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Background: Recurrent clinical malaria episodes due to Plasmodium falciparum

parasite infection are common in endemic regions. With each infection, acquired

immunity develops, making subsequent disease episodes less likely. To capture the

effect of acquired immunity to malaria, it may be necessary to model recurrent clinical

disease episodes jointly with P. falciparum parasitemia data. A joint model of longitudinal

parasitemia and time-to-first clinical malaria episode (single-event joint model) may be

inaccurate because acquired immunity is lost when subsequent episodes are excluded.

This study’s informativeness assessed whether joint modeling of recurrent clinical malaria

episodes and parasitemia is more accurate than a single-event joint model where the

subsequent episodes are ignored.

Methods: The single event joint model comprised Cox Proportional Hazards (PH) sub-

model for time-to-first clinical malaria episode and Negative Binomial (NB) mixed-effects

sub-model for the longitudinal parasitemia. The recurrent events joint model extends

the survival sub-model to a Gamma shared frailty model to include all recurrent clinical

episodes. The models were applied to cohort data from Malawi. Simulations were also

conducted to assess the performance of the model under different conditions.

Results: The recurrent events joint model, which yielded higher hazard ratios of clinical

malaria, was more precise and in most cases produced smaller standard errors than

the single-event joint model; hazard ratio (HR) = 1.42, [95% confidence interval [CI]:

1.22, 2.03] vs. HR = 1.29, [95% CI:1.60, 2.45] among participants who reported not to

use LLINs every night compared to those who used the nets every night; HR = 0.96,

[ 95% CI: 0.94, 0.98] vs. HR = 0.81, [95% CI: 0.75, 0.88] for each 1-year increase

in participants’ age; and HR = 1.36, [95% CI: 1.05, 1.75] vs. HR = 1.10, [95% CI:

0.83, 4.11] for observations during the rainy season compared to the dry season.
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Conclusion: The recurrent events joint model in this study provides a way of estimating

the risk of recurrent clinical malaria in a cohort where the effect of immunity on malaria

disease acquired due to P. falciparum parasitemia with aging is captured. The simulation

study has shown that if correctly specified, the recurrent events joint model can give risk

estimates with low bias.

Keywords: Plasmodium falciparum, longitudinal data, malaria parasitemia, recurrent clinical malaria, cox

proportional hazards model, mixed-effects model, shared frailty model, joint modeling

INTRODUCTION

Joint modeling of longitudinal and time-to-event data has

recently received increased attention in biomedical research (1–
3). Typically, a joint model consists of two parts: a model

for time-to-event process; and a model for the longitudinal

process. The joint modeling approach is gaining popularity (1–
4), partly because it offers the advantage of capturing important

relationships between longitudinal outcomes and time-to-event

processes that are otherwise lost by separate longitudinal and

survival analyses (1, 5). However, joint models that can handle

recurrent events are limited. Recent methodological and software

developments in joint modeling have been extensively reviewed

elsewhere (1–3, 6–8). Applications in the reviewed studies of

joint modeling have typically focused on time-to-single event

only. For example, studies have frequently modeled longitudinal

CD4 count jointly with time-to-HIV–related outcomes in order
to understand the relationships between the longitudinal history
of CD4 and its effect on the risk of development of AIDS (1, 9–
11). Among patients with cancer, repeated measurements of
quality of life performance scores have been jointly modeled
with time-to-death or disease progression (12–15). However,
for diseases that may have multiple episodes such as clinical
malaria, chronic heart failure, epileptic seizures, or asthma
attacks, modeling that focuses on time-to-first event only while
ignoring subsequent events may not be efficient since such
approaches fail to utilize all information available in the data
(6, 16, 17). Inmalaria, single-eventmodels do not capture the role
of acquired immunity, which develops with repeated Plasmodium
falciparum infections over time, to future disease episodes (18).
The WHO Malaria Vaccine Advisory Committee (MALVAC)
has recently recommended analyzing recurrent event times to
evaluate malaria vaccines (19).

In P. falciparum malaria studies, modeling of time-to-single
malaria episode may not be accurate especially in malaria-
endemic regions because recurrent clinical disease is frequently
observed. Instead, modeling the risk of disease including all
the recurrent events during follow up may provide improved
accuracy. Repeated infection is common and with each infection,
acquired immunity develops making subsequent disease and
infection episodes less likely (20, 21). Therefore, modeling
recurrent clinical disease episodes jointly with the longitudinal
measurements of P. falciparum parasitemia data may be
critical to capturing the effect of the developing immunity
to malaria.

The joint model of recurrent events and a longitudinal
outcome typically consists of a recurrent events model and
a mixed-effects model linked through either latent variables
(22, 23) or shared random effects (17, 24). The most common
approach used tomodel the recurrent events process is the shared
frailty model introduced by Clayton (25, 26), which usually takes
the Gamma distribution. For the longitudinal process, studies
have frequently focused on continuous (Gaussian) outcomes
and often applied linear mixed-effects models (5, 17, 27).
However, the use of linear mixed-effects models for longitudinal
outcomes is not appropriate for outcomes with Poisson or
NB distributions. Joint modeling of recurrent events and a
non-Gaussian longitudinal outcome such as the P. falciparum
parasitemia remains a challenge.

In this study, a joint model is proposed which comprised a
shared frailty model for recurrent malaria episodes and an NB
mixed-effects model for repeated measurements of P. falciparum
parasitemia. The proposed approach was motivated by data
from a prospective malaria cohort in Malawi, which has been
described previously (28–31). Malaria is endemic in Malawi (32)
and transmission of the P. falciparum parasite is high in the
area of the study (33, 34). We used data from a clinical study
to investigate whether jointly modeling time-to-recurrent clinical
malaria episodes with longitudinal parasitemia may yield more
accurate risk factor estimates compared to a single-event joint
model (for time-to-first clinical malaria episode and NB mixed-
effects sub-model for the longitudinal parasitemia) where the
subsequent episodes are ignored. Here, aging of participants
was considered as a proxy for increasing levels of acquired
immunity. The recurrent events joint model is also tested for the
prediction of a new clinical malaria episode given the history of
recurrent events and P. falciparum parasitemia trajectory. Finally,
simulations were conducted to study the performance of the joint
model under different conditions.

MATERIALS AND METHODS

Data Source
The joint models were applied to data from the prospective
cohort study conducted in a rural area of southern Malawi.
The cohort enrolled 120 participants who presented with
uncomplicatedmalaria at a rural health center between June 2014
andMarch 2015. The study design was described previously (29).
Study participants were actively followedmonthly and on interim
malaria sick visits for up to 2 years post enrolment.
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Outcomes
The primary outcomes of the study were recurrent clinical disease
defined as participants’ self-reported fever and with a positive
rapid diagnostic test (RDT) result; and density of P. falciparum
infection: parasitemia was measured as the number of parasites
per microliter (µl) of blood. Parasitemia measurements were
obtained from thick blood smears.

Covariates
The models included participants’ age as continuous, gender, the
season of the previous visit categorized as dry (May–November)
or rainy (December–April), and use of long-lasting insecticide-
treated bed net (LLIN) in the previous month before the visit
dichotomized as whether one reported using the LLINs every
night or not.

Data Structure
A sample of the data structure showing three hypothetical
participants for the analysis of time-to-recurrent clinical malaria
episodes is provided in Supplementary Table 1. The time of
origin for the analysis of the recurrent episodes was the day of
study enrolment. A clinical disease episode was considered new
if it occurred >14 days after the previous episode based on the
pharmacokinetics of artemether–lumefantrine treatment in the
study (35).

Notation and Specification of Models
The Longitudinal Sub-model
In the longitudinal setting, let Yij denote the longitudinal
response of P. falciparum parasitemia for subject i = 1, . . . , n
at time j where j = 1, . . . , Ji. The measurements can be
summarized as:

Yij = µi + ψi + ǫij, (1)

where µi is the mean response of parasitemia, ψi are subject-
specific random effects accounting for within-subject correlation
in each model part, and ǫij represent error terms and are assumed
to be normally distributed, that is, ǫij ∼ Nni

(

0, σ 2Ini
)

where σ 2 is
variance and Ini is the ni× ni identitymatrix. Postulating amodel
formulation proposed by Henderson et al. (5), assuming that µi

can be described by a linear mixed-effects (LMEM) sub-model
with a Gaussian distribution:

µi = βX
′

i + bZ
′

i + ǫi, (2)

where β is the p × 1 fixed-effect parameter vector for the fixed-
effect covariate vector Xi, b is the q × 1 vector of random effects
for random-effect covariate vector Z for participant i, assumed to
be multivariate normal with mean zero, that is, bi ∼ Nq(0,

∑

b),
and

∑

b is the variance of the subject-specific effects.
Taking NB distribution for the parasitemia, then

(

yi|µi,ϑ
)

=
Ŵ(yi + ϑ)

Ŵ (ϑ) yi!
.

(

ϑ

µi + ϑ

)ϑ

.

(

µi

µi + ϑ

)yi

, (3)

where µi is the mean and ϑ is the shape parameter that accounts
for over-dispersion. Parasitemia count data were tested for over-
dispersion and considered the Negative Binomial (NB) model.

The NBmixed-effects model links the mean of response to the
set of covariates through the logarithm function expressed as:

log (µi) = βX
′

i + biZ
′

i + log(Mi), (4)

where log (Mi) is the offset correcting for variation in the number
of parasitemia measurements for subject i.

The NB distribution can be viewed as a Gamma mixture
of Poisson distribution where the parasitemia response yi with
mean µi follows Poisson and subject-specific random effects
error term ψi following the Gamma distribution. When the
over-dispersion parameter is high, the NB model converges to
a Poisson model and cannot deal with the over-dispersion (36),
and is prone to non-convergence problems.

The Intensity Recurrent Event Sub-model
The recurrent event model extends the single event semi-
parametric proportional hazards model by introducing an
unobservable (frailty) random term on which the hazard
function depends to account for within-participant dependence
of events (37), that is, recurrent clinical malaria episodes.
The single-event semi-parametric proportional hazards model
can be expressed in terms of the hazard function λi(t) for
participant i as

λi(t) = λ0(t) exp
[

βXi
′
]

, (5)

where λ0(t) is the unspecified baseline hazard function and Xi

is the covariate vector for participant i. For ordinary Cox PH
regression, the baseline hazard is usually left unspecified and can
offer valid statistical inference using partial likelihood. However,
in the context of joint modeling, a completely unspecified
baseline hazard will generally lead to underestimation of the
standard errors of the model parameters (8, 38). For recurrent
clinical malaria episodes, an intensity event model function
is adopted as opposed to a rate function because, while the
rate function only defines the occurrence of recurrent events
unconditional on the event history, the intensity function
conditions the occurrence of events on the event history (39).
In the case of recurrent malaria, the event history is particularly
critical because each P. falciparum infection alters the host
immune response against the threat of subsequent infections
and disease episodes (20, 21). Thus, the intensity recurrent
event model would account for the participants’ strengthening
immunity to clinical episodes due to accumulating event
occurrences over time, which is critical in recurrent event analysis
(23). The intensity recurrent event model at time t is given by the
multiplicative intensity model following the structure proposed
by Henderson et al. (5) as follows:

λi(t) = Giλ0(t) exp
[

βXi
′

+ γi

]

, (6)

where Gi is assumed to follow Bernoulli distribution denoting
whether the participant i is in the risk period of experiencing
the malaria episode. As with the single event survival model in
Equation (5), the baseline hazard (intensity) function λ0(t) is
assumed to follow Weibull distribution. In the current cohort
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data, the vectors β and Xi contain different sets of elements from
α and Zi, respectively, in Equation (2). The term γi represents
the unobservable random effects (frailty) term to account for
dependence between within-participant episodes and is assumed
to follow a Gamma distribution with unit mean and variance
θ, i.e., γi ∼ Ŵ(1, θ). The frailty variance θ , reflects the amount
of the within-participant dependence of clinical episode times,
that is, the correlation of the recurrent events is quantified by
θ , with higher values corresponding to greater within-participant
correlation. When the variance is small, the values of the frailty
are around one, implying no frailty effects and so recurrent events
are independent.

For the counting process of the recurrent clinical episodes, let
R∗i (t) be the number of recurrent events for subject i occurring
before or at time t over an interval [0, τ ], where recurrent
episodes could potentially be observed beyond the prespecified
maximum time point τ . Then the counting process may be
stopped by the time of loss to follow-up or end of the study
denoted by Ci, with the failure indicator i taking value 1 if
Ti < Ci and 0 otherwise. The observed counting process,
Ri = R∗i min(t,Ci) has a known zero-one process {Gi(u) : 0 ≤

u ≤ τ } indicating whether the participant i is at risk of
experiencing an episode during period u. Thus, the counting
process R∗i has a jump of size one (R,R + 1, . . .) when
an event occurs, that is, the episode of clinical malaria
is experienced.

Likelihood of the Joint Model
Using generic terms Y to denote combined observed
measurements of parasitemia data, R for combined recurrent
episodes data, X for covariate information, and 8 = {ψ , γ } for
the random and frailty processes, the joint distribution for the
longitudinal measurementsY and recurrent event processesR are
conditionally independent given X,ψ , and γ . The dependence
between Y and R may arise from the direct link between ψ and
γ , called latent association, without which nothing can be gained
through a joint analysis. Our interest is to model the subjects’
recurrent processes of episodes together with their longitudinal
measurements of parasitemia, through the association of ψ and
γ . Following the framework proposed by Henderson et al. (5),
one can proceed to compute the likelihood of the joint model as
a product of the marginal distribution of observed parasitemia
measurements Y and the conditional distribution of the events
(malaria episodes) R. For each participant i, the observed data
are {(ti,Xi, ui,1i, τi), i = 1, 2, . . . , n}. Computing the full
joint likelihood L = L(π ,Y ,R) where π = (β , σ , θ , λ0,α,8)
is a vector denoting a collection of all unknown parameters
with λ0 = {λ0 (ti) , i = 1, 2, . . . , n}, one can proceed
as follows:

L = LY × LR|Y = LY (π ,Y)× Eψ |Y
{

LR|γ (π ,R|γ )
}

, (7)

here LY (π ,Y) is the standard form of the marginal distribution
of Y for the parasitemia measurements process. The conditional
likelihood of the recurrent episodes data, LR|γ (π ,R|γ ) captures
the likelihood contribution of the longitudinal measurements up

to any time of the event. Suppose we denote R0 =
∫ t
0 λ0 (u) du

as cumulative baseline intensity for the recurrent event process,
then LR|γ (π ,R|γ ) can be expressed as

LR|γ (π ,R|γ ) =
∏

i

{(

∏

t

[

exp
{

βXi
′

+ γi

}

λ0

]Ri

)

× exp

(

−

∫ τ

0
Gi exp

{

βXi
′

+ γi

}

)

dR0

}

(8)

The Gamma distribution of the frailty γ with mean restricted
to 1 and variance θ, that is, γ ∼ Ŵ(1, θ), can be expressed as

g (γ ) = θ1γ 1−1e−θy

Ŵ(1)
, γiǫ{0,∞} which reduces to g (γi) =

θe−θ y

Ŵ(1)
.

Parameter Estimation
Estimates of the parameters are obtained by maximizing the
joint likelihood for the parasitemia process and the recurrent
episode times process using the EM algorithm. Estimating the
parameters by maximizing the likelihood of the observed data
involves integrating over the random and frailty terms, γ .
Since the joint likelihood contains an analytically intractable
integral, numerical methods of integration such as Bayesian
approaches or quadrature approximation techniques are required
for evaluation; we used the Gauss–Hermite quadrature method.
Furthermore, a unit mean for the frailty term was assumed
to make the parameters in the distribution and the baseline
distribution λ0 identifiable.

The proposed joint modeling approach was applied to malaria
cohort data from Malawi, as described above. Simulations were
conducted to study how the joint model can perform under
different conditions. The models were fitted with a shared
Gamma frailty model for the recurrent events and a mixed-
effects model taking competing distributions for the longitudinal
process: Gaussian and NB. Model fit was compared based on
the Akaike information criterion (AIC). The model with the
lowest value of AIC was selected as the best-fitting model. Data
were simulated to resemble the Mfera cohort. Age in years
was assumed to be normally distributed (mean: 2, Standard
Deviation [SD]: 0.8) on the log-scale. To maintain the skewness
of age that would reflect real data, the simulated log-normally
distributed values were transformed back to original scales by
taking an exponential function. The covariates’ gender, season,
and LLIN usage were assumed to be binomially distributed. Based
on exploratory analyses of the Mfera cohort, the assumed log
of hazard values were −0.04 for age, 0.02 for gender, 0.3 for
season, and 0.3 for LLIN usage. The baseline hazard function was
assumed to follow a Weibull distribution with shape parameter
lambda = 1 and scale parameter = 2. Follow-up time to event
or censoring followed a uniform distribution. After each clinical
malaria episode, a subject was assumed to be malaria-risk-free
for 14 days, based on the pharmacokinetics of artemether–
lumefantrine therapy. Parasitemia data measurements were
simulated from a mixed-effects model with the function of
follow-up time. The model bias was assessed under different
scenarios that include study sample sizes of 100, 200, and 400
(representing small, medium, and large sample sizes); level of
censoring 10, 20, and 50%; length of follow-up period of 1, 2, and
4 years; Gamma distributed frailty termwith variances 0.2 for low
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dependence of within-participant episodes, 1.5 for moderate and
2.5 for highly dependent episodes; and correlation level between
longitudinal and recurrent processes 0.01 for a weak association,
0.5 moderate, and 0.8 strong association. We hypothesized that
the performance of the model would improve with increased
study sample size, longer follow-up time, and strong association
between the two processes, but that the performance would
worsen with an increasing level of censoring. Simulations were
conducted in R version 3.4.3 using package simrec (40). Data
analysis was done in Stata SE version 15.1 (Stata Corp., College
Station, TX, United States) using gsem and user-written program
merlin (41).

RESULTS

Malaria Cohort Study
There were 120 participants in the cohort, of whom 69 (57.5%)
were females. The overall median age was 7.5 years [inter-quartile
range (IQR): 4.7–18.1]. The median number of malarial parasites
per microliter was 11,060 (IQR: 840–54,000) overall, 24,840
(IQR: 1,600–68,600) in males, and 5,640 (IQR: 520–540,000) for
females (Supplementary Table 2). The current analyses included
data for 115 participants who had at least one follow-up visit
post enrolment. Participants had a median of 37 visits (IQR:
29–45). There were 397 asymptomatic and 390 symptomatic
cases in the cohort. Among these 115 participants, 372 recurrent
clinical malaria episodes were experienced over the 2-year follow-
up period, with a median of 3 episodes per person (IQR: 1–5).
Overall, there was a decreasing rate of monthly recurrent clinical
malaria episodes per participant over follow-up (Figure 1).
Overall, the median level of parasitemia in the cohort was 24,400

parasites per microlitre (µl) (interquartile range [IQR]: 1,240–
76,700/µl) during the follow-up period.

Hazard ratios for recurrent clinical malaria episodes obtained
from the joint model of clinical malaria episodes and parasitemia
are summarized in Table 1. The hazard of recurrent clinical
malaria decreased with increasing participants’ age HR = 0.96
[95% CI: 0.94, 0.98], for 1-year increase in age. The hazard of
recurrent clinical malaria was higher among participants who
reported not to use LLINs every night compared to those who
reported using nets every night HR = 1.42, [95% CI: 1.22, 2.03].
Compared to observations in the dry season, the hazard of
recurrent clinical malaria episodes was higher during the rainy
season HR = 1.36, [95% CI: 1.05, 1.75]. The recurrent event
joint model (left panel) yielded higher hazard ratio estimates of
clinical malaria, which were more precise and in most cases with
smaller standard errors, except for age compared to results from
the single-event joint model (right panel).

The predicted conditional cumulative and marginal non-
proportional hazards using the recurrent events joint model are
shown in Figure 2. The expected number of clinical malaria
episodes in the cohort increased sharply at the beginning of
the follow-up period but later slowed down beyond 1 year.
This shows that there were fewer clinical malaria episodes in
subsequent periods over time.

Simulation Study
Because the results from the recurrent events joint model
presented in this study are based on data from a cohort
of 115 participants with 2 years of follow-up, we further
explored the performance of the recurrent events joint model
under varying sample sizes, length of follow-up time, and

FIGURE 1 | The rate (with standard error bars) of monthly clinical malaria episodes per participant over the follow-up period.
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TABLE 1 | Hazard ratio (HR) estimates of clinical malaria among participants of Mfera cohort comparing recurrent events joint model vs. single-event joint model.

Recurrent events joint model Single event joint model

Variable HR SE 95% CI HR SE 95% CI

Age, per year increase 0.96 0.01 0.94, 0.98 0.81 0.02 0.75, 0.88

Gender, female 1.18 0.13 0.96, 1.47 1.07 0.24 0.68, 1.70

Season, rainy* 1.36 0.21 1.05, 1.75 1.10 0.41 0.83, 4.11

Less LLIN use+ 1.42 0.32 1.22, 2.03 1.29 0.33 1.60, 2.45

*Rainy season (December–April), reference category is dry season (May–November).

+Reference category is LLIN use nightly in previous month.

HR, hazard ratio; SE, standard error; CI, confidence interval.

FIGURE 2 | Predicted hazard of recurrent clinical malaria. The solid lines are cumulative hazards that represent the expected number of clinical malaria episodes over

follow-up time. The dotted lines are the upper and lower bounds of the 95% Confidence bands.

strength of association between recurrent events and longitudinal
processes through simulations. Based on AIC, the joint models
with mixed-effects sub-model of an NB distribution for the
parasitemia fitted the data better than the linear mixed-
effects model assuming a Gaussian response. For example,
we considered a scenario assuming a cohort with a sample
size of 200 participants, followed up for 2 years with 10%

censoring level, 0.05 correlation level between longitudinal and
recurrent processes of 0.05, and frailty term variance for the
dependence of within-participant clinical episodes being 0.2.
A shared Gamma frailty sub-model with Weibull baseline
hazard function is assumed for the recurrent process of clinical
malaria episodes. Under this scenario, the joint model with
the NB distribution for the parasitemia process yielded a
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TABLE 2A | Log hazard ratio estimates of recurrent clinical malaria for simulated data under different scenarios for a sample size of study participants; follow-up time in

years (τ ); censoring level (C); recurrent processes (8); frailty term (γ ).

Variable/Parameter True log

hazard

Bias SE Bias SE Bias SE

N = 100 N = 200 N = 400

Scenario 1: C = 10%, τ = 2, Φ = 0.01, var(γ) = 0.2

Age, per year increase −0.04 −0.002 0.009 −0.002 0.007 −0.002 0.003

Gender, female 0.2 0.022 0.128 0.007 0.119 0.014 0.041

Season, rainy* 0.3 0.029 0.132 0.029 0.110 0.023 0.072

Less LLIN use + 0.3 0.071 0.184 0.043 0.151 0.025 0.069

Scenario 2: C = 20%, τ = 2, Φ = 0.01, var(γ) = 0.2

Age, per year increase −0.04 −0.003 0.006 −0.002 0.005 −0.002 0.003

Gender, female 0.2 0.028 0.106 0.012 0.085 0.012 0.054

Season, rainy* 0.3 0.035 0.107 0.035 0.095 0.034 0.051

Less LLIN use+ 0.3 0.072 0.148 0.042 0.121 0.026 0.085

Scenario 3: C = 50%, τ = 2, Φ = 0.01, var(γ) = 0.2

Age, per year increase −0.04 −0.004 0.013 −0.003 0.005 −0.002 0.005

Gender, female 0.2 0.027 0.157 0.015 0.101 0.021 0.071

Season, rainy* 0.3 0.073 0.129 0.046 0.138 0.040 0.058

Less LLIN use + 0.3 0.086 0.204 0.051 0.116 0.042 0.095

Scenario 4: C = 10%, τ = 3, Φ = 0.01, var(γ) = 0.2

Age, per year increase −0.04 −0.002 0.006 −0.001 0.003 −0.001 0.002

Gender, female 0.2 −0.005 0.076 −0.001 0.064 −0.001 0.037

Season, rainy* 0.3 0.017 0.088 0.013 0.071 0.009 0.040

Less LLIN use + 0.3 0.036 0.115 0.020 0.087 0.017 0.041

Scenario 5: C = 10%, τ = 4, Φ = 0.01, var(γ) = 0.2

Age, per year increase −0.04 −0.001 0.005 0.000 0.003 −0.001 0.002

Gender, female 0.2 0.018 0.054 −0.001 0.041 −0.001 0.032

Season, rainy* 0.3 0.006 0.053 0.010 0.031 0.008 0.030

Less LLIN use + 0.3 0.022 0.072 0.020 0.060 0.017 0.044

*Rainy season (December–April), reference category is dry season (May–November).

+Reference category is LLIN use every night in the previous month.

SE, standard error; CI, confidence interval.

lower AIC value (48,066) compared to that from the Gaussian
distribution (549,445). For this reason, subsequent analyses
adopted a mixed-effects sub-model with a NB distribution for the
parasitemia process.

Tables 2A,B shows log hazard ratio estimates of recurrent
clinical malaria for simulated data from the recurrent events
joint model obtained by comparing the results under different
scenarios. The variables considered included study sample
size, length of follow-up time in years, level of censoring,
level of correlation between longitudinal and recurrent
processes, and frailty term variance for the dependence of
within-participant clinical malaria episodes. The joint model
consists of a shared Gamma frailty sub-model with Weibull
baseline hazard function for the recurrent clinical malaria
episodes and a negative binomial mixed-effects sub-model for
the parasitemia.

The performance of the recurrent events joint model
improved with increased study sample size overall as evident
from the decreased bias when changing the number of

participants from 100, 200 to 400 (Table 2A). The level of
censoring denotes the number of known outcomes during the
observation time. The increasing level of censoring from 10, 20,
to 50% in that order worsened the performance of the joint
model as seen from increased bias (Table 2A). The length of
study follow-up may determine the number of measurements
(information) that a model uses for estimation. The magnitude
of bias decreased with increasing follow-up time, as more
measurements were available over time. The level of association
between recurrent events and longitudinal processes would also
determine the performance of the joint model. As shown in
Table 2B, the joint model performed best overall with moderate
(Φ = 0.5) association between recurrent and longitudinal
processes when compared to weak (Φ = 0.01) or strong (Φ
= 0.8). Referencing a scenario with low dependence [var(γ)
= 0.2] of within-participant episodes, there was a decrease
in bias for moderately dependent episodes [var(γ) = 1.5] but
the performance did not improve further when episodes were
assumed to be highly dependent [var(γ)= 2.5].
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TABLE 2B | Log hazard ratio estimates of recurrent clinical malaria for simulated data under different scenarios for a sample size of study participants; correlation level

between longitudinal and recurrent processes (8); frailty term (γ ) for fixed censoring level (C).

Variable/Parameter True log

hazard

Bias SE Bias SE Bias SE

N = 100 N = 200 N = 400

Scenario 1: C = 10%, τ = 2, Φ = 0.01, var(γ) = 0.2

Age, per year increase −0.04 −0.002 0.009 −0.002 0.007 −0.002 0.003

Gender, female 0.2 0.022 0.128 0.007 0.119 0.014 0.041

Season, rainy* 0.3 0.029 0.132 0.029 0.110 0.023 0.072

Less LLIN use + 0.3 0.071 0.184 0.043 0.151 0.025 0.069

Scenario 6: C = 10%, τ = 2, Φ = 0.01, var(γ) = 1.5

Age, per year increase −0.04 −0.003 0.016 −0.002 0.007 0.000 0.003

Gender, female 0.2 0.020 0.184 0.003 0.117 0.001 0.069

Season, rainy* 0.3 0.115 0.179 0.043 0.131 0.014 0.072

Less LLIN use+ 0.3 0.033 0.258 0.006 0.126 0.000 0.103

Scenario 7: C = 10%, τ = 2, Φ = 0.01, var(γ) = 2.5

Age, per year increase −0.04 −0.003 0.016 −0.002 0.007 0.000 0.005

Gender, female 0.2 0.021 0.169 0.014 0.166 0.001 0.087

Season, rainy* 0.3 0.038 0.192 0.037 0.155 0.037 0.082

Less LLIN use + 0.3 0.036 0.256 0.016 0.192 0.000 0.116

Scenario 8: C = 10%, τ = 2, Φ = 0.5, var(γ) = 0.2

Age, per year increase −0.04 −0.002 0.010 −0.002 0.005 −0.001 0.003

Gender, female 0.2 0.018 0.121 0.014 0.112 0.014 0.038

Season, rainy* 0.3 0.027 0.130 0.032 0.108 0.022 0.055

Less LLIN use+ 0.3 0.046 0.170 0.027 0.141 0.012 0.069

Scenario 9: C = 10%, τ = 2, Φ = 0.8, var(γ) = 0.2

Age, per year increase −0.04 −0.004 0.010 −0.003 0.005 −0.001 0.003

Gender, female 0.2 0.021 0.127 0.018 0.100 0.015 0.035

Season, rainy* 0.3 0.027 0.131 0.035 0.108 0.021 0.049

Less LLIN use+ 0.3 0.063 0.170 0.031 0.141 0.013 0.130

*Rainy season (December–April), reference category is dry season (May–November).

+Reference category is LLIN use nightly in previous month.

SE, standard error; CI, confidence interval.

DISCUSSION

Our results demonstrate that jointly modeling recurrent clinical
malaria episodes and parasitemia estimates the hazard of clinical
malaria with more precision (narrower confidence intervals
and smaller standard errors) than a single-event joint model
where the subsequent episodes are ignored. The single event
joint model gave smaller estimates of hazard ratios, except for
age, in most cases with larger standard errors, when compared
with the recurrent events joint model. The simulation study
shows that if correctly specified, the recurrent events joint
model can give parameter estimates with low bias. Exclusion
of subsequent episodes by the single event joint model means
loss of otherwise valuable information for estimation (42). The
recurrent joint model is superior to the traditional approaches
in that while the traditional approaches ignore subsequent
clinical malaria episodes or repeated parasitemia and hence
underestimate the risk of clinical malaria, the recurrent joint
model corrects for this bias. Underestimation of parameters

may lead to incorrect inferences and wrong conclusions. In
this cohort, for example, the season in previous visit seemed
not to be associated with the risk of clinical malaria when
subsequent episodes were ignored by the single-event model.
However, when the recurrent event joint model was used to
include all episodes, the rainy season was associated with an
increased risk of recurrent clinical malaria. These results support
the need for expanded models to utilize all data collected during
follow-up to accurately capture the effect of acquired immunity
on subsequent clinical malaria episodes due to repeated P.
falciparum infections.

We found that older age at enrolment was associated with a
reduced risk of clinical malaria. Considering participant age as a
proxy for the protective effect of clinical malaria, the trend may
partially be attributed to acquired immunity over time (20, 21).
Being a cohort from a high transmission area, participants are
continuously exposed to repeated bites of infected Anopheles
mosquitoes (43, 44). The partial immunity developed over time of
exposure may not provide complete protection but it reduces the
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risk thatmalaria infectionwill cause the disease (45). Results from
this study highlight the need for studies to assess the effect of age
on the risk of clinical malaria while accounting for the acquired
immunity, and the joint model of recurrent clinical malaria and
P. falciparum parasitemia is critical. Based on the joint model, the
predicted conditional cumulative andmarginal non-proportional
hazards of clinical malaria show that the expected number of
clinical malaria episodes in the cohort increased sharply at the
beginning of the follow-up period but later slowed beyond 1
year. Thus, the trend shows fewer clinical malaria episodes in
subsequent periods over time in the cohort, consistent with
previous studies (21, 46, 47).

In the simulation study, the recurrent events joint model
performed differently under varied conditions of study sample
size, length of follow-up time, and level of censoring. The
performance of the joint model, as measured by decreasing
bias, improved with increasing study sample size and length
of study follow-up. These results are consistent with previous
simulation-based studies in joint modeling (23, 48–50). Thus,
model performance improved as more data points were available
over time. However, increasing level of censoring worsened
the performance, a result in line with other joint modeling
reports (50). The joint model performance improved by changing
the strength of association between recurrent and longitudinal
processes from weak to moderate but there was no further
clear improvement when the two processes were assumed to
be strongly associated. There was a decrease in the bias of
the model by increasing the level of dependence of within-
participant episodes from low to moderate, but the performance
did not improve further assuming high dependence. Lack of clear
trends in model performance with change in the strength of the
association or level of dependence of within-participant episodes
may be partly attributed to interaction among factors. In this
study, factors were varied on a one-by-one basis, and results were
compared to the reference scenario. This approach does not allow
one to study the effect of interaction between factors. Morris et al.
(51) recommend varying factors factorially as this approach may
likely be more informative since this allows for the exploration of
interactions between factors. However, in this study, the extensive
required computational time for the models renders the factorial
approach infeasible.

Strengths of this study include a combined approach
of using real data to fit the models and a simulation
study to investigate how the model would perform under
different conditions such as study sample size, follow-
up period, and level of censoring. Second, the real data
used in this study had limited missingness. Further
studies should investigate the role of missing data on the
performance of the model under different missing level
and mechanisms. Finally, using the joint model, we were
able to predict the risk of recurrent clinical episodes. The
prediction ability can be crucial when designing malaria
interventions. Further studies should focus on model
diagnostics of the joint model and utilize tools such as
residual plots.

The main limitation of this study was the computational
complexity of the likelihood for the joint models, resulting

in non-convergence problems of the EM algorithms. Non-
convergence is a common problem in the field of joint
modeling because of frequent high-dimensional random effects
and parameter space. Some examples of joint model simulation
studies with documented non-convergence problems include
Henderson et al. (5), Ferrer et al. (52), and Xu (53). The
computational time further increased with increases in sample
size and censoring. The computational time for some simulation
models was long, reaching up to 24 hours, using an Intel Core
i7 2.5 GHz CPU computer. The non-convergence problem
prevented exploration of other simulation scenarios including
larger sample sizes and longer study follow-up periods, which
might be the practical conditions in most settings.

In conclusion, this study has shown that the recurrent events
joint model can provide a way of estimating the risk of recurrent
clinical malaria in a cohort where the effect of acquired immunity
to malaria disease with aging is captured. Furthermore, the
study has demonstrated a decreasing trend in the risk of clinical
malaria with aging highlighting the need for expanded analytical
methodologies to accurately evaluate such changing effects.
Through simulation, this study has shown that, if correctly
specified, the recurrent events joint model can estimate the risk
of clinical malaria with low bias.
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