the pandemic enters

the later Phase.

We note that the factors we examine are by no means

comprehensive, and several of them are interrelated. Identifying

region-wide variations influenced by significant risk factors and

underscoring their interactions will help to make strategies

to protect those in the most vulnerable counties requiring

urgent care.

Materials and methods

Data collection

Data sources
We used publicly available data from New York Times (36)

for COVID-19 infections and fatality. The air pollution data was

obtained from United States Environmental Protection Agency

(37). The sociodemographic information was acquired from the

Hopkins Population Center (38). The data sources are listed in

Table 1.

Defining Phase 1 and Phase 2 of the
pre-vaccination e�orts

In this work, we wanted to understand the spread of the

COVID-19 pandemic before the vaccine distributions. The

Federal Drug Administration approved the first mRNA vaccine

for emergency use in December 2020 (39). However, the vaccine

distribution began in January 2021 (40). Thus, we considered

the time period of January 1, 2020 to December 31, 2020 for

our analysis. The pre-vaccination period of the pandemic could

be divided into two phases. The initial phase was marked by

a sharp rise in COVID-19 deaths, reaching the peak in its

7-day average in mid-April and a trough at the end of June

2020 (41). Moreover, in the U.S. the number of new cases

decreased to around 20,000 the month of June 2020, before

increasing again (36). Thus, we considered the period of January

TABLE 1 Publicly available data sources used in this study.

Data Source

Covid-19 cases and deaths Coronavirus (COVID-19) data

(https://developer.nytimes.com/covid)

Population estimates and

demographics 2018

Hopkins population center (HPC)

(https://popcenter.jhu.edu/data-hub)

Air pollutants data Air quality system (AQS) API

(https://aqs.epa.gov/aqsweb/

documents/data_api.html)
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1, 2020 to June 30, 2020 as the Phase 1 of the pandemic. We

define the period July 1, 2020 to December 31, 2020 as the

second phase.

Response variables
We wanted to study the spread of COVID-19 infection,

and fatality due to COVID-19. To be able to make a

comparison between counties with varying populations, we

used infection rate for a population of 10,000 people instead

of the actual number of infections. We defined this variable

as follows:

Infection rate

=
Number of COVID-19 infections in the county

Population of the county
× 10, 000.

Similarly, we defined the fatality rate per a population of

10,000 for a county as follows.

Fatality rate

=
Number of deaths due to COVID-19 in the county

Number of COVID-19 infections in the county
× 10, 000.

We used the fatality rate as opposed to the mortality

rate (deaths per population) in our work, since the fatality

rate captures the effectiveness of the response to COVID-19

infected population. We obtained the COVID-19 infection

and mortality data from New York Times (36), and the

county population data from Hopkins Population Center

(38). Note that the infection and fatality rates for a given

county differ in Phase 1, Phase 2, and when all year data

was considered.

Explanatory variables
We obtained countywise demographic data for population

density, ethnicity, age, and education from the United States

Census Bereau (42). We used six demographic variables in this

work defined as follows:

i. Population density : population of a county per area of the

county in square miles.

ii. Age 65+ : percentage of people who are of age 65 and more

in the county.

iii. African Americans : percentage of African Americans in

the county.

iv. Hispanic Americans : percentage of Hispanic Americans in

the county.

v. Poverty: percentage of people living under the poverty line

in the county.

vi. High school or less: percentage of people with maximum

education of high school in the county.

Furthermore, we studied impact of the following pollutants

as the four of the explanatory variables in this work:

vii. PM2.5 (µg/m
3),

viii. NO2 (ppb),

ix. SO2 (ppb),

x. O3 (ppb).

We acquired the weekly and annual levels these pollutants

from the EPA’s Air Quality System (AQS) database (37) through

2015 to 2020.

Zone A vs. Zone B counties and impact of
non-availability of the pollutant data

Since the pandemic affected larger counties in the initial

stages of the pandemic (43), we considered only counties with

population of 100,000 or more. There were 593 such counties

in the U.S. which we sorted based on the infection rate. We

categorized the top 200 counties with most infection rates as

Zone A counties, the rest were labeled as Zone B. Since the

infection rate may differ from Phase 1 to Phase 2, counties

which were in Zone A during the Phase 1 may not remain

in Zone A in the second Phase. The limited number of EPA

sampling sites prevented the acquisition of pollutants data from

all 593 counties. Thus, for Phase 1, pollutant data was available

for 64 counties out of 200 counties from Zone A and 54

counties out of 393 counties from Zone B. Similarly, for Phase

2, we obtained the pollutant data for 42 counties from Zone

A and 76 counties from Zone B. For all year, we obtained the

pollutant data for 45 counties from ZoneA and 73 counties from

Zone B.

Statistical analyses

Description of the study variables

The data for this study are county level demographics and

air pollutants. This data is available at a github repository.

We computed the medians, first, and third quartiles of the

zone-wise characteristics of six demographic variables and four

air-pollutants selected for this study for Phase 1 and Phase 2,

and the whole year. After confirming the normality assumptions,

we performed T-tests to check for any statistically significant

differences in the demographic risk factors and environmental

variables between Zones A and Zone B during both phases and

throughout the entire year.

Correlation analysis

For Zones A and B counties for both Phase 1 and Phase

2, we summarized Pearson’s correlation coefficients between
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FIGURE 1

(A) Histograms and the fitted normal curves of the residuals for multivariate linear regression and (B) multivariate log-linear regression. The
linear models are based on fatality rate as the response variable for the all year (2020) data in Zone B.

infection and fatality rates and the corresponding p-values in

correlation matrices. All analyses used two-sided statistical tests,

and p < 0.1 was considered significant.

Autoregressive integrated moving
average (ARIMA) model

We used auto-regressive integrated moving average

[ARIMA (p, q, d)] models (44, 45) to analyze how concentrations

of PM2.5, SO2, NO2, and O3 differed between Zones A and

B over the 6 year time period from 2015 to 2020. To this

effect, we used the time-series of monthly data collected by

the EPA from 2015 to 2020 to obtain predicted estimates

of these pollutants. We used the Augmented Dickey-Fuller

(ADF) unit-root test (46) to verify that the time-series was not

stationary. We built the models with varying orders of p, q,

and d for the pollutants PM2.5, SO2, NO2, and O3. We used

Akaike information criterion (AIC) to evaluate the goodness of

fit for the models. We plotted the fitted values of each model

and the corresponding 95% confidence bands for each zone.

We then compared these fitted values of the concentrations the

pollutants in Zone A vs. those in Zone B for Phase 1, Phase

2, and for all year data. We employed autoregressive neural

networks and exponential smoothing techniques and compared

the predicted accuracy of ARIMA models by computing

the commonly used statistic “root mean squared errors

(RMSE)” (45, 47).

Tests for significance

Since the normality assumptions were satisfied, we used two-

sided T-tests for statistical comparisons between demographic

parameters and pollutants for both Zones during Phase 1, Phase

2, and all year.

Regression analysis

We employed multivariate linear regression models to

demonstrate the role of the explanatory variables on specific

aspects of COVID-19 burden, namely infection rate and fatality

rate. To this effect, we considered each county belonging to Zone

A or Zone B as a data point and observed that the residuals for

these linear models did not follow the normality assumptions

(see Figure 1A). However, the residual for the regression models

on log-transformed responses variables satisfied the normality

assumptions (see Figure 1B). The residuals for the log-linear

models are provided in Supplementary Figures 1, 2. Thus, we

implemented a logarithmic (log) transformation on the response

variables to conform to the normality of the distributions

of the residuals and built 12 linear models using infection

rates and fatality rates as response variables. Four pollutants

and six demographic risk factors were used as predictors

for all twelve models (see Section Explanatory variables). By

measuring the variance inflation factor (VIF), which assesses

the inflation in the variances of independent parameters due

to interdependence to avoid unstable and incorrect estimation

of regression coefficients (48), multicollinearity between the

explanatory variables was evaluated.

We set an upper cut-off value for VIF at 5 for the explanatory

variables. We used the following procedure outlined in Athavale

et al. (49) with a cut-off of VIF = 5 to construct our final

models for infection and fatality rates for each of two zones and

two phases.

Step 1: Compute the VIF for each explanatory variable in the

model. If all the VIFs are <5, we declare this to be the

final linear model.

Step 2: If an explanatory variable has a VIF of more than 5, we

remove the explanatory variable with the largest VIF. If

there are more than one explanatory variables with VIF

within 5% of the maximumVIF, we remove the variable

that leads to a model with the highest R2.
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Step 3: We construct the linear model with the remaining

explanatory variables.

Step 4: Go to Step 1.

After building the linear models, we verified the residuals’

normality and homoscedasticity assumptions.

Coding language and libraries used

Analyses were performed using version 3.7.12 of the Python

programming language and 4.0.0 of the R programming

language. The Python packages used here are statsmodels 0.10.2,

FIGURE 2

(Top) The counties included in Zone A and Zone B during Phase 1 (January, 2020–June, 2020), Phase 2 (July, 2020–December, 2020), and all
year (2020) are shown in the U.S. maps. (Middle) Box plots showing COVID-19 infection rates (per 10,000 population) observed in Zone A and
Zone B during Phase 1, Phase 2, and all year. (Bottom) COVID-19 fatality rates (per 10,000 infections) observed in Zone A and Zone B during
Phase 1, Phase 2, and all year. Horizontal black lines represent median values. *p < 0.1; ***p < 0.01; NS, not significant.
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matplotlib 3.2.2, scipy 1.4.1, numpy 1.21.5, and pandas 1.3.5. The

R libraries used here are, readxl, dplyr, tidyr, ggplot2, ggpubr,

MASS, and car.

Results

Descriptive statistics

As discussed in Section Zone A vs. Zone B counties and

impact of non-availability of the pollutant data, we separated the

counties in two zones, Zone A and Zone B. We display the map

of these counties for Phase 1, 2, and all year in the first row of the

Figure 2.

We depict the boxplots for infection rates for the two phases

and for the entire year are in the second row of the Figure 2.

Similarly, the third row of Figure 2 shows the boxplots for

fatality rates for the two phases and for the entire year. We

summarize the descriptive statistics for the explanatory variables

in Figures 3, 4.

Results of the correlation analyses

Supplementary Tables 1–6 show the pairwise Pearson’s

correlation coefficients to quantify the association between the

response and explanatory variables for Zones A and B counties

for Phases 1, 2, and for all year.

The tables shows two-sided p-values for each of the

correlation tests, and p < 0.1 was considered significant. During

the first Phase, we note that the pollution level was not positively

correlated to the fatality rate. However, during the second Phase

all the pollutants are positively correlated (with p < 0.1 or

less) to the infection rates in the Zone B counties. This pattern

can not be seen if we look at the all year data for Zone A

(see Supplementary Table 5). We observe that the percentage of

population of age 65 or more is consistently strongly correlated

with fatality rate. We also see that the Hispanic population is

significantly and positively correlated to the infection rate in

both Zones, during both Phases, as well as in the all year data.

Notably the education level of the counties is inversely related to

the fatality during the Phase 2, but not during the first Phase.

Results of the ARIMA

The Augmented Dickey-Fuller (ADF) unit-root test (46)

confirmed the stationarity of the time series. Figure 5 shows

ARIMA models and the 95% confidence bands for the

pollutants PM2.5, NO2, SO2, O3 for the two zones and

for Phase 1, Phase 2, and for all year data. The AIC

values of the models for all conditions were low and

comparable (−555.15, 202.53). The pattern was similar for

Zone A and Zone B for the pollutants for pollutants

PM2.5, NO2, and O3 where considerable overlap of the

confidence bands were observed with periodic temporal

variation between the models. In contrast, values depicted

larger separation between Zone A and Zone B during the

Phase 1 for the models which predicted SO2. Additionally,

exponential smoothing and autoregregressive neural network

yielded RMSE values comparable to ARIMA model (see

Supplementary Table 13) for the pollutants PM2.5, NO2, O3,

SO2, for the two zones and for Phase 1, Phase 2, and for all

year data.

Results of the tests of significance

The first row of Figure 2 shows the distribution of the

counties in Zone A and Zone B for the two phases and

the whole year of 2020. We see a movement of the counties

from Zone A and Zone B as time progresses. Notably, most

counties on the east coast which categorized as ZoneA, switched

to Zone B in the second Phase. The boxplots depicted in

the second and the third rows of Figure 2 demonstrate the

statistically significant difference (p < 0.01) between the

two zones with respect to the infection rates and fatality

rates. Figure 2 indicates that the differences between Zone A

and Zone B are statistically significant for the infection rates

during Phase 1, Phase 2, and over the entire year (p < 0.01).

The same is true for fatality rates; however, for Phase 2

the fatality rates were comparable between the two zones

(p < 0.1).

We display the difference between the two zones with respect

to the pollutants and sociodemographic variables in Figures 3,

4 respectively. We observe in Figure 3 that the NO2 levels are

significantly different (p < .05) in Zone A and Zone B counties

during Phase 1. This difference diminished during Phase 2.

However, for other pollutants the distributions of the data for

Zone A and Zone B remained more or less the same with

the exceptions of except for O3 during Phase 2 (p < 0.05),

PM2.5 during Phase 2 (p < 0.10), and SO2 during Phase 1

(p < 0.01). Interestingly, NO2 remained the only pollutant

that showed significant statistical differences for the entire year’s

data (p < 0.01), where Zone A was significantly higher than

Zone B.

For population density, the difference between Zone A and

Zone B for Phase 1 was statistically significant (p < 0.01),

whereas for Phase 2, there was no statistical difference. We

observe the same trend for the African American population

in two phases. We observed no statistical differences for

these two demographic factors for the whole-year data. The

percentage of the population with age over 65 years remained

significantly different for both zones over two phases and

the entire year. There was no statistical difference between

Zone A and Zone B for the percentage of the Hispanic
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FIGURE 3

Box plots showing average concentrations of NO2, O3, PM2.5, and NO2 for the counties included in Zone A and Zone B for Phase 1 (January,
2020–June, 2020), Phase 2 (July, 2020–December, 2020), and all year (2020). Horizontal black lines represent median values. *p < 0.1;
**p < 0.05; ***p < 0.01; NS, not significant.

American population during Phase 1. In contrast, we discovered

statistically significant differences during the second phase

and when the entire year data were analyzed. For the risk

factor “Poverty” (the percentage of population below the

poverty line), we observed either no statistical differences

(Phase 1) or marginally different (Phase 2 and entire year
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FIGURE 4

Box plots showing demographic variables for the counties included in Zone A and Zone B for Phase 1 (January, 2020–June, 2020), Phase 2

(July, 2020–December, 2020), and all year (2020) are shown. Horizontal black lines represent median values. *p < 0.1; **p < 0.05; ***p < 0.01;
NS, not significant.

data). We discovered an interesting trend for the variable

“percentage of the population with high school or less”:

during Phase 1 there was no statistical differences between

the two zones (p > 0.1), whereas they were significantly

different (p < 0.01) during Phase 2 and for the entire

year’s data.
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FIGURE 5

ARIMA time series analysis of four pollutants NO2, O3, PM2.5, and SO2, from monthly EPA data (2015–2020) for the counties selected in Zone A

(solid line) and Zone B (dotted line) for Phase 1 (January, 2020–June, 2020), Phase 2 (July, 2020–December, 2020), and all year (2020). Lines
show fitted values for pollutants with 95% confidence bands. ARIMA, autoregressive integrated moving average; EPA, environmental
protection agency.

Results of linear models with infection
and fatality rates as response variables

In Table 2, we present the p-values of the explanatory

variables in linear models with log-transformed infection rate

and fatality rate as response variables for each case. The p-values

< 0.05 corresponding to the positive coefficients are boldfaced

for easy interpretation of the model. The complete details of all

the 12 models are provided in Supplementary Tables 7–12.

All year models
For the models using the entire year’s infection rate,

population density (p < 0.05) was the only positively significant

in Zone A. African American population (p < 0.05), O3 (p <

0.01), and “high school or less” (p < 0.01) were significant for

Zone B infection rates. Old age and less education were both

significant for Zone A fatality rates with p < 0.05. On the other

hand population density, less education, and NO2 pollution

were statistically significant for Zone B fatality rates. However,

when we view at the data during Phase 1 and Phase 2 separately

we get a granular insight into the pandemic’s progression.

Phase 1 models
During the Phase 1, with infection rate as outcome variable,

demographic factors, “population density” (p < 0.01) and “high

school or less” were the strongest and statistically significant

parameters (p < 0.01) for Zone A which generated the

coefficient of determination (R2) of 0.37. On the other hand,
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TABLE 2 The p-values of the explanatory variables generated from the linear regressions models outcomes with (log-transformed) infection and fatality rates as response variables for Phase 1, Phase 2,

and all year data, developed for Zone A and Zone B, respectively.

Phase 1 Phase 2 All year

Zone A Zone B Zone A Zone B Zone A Zone B

Infections Fatality Infections Fatality Infections Fatality Infections Fatality Infections Fatality Infections Fatality

Sociodemographic

variables:

Population density <0.001 0.002 0.873 0.310 0.526 0.053 0.077 0.471 0.023 0.097 0.673 0.035

Age 65+ 0.312 <0.001 0.883 0.025 0.217 0.004 0.544 0.031 0.017 0.015 0.149 0.083

African American 0.727 0.563 0.010 0.765 0.209 0.134 0.217 0.451 0.126 0.581 0.013 0.777

Hispanic American 0.911 0.014 0.485 0.300 0.283 0.072 0.074 0.483 0.372 0.900 0.244 0.270

Poverty 0.210 0.045 0.239 0.617 0.553 0.864 0.147 0.129 0.154 0.684 0.470 0.230

High school or less 0.005 0.008 0.703 0.289 0.314 0.181 0.238 0.075 0.741 0.046 0.005 0.005

Pollutants:

PM2.5 0.172 0.787 0.711 0.698 0.771 0.066 0.189 0.542 0.364 0.109 0.643 0.116

NO2 0.580 0.015 0.005 0.046 0.934 0.615 0.578 0.828 0.440 0.090 0.953 0.009

SO2 0.605 0.456 0.006 0.408 0.448 0.794 0.174 0.674 0.749 0.763 0.274 0.267

O3 0.912 0.379 0.930 0.750 0.050 0.901 0.003 0.494 0.067 0.361 <0.001 0.719

Sample size (n) 64 64 54 54 42 42 76 76 45 45 73 73

Coefficient of

determination (R2) 0.37 0.57 0.53 0.32 0.31 0.58 0.47 0.29 0.44 0.48 0.60 0.43

The p-values < 0.05 corresponding to the “positive” coefficients are boldfaced for easy interpretation. For detailed models see Supplementary Tables 7–12.
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in Zone A counties, population density, old age, and population

with high school or less were the most significant (p < 0.01) risk

factors for fatality rates. The NO2 pollution, and poverty were

also strong predictors (p < 0.05) of fatality with R2 = 0.57. The

percentage of African Americans and NO2 remained statistically

significant (p < 0.01) for Zone B infection rates. Whereas, old

age and NO2 were statistically significant (p < 0.01) for Zone B

fatality rates.

Phase 2 models
Old age was a significant factor (p < 0.01) for the fatality

rate in both the Zone A and Zone B counties during the second

Phase. For the ZoneB infection rates O3 was themost significant

contributor with p < 0.001.

Discussion

One of the surprising revelations of our work is that the

COVID-19 data reveals several hidden features when it is

segmented spatiotemporally. In this work, we categorized highly

populated counties in the U.S. into two Zones A, and B, based

on their infection rates. Zone A counties had a higher infection

rate than Zone B counties. A trough separates phases 1 and 2 in

the COVID-19 deaths.

Spatiotemporal wave of the pandemic

We observe the pandemic spreading spatially in the first row

of the Figure 2. In Phase 1, the highest infected counties were

in the northeast coast of the U.S. and the southern California

regions. This phenomenon is because most initial COVID-19

cases were travel-related. These counties became hot-spots due

to the high population densities. We also see from the third row

of the Figure 2 that the fatality in Phase 1 remained high despite

the low infection rate. However, as time passed, we noted that

the spatial part of the wave of the infections traveled inward, and

most northeastern counties were no longer categorized as highly

infected in Phase 2. We can not observe this inward traveling

spatial wave from the cumulative data from 2020. Since we

categorized the zones based on infection rates, as expected, we

see a significant difference between the infection rates of the two

zones. However,We see that the significant difference (p < 0.01)

between the two zones’ fatality rates in Phase 1 reduces in the

second Phase (p < 0.1). Again this reduction in the fatality

rate can not be observed in all year data. The “exact opposite”

conclusion could be drawn from the all-year data, where we

notice that the fatality rates in ZoneB are significantlymore than

that in Zone A.

Spatiotemporal pandemic wave and
pollution levels

Among the air pollutants considered in this study,

differences observed between the counties of two zones were

most prominent for NO2 (Figure 3), which also demonstrated

a significant association with COVID-19 fatality. The inter-

zonal difference of NO2 level was higher during the Phase

1 of the pandemic compared with Phase 2, and it remained

significant when both phases considered together. In contrast,

all-year data for other pollutants did not demonstrate any

significant difference between the counties from two zones,

although significant difference was noted for SO2 in the Phase

1, and for PM2.5 and O3 in the Phase 2. The ARIMA plots

in Figure 5 corroborate these findings, where we observe a

historical difference in NO2 and SO2 levels between ZoneA and

Zone B counties during Phase 1 with substantial reduction of

the difference during Phase 2. The predictive accuracy of the

ARIMAmodel was further confirmed by exponential smoothing

and autoregressive neural network models. Interestingly, the

regression analyses (Table 2) revealed that NO2 level is a

significant factor driving the fatality rates only during Phase

1, but not in Phase 2. A number of studies investigating the

relationship between NO2 in air and COVID-19 reported a

variable degree of association with infection and fatality (28, 50).

Exposure to NO2 is known to cause lung injury and is associated

with elevated risk of developing asthma and exacerbation of

chronic lung diseases such as asthma, bronchitis, and COPD

(50). As a consequence, the lungs can be more susceptible to

infections along with more adverse outcomes, including fatality.

Additionally, in vitro and animal model studies have shown

NO2 to upregulate the expression of Angiotensin Converting

Enzyme 2 (ACE2), which provides binding to the virus spike

protein (51, 52). The upregulation of ACE2 expression in lung

epithelial cells following NO2 exposure is proposed to further

contribute to its adverse impact on COVID-19 by facilitating

the virus attachment (53). The reason for a stronger association

of NO2 with COVID-19 during the Phase 1 is not well-

understood, but could partly be attributed to a larger pool of

susceptible population along with higher disease fatality rate

during the earlier stage of the pandemic. The other air pollutants

considered in this work (PM2.5, SO2, and O3) demonstrated

a weaker association with COVID-19 during both Phase 1

and Phase 2, or the whole year. Prior studies investigating

the association of these pollutants with COVID-19 infection

or fatality show a high degree of variation in their reported

results, suggesting a strong dependency on the selection of

study population or method of analysis (28, 50, 54). In this

work, we used pollutant data obtained from EPA monitoring

sites.While EPAmeasurements provide more accurate estimates

of pollutant levels compared with other available techniques

such as estimates from satellite images or low-cost sensors,

the data can be obtained only from a limited number of
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measurement sites across the U.S. Therefore, in our analysis, we

could only include the counties with available EPAmeasurement

sites, leading to the exclusion of a considerable fraction of

counties. Such exclusion can potentially contribute to some of

the differences we observed with previous studies; future work

involving accurate pollutant measurements along with a greater

coverage of counties would provide a deeper understanding of

the effects of the pollutants on COVID-19.

Spatiotemporal pandemic wave and
sociodemographic variables

Páez-Osuna et al. (3) found that high population density led

to high COVID-19 mortality. We corroborated this finding with

our linear model. However, our regression analysis (Table 2)

reveals that this is more significant (p < 0.01) in the first Phase

of the pandemic than the later Phase. In fact, from the last row

of Figure 4 we observe no significant difference between the

population density of the Zone A and Zone B counties from

the all-year data. However, from the first row of Figure 4, we

note that there was a significant difference between the two

Zones during Phase 1. This discrepancy is again due to the

Spatial nature of the pandemic wave. We observe an interesting

phenomenon regarding the percentage of people with High

School or less education. We found no statistically significant

difference in the percentage of people with high school or less

education in Zone A and Zone B, during Phase 1, but there

was a significant difference in Phase 2. However, our regression

model (Table 2) shows that less education was one of the main

risk factors in Zone A counties during Phase 1. This apparent

contradiction indicates that the even though the percentage

of less educated people was similar in Zone A and Zone B

during Phase 1, having less education was a risk factor in

Zone A counties when the pandemic just began. This could be

because the population with less education were compelled to

do jobs with more exposure to people. In contrast, people with

more education could work remotely, thus avoiding exposure to

infections. From a public policy point of view, this underscores

the importance of access to high-quality affordable education.

Mueller et al. (4) found that people over 65 were at a high risk

in the COVID-19 pandemic. We confirmed this finding with the

regression models (Table 2) where we note that older age was a

significant risk factors for infections and fatality.

When we studied the linear model using all-year data,

we find that the Hispanic population percentage is not a risk

factor for infections and fatality. However, the percentage of the

Hispanic population is a significant risk factor for the fatality rate

in ZoneA during Phase 2 and the infection rate in ZoneB during

Phase 2. This finding also supports findings of Athavale et al. (49)

where Hispanic population was found to be at a greater risk in

the COVID-19 pandemic. We would like to draw the attention

to an interesting finding in model for the fatality rate in Phase

1 for the Zone A counties. From the results of the regression

model in Supplementary Table 7, we see that the coefficient for

the Hispanic American is negative. This finding is consistent

with Bassett et al. (55), and could be the result of a younger

demographics of the Hispanic population. The linear model for

Zone A during Phase 1 suggests that poverty was a significant

risk factor driving the fatality rate higher, a conclusion that

would be missed if we had considered only all-year data. Finally,

the importance of education is highlighted again because less

education was a significant risk factor during Zone A, which

could be because the people with less education did not have the

privilege of working from home during the pandemic.

Limitations

In our analysis, We used high-quality environmental data

obtained from the EPA. However, one of the main challenges

that we faced in this work was the lack of availability of

environmental data from most counties in the U.S. Due to

this issue, we had to limit our work to 128 counties from

the 593 initially considered. This limitation also hampered our

attempts to study the interactions between the air pollutants

and the sociodemographic variables, which we plan to pursue

in future research. The other issue we faced was the problem

of separating the two Phases of the pandemic. As our research

shows, the pandemic moved inward from the coastal areas as

time passed. Hence, separating the Phases into two parts is

only an approximation. However, the analysis is still helpful

because it demonstrates the need to separate the data spatially

and temporally.

Practical implications of the study

Our work points to several policy steps that we can take to

mitigate the effects of the pandemic. Since the older population

is at significantly higher risk, any new medical interventions

need to begin with the older population. Indeed, the vaccines

were administered to the older population in the U.S. We also

found that the pandemic’s impact was more severe on minority

population. Thus, as pointed out by UNSDG (8) efforts should

be made to make healthcare accessible to underprivileged and

minority population. To this effect, in the U.S., vaccines were

provided at no cost; as well as the first preference was given

to people at high-risk of infection, such as older population,

immunocompromised people, and essential workers. However,

we discovered that the counties with higher population density

were highly vulnerable during the first Phase of the pandemic.

Hence, we would recommend that the medical interventions

start with places with high population density to mitigate
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the spread of infection. We also observed that the minority

population was highly vulnerable in this pandemic.

One of the main findings of our work is that during the

initial Phase of the pandemic, people with less education were

most at risk of both infection and fatality. Rather unsurprisingly,

we see a strong correlation (Supplementary Tables 1–6) between

poverty and less education. Providing access to quality education

should be an urgent priority in the U.S. Indeed, counties with

most people with tertiary education (56), i.e., Ireland, Canada,

and South Korea saw fewer mortality (1,359, 990, 365 deaths

per million, respectively) compared to the U.S. (3,023 deaths

per million https://www.worldometers.info) as of this writing.

Thus, education level played a crucial part in lower fatality.

Having access to high quality education, irrespective of the

socioeconomic status is not only a way to upward mobility but

is essential in saving lives.

Conclusion

The COVID-19 pandemic exhibited temporal, as well as

spatial variation in the U.S. One of the main realizations of this

paper is that studying the pandemic over a larger time period,

such as 1 year, can result in missing some important features of

the pandemic data. However, these features are revealed when

we segment the data spatiotemporally into small parts. In our

work, we wanted to study the infection and fatality rates in large

counties before the vaccination efforts started. To this effect,

we divided this time period into two time periods, Phase 1 and

Phase 2. The counties were then divided into two zones based

on the infection rates. We can see that the spatial part of the

pandemic moved starting from the coastal ports of travel to

the interior regions of the U.S. We also studied the difference

between sociodemographic variables and air pollutants in these

segments. When looked at data in strategically segmented way

we found that the population density was a significant risk factor

in the first Phase than the second Phase. Old age was found to be

a risk factor in both Phases and both Zones. When we looked at

the all year data, Hispanic population percentage was not found

significant. However, looking at the spatiotemporally segmented

data, a nuanced pattern emerged. The percentage of theHispanic

population was found to be significant risk factor in the Phase

2. Having a population with high school or less education also

emerged as a significant risk especially in the first wave of the

pandemic. This could be because this group could not work

from home in the initial phase of the pandemic due to the lack

of social safety net. On the other hand, we found that poverty

was a risk factor in the fatality rates in the Zone A counties in

the Phase 1 only. The reason could be lack of access to scarce

resources in regions with high levels of infections. However,

since we also found a high correlation between lower education

and poverty, we see that the investing in quality education is

of utmost importance. Regarding the air-pollutants we found

that the effects of the NO2 pollution were more significant in

the first Phase of the pandemic than the later Phase. Moreover,

Ozone was a significant factor predicting high infection rate

in the Zone B counties. We suspect there is some interaction

between the risk factors, but currently, the lack of complete EPA

data prohibited further exploration in this direction. Finally, the

emergence of structures in the spatiotemporal components of

the data which is unseen in the aggregate data suggests further

investigation of possibly finer spatiotemporal decomposition of

the data.
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