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As the cost of high-throughput genomic sequencing technology declines, its

application in clinical research becomes increasingly popular. The collected

datasets often contain tens or hundreds of thousands of biological features

that need to bemined to extractmeaningful information. One area of particular

interest is discovering underlying causal mechanisms of disease outcomes.

Over the past few decades, causal discovery algorithms have been developed

and expanded to infer such relationships. However, these algorithms su�er

from the curse of dimensionality and multicollinearity. A recently introduced,

non-orthogonal, general empirical Bayes approach to matrix factorization

has been demonstrated to successfully infer latent factors with interpretable

structures from observed variables. We hypothesize that applying this strategy

to causal discovery algorithms can solve both the high dimensionality and

collinearity problems, inherent to most biomedical datasets. We evaluate this

strategy on simulated data and apply it to two real-world datasets. In a breast

cancer dataset, we identified important survival-associated latent factors and

biologically meaningful enriched pathways within factors related to important

clinical features. In a SARS-CoV-2 dataset, we were able to predict whether a

patient (1) had COVID-19 and (2) would enter the ICU. Furthermore, we were

able to associate factors with known COVID-19 related biological pathways.

KEYWORDS

causal discovery, dimensionality reduction, latent factors, collinearity, empirical bayes

matrix factorization

Introduction

Technological advances have allowed the cost-effective collection of high-throughput

data in unprecedented volume and rate. Such data can be used to uncover biological

mechanisms of disease and develop predictors of disease status and progression (1,

2), response to drugs (3, 4) or define disease subtypes (5). However, such high-

throughput datasets, with thousands to millions of features present two major problems

to most analytical methods: high dimensionality, which creates a complexity problem,

and high collinearity of the variables due to the underlying biological structure.

Frontiers in Epidemiology 01 frontiersin.org

https://www.frontiersin.org/journals/epidemiology
https://www.frontiersin.org/journals/epidemiology#editorial-board
https://www.frontiersin.org/journals/epidemiology#editorial-board
https://www.frontiersin.org/journals/epidemiology#editorial-board
https://www.frontiersin.org/journals/epidemiology#editorial-board
https://doi.org/10.3389/fepid.2022.899655
http://crossmark.crossref.org/dialog/?doi=10.3389/fepid.2022.899655&domain=pdf&date_stamp=2022-09-13
mailto:pbenos@ufl.edu
https://doi.org/10.3389/fepid.2022.899655
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fepid.2022.899655/full
https://www.frontiersin.org/journals/epidemiology
https://www.frontiersin.org


Jia et al. 10.3389/fepid.2022.899655

For example, genes regulated by the same transcription

factors (TFs) are usually co-expressed, genetic variants (single

nucleotide polymorphisms—SNPs) in close proximity co-

segregate, and expression of microRNAs correlates with their

target genes.

The analytical questions on such data are usually two-

fold: (1) mechanistic and (2) predictive. In the first category,

the objective is to understand the mechanism that causes a

biological phenomenon or a clinical outcome. The focus here

is on uncovering the complex relations between features in the

dataset. For example, how one gene affects the expression of

another gene, how smoking, age, or sex affects gene expression,

or whether a SNP contributes to drug response or clinical

outcomes. The second question is about our ability to predict

an outcome. Causal learning methods are emerging as a flexible

tool for addressing both these types of questions (6, 7). For

example, directed graphs learned from such observational data

can be used to infer regulatory interactions between genes (5, 8)

and the Markov blanket of an outcome can be used to build

an efficient predictor of it (9, 10). However, causal learning

methods also suffer from the curse of dimensionality and feature

collinearity, which limit their applicability to high-throughput

omics datasets.

To cope with these problems, supervised (11, 12) and

unsupervised (13) methods for inferring latent feature spaces

have been developed and used for identifying regulatory

modules (14, 15) and for clustering or prediction (13, 16).

Althoughmuch of this work has been applied to gene expression,

it has also seen success in identifying biologically meaningful

signals in DNA methylation data (17). In causal modeling

literature, there are algorithms that can learn causal graphs in

the presence of latent confounders (18–21), but they usually do

not model the observed features as the result of those latent

variables. However, it is expected that combining dimensionality

reduction methods with causal learning methods will solve both

problems that hinder causal discovery in modern biomedical

datasets. Recently, a new method (CausER) (22) has been

introduced, which first uses a form of soft clustering to infer

latent factors that can explain all observed variables; and then

uses causal discovery on the latent factors to build predictors of

clinical outcomes.

Gene (mRNA) expression is regulated by proteins

(transcription factors) that bind to DNA cis-regulatory modules

of the genes. However, the protein levels of TFs are typically

not measured in the same set up as the mRNA expression. In

addition, the concordance between mRNA and protein levels

can be as low as 25% (23, 24), and other factors, like chromatin

accessibility and the presence of enhancers, might affect

expression of a given gene. Figure 1A represents a simplified

model on how accessible and active promoter and enhancer

regions can regulate the transcriptional program of cells by

binding to TFs. Promoters regulate the transcription of the

downstream gene, while enhancers can loop over long-range

genomic regions to interact with distal promoters. Thus, the

expression of genes is mainly controlled by the accessibility of

active enhancers and promoters to TF. We propose that this

regulation model also suggests a possible solution.

Suppose we have a system where the observed variables are

independent conditioned on all latent features. If we can extract

latent features from the raw features, we can build a causal

model between latent features, where there will be no direct

interactions within the raw variables. Any causal associations

found among latent features can then examined further by

looking at the raw variables that comprise them. Such is the gene

expression model depicted in Figure 1B. Gene-gene interactions

do not happen at the mRNA level (the measured property)

and there are multiple non-measured steps that are involved

(translation, post-translational modifications, localization, etc.).

These unmeasured events can be approximately represented by

latent factors. In this scenario, the latent factors can capture TF

activity (protein synthesis rate, post-translational modifications,

localization, etc.) as well as genetic and epigenetic factors (such

as chromosome structure, microRNAs, etc.), which also affect

gene expression in a collective way (25–27).

In our paper, we introduce a new framework that combines a

recently published approach for non-orthogonal dimensionality

reduction (empirical Bayes approach to matrix factorization—

EBMF) (28) with causal discovery to concurrently address both

high dimensionality and collinearity issues. We demonstrate the

utility of this framework by making useful predictions on two

biomedical problems.

Methods

High-dimensional CausalMGM workflow

Biomarkers or features identified from high-dimensional

biological data through regression or statistical tests are

informative for prediction but the observed variables (mRNA

expression) may not be directly (causally) linked to disease

driver mechanisms or events. We propose a new framework

that can identify latent factors causally linked to clinical features

without use of prior knowledge. Our proposed workflow is

composed of two parts. First, we learn the latent factors from

the observed variables. Second, we learn the causal associations

among latent factors and between latents and the target features

(e.g., outcomes) (Figure 1B). For the first part, we selected

EBMF due to its ability to learn non-orthogonal latent factors

that are identifiable up to scale transformations. Additionally,

Wang et al. demonstrated the ability of EBMF to recover sparse,

biologically meaningful factors in gene expression data (28). For

the second part, we use our CausalMGM framework, which has

been shown to have superior performance on mixed data types

(2, 29).
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FIGURE 1

(A) Regulation of gene expression. (B) Causal Graph including relationship among observed features, latent factors, and target features.

Empirical bayes matrix factorization

EBMF is a recently introduced non-orthogonal,

unsupervised method for dimensionality reduction. The

K-factor EBMF model is defined in Equation (1) where Y is the

n × p data matrix, lk is an n-vector, fk is a p-vector, G are pre-

specified families of distributions, and g are unknown “prior”

distributions, E is an n -specified families of distributions, and

p matrix of independent error terms, and τ is an unknown n

-specified families of distributions, and pmatrix of precisions in

some space T ,

Y =

K∑

k=1

lkf
T
k + E

lkl, ..., lkn ∼
iid glk , glk ∈ Gl

fkl, ..., fkp ∼
iid gfk , gfk ∈ Ff

Eij ∼ N(0, 1/τij)withτ : = (τij) ∈ T

(1)

Wang et al. (28) implemented two main algorithms for

fitting the k-factor EBMF model: (1) greedy and (2) backfitting.

The greedy approach starts by optimizing the first factor, then

adding second factor and optimizing that, and so on one factor

at a time. The backfitting approach uses the estimates of all

factors to refine the estimate of one factor (30). Wang et al. also

state that empirical Bayes approaches to matrix factorization can

automatically select the number of factors K (31) because, if K is

set sufficiently large, some loading/factor combinations will be

optimized to 0. They also show that, in their EBMF model, each

loading and factor is identifiable to a multiplicative constant

(given that G is a scale family). This can also be dealt with by

normalizing factor estimates.

CausalMGM

PC and FCI

One of the most popular constraint-based causal discovery

algorithms is the PC algorithm (32). One of the main

assumptions of the PC algorithm is that the ground truth graph

can be represented by a Directed Acyclic Graph (DAG). The PC

algorithm starts with a fully connected undirected graph. It then

tests each pair of variables for independence conditioned on the

empty set and removes all those edges found to be independent.

Then, the procedure is repeated by testing for conditional

independence of each edge given every single neighborhood

variable, every pair of neighborhood variables, etc. until a

predetermined size. After every conditionally independent edge

has been identified and removed, the remaining edges are

oriented. The orientation has the following steps. First, if node

Z is adjacent to nodes X and Y, and X and Y are independent

conditioned on a set that does not include Z, then this is a

collider (X→Z←Y). Next, the remaining edges are oriented

to avoid additional colliders. Finally, any edges that are not
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in a collider, nor would result in a collider, are oriented to

avoid cycles.

In the original PC algorithm, edges would be removed

as soon as a conditional independence is found between two

nodes. However, this meant that the output graph would be

dependent on the order in which the edges were tested. PC-

stable (33) corrects for this by performing all edge removals

concurrently at the end of each depth (subset size) test. PC−Max

further improves on this idea by picking the conditioning set

with the highest p-value so that there are no ambiguities for

directionality. In addition, PC−Max is parallelized for scalability

(34).

The Fast Causal Inference (FCI) algorithm (32) is a

modification of PC that has been explicitly designed for causal

discovery in the presence of latent confounders. The FCI

algorithm is composed of three parts: (1) determine which

edges to remove from the complete undirected graph (2)

identify collider and orient edges (3) re-orient edges for ancestor

relations. The output of FCI is defined as partial ancestral graph

(PAG) including four types of edge:

• A → B if and only if A is an ancestor of B in the

I-equivalence class

• A↔ B if and only if A and B are not ancestors of each other

in the I-equivalence class

• A o− > B if and only if B is not an ancestor of A in the

I-equivalence class

• A o− o B places no restriction on ancestor relation.

FGES

The Fast Greedy Equivalence Search (FGES) algorithm

(35) is one of the most popular score-based causal discovery

algorithm, which infers causal structure through maximizing

a likelihood score instead of conditional independence tests.

Recently, FGES has been extented to mixed-type data via

Degenerate Gaussian score (36) where the likelihood is

calculated by modeling continuous random variable as Gaussian

distributions, and each k-category discrete random variable as a

latent (k – 1) dimensional Gaussian distributions. The output of

FGES is pattern, which contains directed edge (→) representing

direct causation and undirected edge (−), where its causal

direction cannot be determined.

Mixed graphical models

The main limitation of constraint-based causal algorithms

(like PC−Max) is that the runtime in dense or scale-free graphs

is a high-order polynomial based on the maximum degree of

the graph. One way to improve upon this is to start the search

from a sparse undirected skeleton that includes all adjacencies in

the true data generating DAG. This reduces a global high-order

polynomial problem to a local lower-order polynomial problem.

Mixed graphical model (MGM) is one strategy that allows for

the efficient learning of the moralized graph (which is a superset

of the true causal graph plus the edges for the shielded colliders)

(37, 38). MGM can learn a undirected graph skeleton and avoid

a large number of false positive edges (2).

Experiments

Comparison on synthetic datasets

Synthetic datasets

Clinical datasets often contain a mixture of continuous and

discrete variables. When multi-omics data is included, these

datasets become high-dimensional and collinear. To simulate

similar datasets, we used both Lee and Hastie (LH) (37) and

Conditional Gaussian (CG) (39) models for data generation.

Conditional Gaussian models generate data from a Gaussian

mixture where each Gaussian component exists for a particular

combination of discrete variables, while Lee & Hastie models

generate continuous variables from the joint distribution of

the continuous variables conditioned on the discrete variables

following a multivariate Gaussian with common covariance.

The TETRAD software (40, 41) contains LH and CG

simulation models. We generated 10,000 samples for 50

continuous variables (representing factors Z) and 25 categorical

variables (analogous to clinical features) from a sparse true

DAG with average graph degree 2–4. We then generated 2,500

variables (analogous to gene expression data X) based on the

50 latent factors (Z) and loadings (A) with weights drawn

from a Gaussian distribution using Equation (2). To model

the structure of regulation of gene expression, only 2% of the

values of the combined loading matrix with the greatest absolute

value were kept, and others were set to 0. This strategy controls

the simulation so that each latent factor (e.g., TF) regulates

approximately 50 gene expression features directly.

X = ZA+ E (2)

X is the n × p gene expression data matrix, Z ∈ Rn×K

denotes K latent variables for n samples, A ∈ Rp×K is the

Transcription Factor Regulation Matrix assigning p variables to

K groups. E ∼ N (0, 1) is an n× pmatrix of independent error.

For the gene expression simulation, we randomly picked five

1,000-sample datasets (out of the 10,000 total simulated samples)

from each of the LH and CG datasets. The reported results are

averages across these 5 sub-datasets.

Benchmark methods

• PCAWe consider Principal component analysis (PCA) as a

comparable baseline method to EBMF, since it is one of the

most popular dimensionality reduction methods. We pick
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the first K principal components of the observed features

by the eigenvalue ratio test (42), where K is estimated by:

K̂ = arg max
k∈{1,2,...,K̄}

λ̂k

λ̂k+1
(3)

where λ̂1, λ̂2, . . . are eigenvalues, and largest K cannot be

greater thanmin(n, p)− 1.

• FCI For causal structure in the presence of confounders, we

use FCI, a popular approach that generates asymptotically

correct results. Thus, we compare performance of FCI and

our model on simulation datasets with 10 latent factors and

200 observed features.

Metrics

EBMF models were calculated using the flashr package

available by the authors of (28). We then built the moralized

undirected graph from the trained EBMF identified factors

and the categorical features (clinical targets) using MGM with

StEPS subsampling procedure (38) for optimal sparsity. The

moralized graph is used as the initial graph for the PC−Max

algorithm with StARS (43), which produced a final stable causal

graph on which we evaluated the original graph recovery.

The causal discovery algorithms were performed using the

rCausalMGM package.

To evaluate the recovery of latent factors by EBMF, we

computed the mean correlation coefficient (MCC) between the

known data-generating factors and the estimated latent factors

learned through EBMF. To compute MCC, we calculated all

pairs of correlation coefficients between source and recovered

latent factors. Then, we permuted the correlation matrix

to maximize diagonal sum through solving a linear sum

assignment problem. Finally, we assigned each recovered

latent factor to best-correlated source latent factor, and

computed MCC based on the diagonal of the permuted

correlation matrix.

To evaluate the true graph recovery, we computed adjacency

precision (AP) & recall (AR) and arrowhead (causal orientation)

precision (AHP) & recall (AHR). Adjacency precision and recall

refer to the correctness of the edges in the graph estimated by

the causal discovery algorithms regardless of the corresponding

orientation(s). Arrowhead precision and recall are computed

using the true positive, false positive, false negative, and true

negative orientations defined in Table 1 (29). This score is

computed only on edges that appear in both the data generating

graph and the estimated graph. Thus, this arrowhead score

always is accompanied by adjacency score to separate the

information gained from the adjacencies vs. arrowheads. The

main idea of the score is to treat endpoint “>” as positive

and endpoint “−” as negative. If the true graph contains edge

A → B, and the estimated graph contains edge A → B, this

counts as one true positive in A and one true negative in B.

TABLE 1 Causal orientation score.

Edge True: A ∗ − > B True: A ∗ − − B

Predicted: A ∗ − > B TP FP

Predicted: A ∗ − − B FN TN

The precision and recall of adjacency and arrowhead are defined

in Equation (4).

Adj Precision =
correctly predicted adjacencies

predicted adjacencies

Adj Recall =
correctly predicted adjacencies

true adjacencies

Arr Precision =
TP

TP + FP
Arr Recall =

TP

TP + FN

(4)

Application to biomedical datasets

In order to test how well our high-dimensional CausalMGM

performs in real-world biological applications, we applied the

strategy to two clinically important gene expression datasets: (1)

breast cancer and (2) SARS-CoV-2. For breast cancer, we use

METABRIC (44), a microarray dataset with 1307 patients and

60 clinical features. For COVID-19, we use a recently published

open-access RNAseq dataset (45) with 100 COVID-19 and 26

non-COVID-19 patients and 9 clinical features.

For both datasets, we used EBMF as the first step because the

results on the simulated data showed that it outperformed PCA.

We trained a greedy-backfitted EBMF model over all patient

gene expression data to build the latent factor model. Then, we

merged the known clinical features with the latent factors to

train a causal network (using PC and FCI).

By definition, in a Bayesian network, all the information

regarding a target is contained within its Markov Blanket. We

used this concept to select important factors of target variables

for further analysis.

The Mann-Whitney U-test was used to identify significant

EBMF factors between groups. For Gene Set Enrichment

Analysis (GSEA) (46) of factor loadings, the R function gseGO

from the clusterProfiler package (47) was applied to

the rank order of the EBMF factor loadings to identify Gene

Ontology Biological Processes (48) enriched in a given factor

loading. Enrichment dot plots for GSEA results were generated

with the enrichplot package (49) in R.

For the METABRIC dataset, Kaplan-Meier estimates (50)

and Cox Proportional Hazards model (51) of the disease-free

survival curves are computed with the survival package (52).

Optimal cutoff values for each factor in relation to disease-

free survival were determined by a maximally selected rank
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FIGURE 2

Bar plots for (A) number of latent factors and (B) mean correlation coe�cient (MCC); EBMF represents latent factors recovered by greedy

algorithm. EBMF+BF represents latent factors recovered by greedy algorithm + Backfitting algorithm; PCA represent principal component

analysis; HC/LC represents simulated data with high/low correlation; the line at 50 latent factors indicates the ground truth number of source

latent factors.

statistic. The Kaplan-Meier estimates were then plotted with the

survminer package (53).

For the SARS-CoV-2 dataset, the performance of predictive

models for disease state and ICU admission were assessed by

the area under the receiver operator characteristic (ROC) curve

(AUC). These ROC curves were computed and plotted with

the pROC package (54) using five-fold nested cross-validation.

A baseline predictive model, constructed directly on gene

expression data, was learned using logistic regression with elastic

net regularization implemented in glmnet (55). Predictive

models based on EBMF factor causal models were constructed

by performing logistic regression on the Markov blanket of the

target outcomes.

Results

Performance on synthetic data

Evaluation of latent factor recovery

To evaluate the ability of EBMF to recover the true latent

factors in a dataset, we applied both the greedy-only and greedy

+ backfitting algorithms on synthetic datasets. As a baseline,

we also applied PCA with the number of principal components

selected by the eigenvalue ratio test. We consider latent factor

recovery to be successful if the method correctly identifies the

number of latent factors, and the MCC of the recovered factors

and true data generating factors is high. The greedy+ backfitting

algorithm and PCA with the eigenvalue ratio test perform well

in selecting the correct number of latent factors (Figure 2A).

However, the MCC of the learned latent factors and true data

generating factors is much higher for EBMF compared to PCA

(Figure 2B) across all simulation conditions, demonstrating that

EBMF can better recover the source factors when compared

to PCA. This is a consequence of the orthogonality constraint

in PCA, which hinders the recovery of interacting, dependent

latent factors. EBMF does not have this constraint, and can

more precisely recover the true source latent factors for CG

simulated data (Figure 2 and Supplementary Figure 1B). While

the MCC for the LH simulated data is relatively lower (Figure 2

and Supplementary Figure 2B), indicating lower true factor

recovery, it still outperforms PCA by a large margin.

Evaluation of causal graph recovery

Next, we performed MGM with StEPS on the EBMF greedy

+ backfitting discovered latent factors to identify optimal

lambda values for an undirected graph. Using the undirected

network generated by MGM, we ran PC−Max with StARS

to determine an optimal alpha value for a stable graph.

Table 2 summarizes the adjacency and arrowhead precision and

recall, and the results are split by edge types: CC are edges

between continuous variables, DD are edges between discrete

variables, and CD are edges between mixed (continuous and

discrete) variables.
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TABLE 2 Graph recovery of simulated data (MGM-PC-MAX).

EDGE CC CD

Data TYPE AP AR AHP AHR AP AR AHP AHR

CG-LC Source 1.00 0.60 0.67 0.33 0.98 0.26 0.82 0.47

EBMF+BF 0.86 0.14 0.65 0.18 0.98 0.29 0.83 0.18

CG-HC Source 0.99 0.81 0.91 0.65 1.00 0.52 0.82 0.45

EBMF+BF 0.74 0.10 0.83 0.27 0.89 0.52 0.50 0.20

LH-LC Source 1.00 0.95 0.82 0.80 1.00 0.81 0.66 0.60

EBMF+BF 0.65 0.24 0.64 0.51 0.74 0.67 0.64 0.54

LH-HC Source 1.00 0.97 0.94 0.56 0.98 0.91 0.81 0.62

EBMF+BF 0.19 0.03 1.00 0.50 0.53 0.85 0.62 0.56

Since we model the latent factors as continuous variables,

we investigate the ability of our method to recover CC and

CD edges. As a benchmark, we compare the performance of

MGM-PC-Max applied to the EBMF recovered latent factors

to MGM-PC-Max applied to the true, data generating source

latent factors. This benchmark represents the best case causal

discovery performance, in the scenario where the latent factors

are perfectly reconstructed. On Conditional Gaussian simulated

data, causal discovery on EBMF estimated latent factors

performs similarly well to casual discovery on the source factors

in terms of recovering interactions between the continuous

latent factors and the categorical “clinical” features. EBMF

struggled to learn interactions between latent factors, especially

in the high correlation setting, but reasonably high adjacency

precision indicate that most edges that are inferred by MGM-

PC-Max on EBMF latent factors are true causal interactions.

However, MGM−PC−Max has worse performance on EBMF

recovered latent factors from Lee andHastie simulated data. This

is especially true for the high correlation case (Figure 2B). This

difficulty with recovering latent factors in Lee &Hastie simulated

data results in a failure to identify true causal interactions

within the latent factors (Table 2). This performance difference

is due to the higher internal covariance between continuous

variables and discrete variables in Lee & Hastie model data,

making it more difficult to recover the true source latent factors.

This indicates that strong associations between continuous and

discrete variables can cause EBMF to struggle with identifying

the true latent factors. However, when compared to PCA and

FCI, EBMF was able to recovery of true latent factors at a

much higher accuracy, which is critical for the subsequent

causal discovery.

We also compare our approach with a baseline method,

FCI, on smaller simulation datasets with 10 latent factors and

200 observed features. While FCI is not designed to recover

the actual latent factors, it can infer whether two variables

are confounded. We inferred the expected confounded edge

TABLE 3 Adjacency recovery of loading matrix.

Data EBMF-AP EBMF-AR FCI-AP FCI-AR

CG_LC 1 1 0.53 0.19

CG_HC 0.67 0.98 0.51 0.18

LH_LC 0.63 0.99 0.53 0.21

LH_HC 0.44 0.99 0.51 0.20

adjacency matrix from the loading matrix (for source loading

and EBMF loading), and we compared this to the confounding

edges inferred by FCI. This allows us to compute adjacency

recall & precision for confounded edges from the FCI output

PAG. For PAG, We count one double-arrow edge (↔), which

indicates that two variables are confounded, as one True Positive

(TP); one double circle edge (o-o), which indicates confounding

but also possible direct cause-effect in either direction, as one

third TP and two thirds False Positive (FP); and one o →

edge, which indicates confounding or possible cause-effect in

one direction, as one half TP and one half FP. Overall, EBMF has

a higher recall and relatively high precision. In comparison, FCI

has a much lower recall and relatively lower precision (Table 3).

This demonstrates that our model, in addition to recovering the

values of the latent factors and feature loadings themselves, can

identify confounded features more efficiently than FCI.

Performance on biomedical disease data

Application to METABRIC breast cancer dataset

After removing features and patients with missing data,

the METABRIC dataset contained 1,221 patients with 17,268

genes and 14 clinical features. The clinical features included

can be seen in Supplementary Table 1. From the 17,268 gene

expression features, the greedy + backfit EBMF identified 328
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FIGURE 3

Markov blankets of important clinical features from the causal network learned using MGM−PC−Max. Blue diamonds are factors learned from

METABRIC gene expression using greedy backfitted EBMF. Green squares are clinical METABRIC features. For explanation of the clinical features,

please see Supplementary Table 1.

latent factors. The resulting latent factors also have low pairwise

correlations, indicating that EBMF has successfully reduced the

multicollinearity of the dataset (Supplementary Figure 3).

Using these 328 EBMF factors and 14 clinical features, we

ran MGM to build an undirected skeleton graph, which was

used as the initial graph for PC−Max. The StARS subsampling

procedure yielded the most stable graph that connected the

latent factors and clinical features. A selected subset (first and

second neighbors of clinical features) of the network can be seen

in Figure 3.

We then evaluated this graph by examining the EBMF

factors that are in the Markov blanket of the clinical features.

The associated factors were used for gene set enrichment analysis

in order to identify the enriched biological processes. The top

10 gene sets with ratios, adjusted p-value, and total weight can

be seen in Figure 4. Some factors had less than 10 processes

associated with them with FDR adjusted p < 0.05, such as LF59.

In the Markov blanket of ER status, we see one factor, LF2,

which has positive values for ER+ patients, and negative values

for ER- patients (p-value < 2.2e-16, Supplementary Figure 4).

LF2 is associated with immune response, interaction, and

signaling pathways, which is matches existing literature about

how ER activity can regulate immune signaling pathways

and cytokine production (56). Previous literature has also

demonstrated that the majority ER+ patients have lower

levels of tumor infiltrating lymphocytes (57) compared to

triple-negative patients.

Two factors (LF11 and LF27) are directly linked to PR status,

and both are associated with immune response. In particular,

the genes comprising these factors belong to interferon signaling

pathways based on GSEA analysis. Those genes are also

associated with viral immune response. Recent work has shown

that PR+ tumors exhibit lower levels of phospho-STAT1, which

in turn attenuates interferon-induced STAT1 signaling, which in

turn may allow PR+ tumors to escape immune surveillance (58).

In the Markov blanket of tumor size, there is one factor

LF59 as well as distant relapse and lymph node status. LF59 is

associated with protein targeting to the endoplasmic reticulum.

Endoplasmic reticulum stress is known to be directly linked

to tumor growth inhibition and apoptosis (59, 60). It is also

associated with cell growth and structure related gene sets, which

are needed for tumor cell growth.

For distant relapse, we see factors LF1 and LF10. LF1

and LF10 are positive for survivors, and negative for early,

middle, and late recurrence patients. LF1 is associated with RNA

translation, processing, and quality control pathways. There

is also an association with the biological pathways associated

with viral immune system response. LF10 is associated with

pathways connected RNA processing and quality control,

cell death promoters, and translation initiation, elongation,
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FIGURE 4

Biological functions significantly associated with factors that are in the Markov blankets of tumor size: LF59, distant relapse: LF1 and LF10, ER

status: LF2, PR status: LF11 and LF27.

and termination. In general, aberrant RNA quality control

and protein translation plays an important role in cancer

pathogenesis (61).

For each of these four continuous factors, we were able

to determine the optimal cut-point to split the survival into

high and low categories (53). Using these cutoffs, we were then

able to build disease-free survival curves for each of the factors

(Figure 5). We trained a multivariate Cox Proportional Hazards

model using these factors to determine their contribution to

disease-free survival (Supplementary Table 2). From the figure,

we see that factors LF1, LF6, and LF10 have significant p-

values, while LF59 does not. We exclude LF59 from further

analysis for this reason. Using the significant factors LF1, LF6,

and LF10, and their respective cutoffs, we are able to generate

eight survival curves to represent the eight possible high/low

combinations of the factors (Figure 5). These eight groups

are able to stratify patients into significantly different disease-

free survival curves, demonstrating that the recovered latent

factors recover biologically relevant information about a key

clinical outcome.

Application SARS-CoV-2 dataset

In the COVID-19 RNA-seq dataset (19,472 genes), the

backfitted EBMF identified 40 latent factors. Using FCI with

bootstrapping and an α = 0.05, we learned a stable (edge

appearance > 50%) causal network from the latent factors and

clinical variables. The majority of the network (26/30 features,

28/32 edges) was within the Markov Blanket of the clinical

features, and can be seen in Figure 6. Two features of particular

interest are disease state and ICU admittance (which we used as

a proxy for disease severity). TheMarkov Blanket of disease state

Frontiers in Epidemiology 09 frontiersin.org

https://doi.org/10.3389/fepid.2022.899655
https://www.frontiersin.org/journals/epidemiology
https://www.frontiersin.org


Jia et al. 10.3389/fepid.2022.899655

FIGURE 5

Disease free survival based on (A) individual factors and the (B) combinations of all factors.

contains factors LF2, LF5, LF20, and LF36. The Markov Blanket

of ICU admittance contains LF3 and LF23.

Next, since the dataset contained both COVID and non-

COVID patients, we were able to split these estimated EBMF

factor values (LF2, LF5, LF20, LF36) based on patient disease

class. This allows us to compare the distribution of values

between these two groups. The results can be seen in the

violin plots in Figure 7A. In the plots, we can see that the

average derived value for COVID-19 patients in all four latent

factors is positive, while the average derived value for non-

COVID-19 negative, with significant p-values distinguishing the

two groups. This indicates that the causal algorithm is finding

factors directly linked to whether the patient has COVID-19.

Additionally, this also means that genes that are positively

linked to LF2 are overexpressed for COVID-19 patients, while

genes that are negatively linked to LF2 are overexpressed in

non-COVID-19 patients.

The same strategy can be used for patient ICU admittance

(LF3, LF23) since it is also a binary category. The relative

distributions of those who had to enter the ICU vs. those who

didn’t can be seen in Figure 7B. We see that patients who enter

the ICU have positive average factor values for LF3, and negative

average factor values for LF23 (and vice versa for those who don’t

enter the ICU). This indicates that genes positively associated

with LF3 will be positively linked to ICU admittance, while

genes positively associated with LF23 will be negatively linked

to ICU admittance.

Using pathway enrichment analysis on the loading gene

weights that made up each factor, we were able to identify the

biological mechanisms that each factor was associated with. The

gene sets with ratios, adjusted p-value, and overall total weight

can be seen in Figure 8. In the figure, we see that the factors

(LF2, LF5, LF20, LF36) associated with COVID-19 disease state

have high enrichment for innate & adaptive immune response,

metabolism and autophagy, whichmatches expected response to

viral infections and is supported by COVID-19 literature (62).

For ICU admittance, we see enrichment in crucial pathways that

are known to be closely associated with COVID-19 severity, such

platelet activation and coagulation (63), and chemokine activity

(64). We also see many other immune response pathways within

the top 10 pathways within all 6 factors.

We also compare the individual factors to the list of

biological functions significantly associated with the complete

differentially expressed genes (DGEs) result. The UpSet plots in
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FIGURE 6

Combined Markov blankets of clinical features from causal network learned using FCI−Max with bootstrapping, highest ensemble, and α = 0.05.

Blue diamonds are factors learned from gene expression using greedy-backfitted EBMF. Green squares are clinical features. For explanation of

the clinical features, please see Supplementary Table 3.

Figure 9 describe the overlap between the DGE gene sets and the

factors’ gene sets. We can see individual factors capture subsets

of the main DGE gene sets. For example, there are 62 significant

(p < 0.05 in both) gene sets that are overlapping between

the main DGE and LF36. Similarly, we see 210 significant

overlapping gene sets between ICU DGE and LF3. The results

also demonstrate that the factors contain novel information that

the full dataset DGE results do not contain. For example, LF36

has 71 unique significant gene sets that are not shared with any

other COVID-19 disease state associated factors or the complete

DGE analysis. This indicates that the factors are capturing both

general biological information about COVID-19 disease state

and ICU admittance that is contained in the overall dataset,

but is also able to capture detailed differences that full dataset

analysis would otherwise miss.

The Markov Blanket of a clinical feature can also be used

for feature selection for clinical prediction (9). Using five-

fold nested cross validation, we were able to build general

linear models to predict whether a patient had COVID, and

whether a patient would enter the ICU. Note that, in order

to avoid overfitting, the entire causal learning process +

Markov Blanket feature selection needs to be done for each

fold (nested cross-validation). The ROC plots are presented

in Figure 10. These results show that classifiers based on the

EBMF factors are equally good as those using all differentially

expressed genes.

Discussion

In this paper, we have proposed a two-step system to build

causal models from high-dimensional multicollinear datasets. In

step-1, we use EBMF to derive latent factors (e.g., TFs) from the

observed variables (e.g., Gene Expression). In step-2, we perform

causal discovery on the latent factors and clinical features (e.g.,

Age, Response).

In simulation studies we show that both EBMF and PCA

can identify an accurate number of latent factors. However, only

the EBMF recovered latent factors are highly correlated with the

(known) source latent factors. Additionally, the latent factors

learned by EBMF are not strictly orthogonal, which enables them

to be used for causal discovery. We also demonstrate that our

method can recover causal interactions between latent factors

and clinical covariates with a high degree of accuracy.

Application to breast cancer and SARS-CoV-2 gene

expression data shows that EBMF is able to significantly reduce

the dimensionality of these datasets. It is also able to reduce

to the multicollinearity within the datasets. The factors in the

Markov blanket of clinical features also contained significant

biologically relevant pathway information that is supported by

existing literature.

For breast cancer, factors related to ER and PR status are

associated with known immune signaling pathways and immune

cell activity. Tumor size is associated with cell growth and
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FIGURE 7

Distributions of EBMF factor values for features in the Markov blanket of (A) disease state (COVID-19 vs. non-COVID-19), (B) ICU admittance

(yes vs. no).

tumor growth inhibition protein targeting pathways. Distant

relapse linked factors contain important RNA and protein

quality control pathways. Using the aforementioned factors,

we were able to stratify breast cancer patients into distinct

survival groups, where the best prognosis groups having over

50% survival rate at 7,500 days, and the worst having less than

25% survival rate.

For SARS-CoV-2, there is clear significant difference

between the COVID-19 and non-COVID-19 patient

distributions for the four latent factors related to disease

state. These factors contain immune pathway genes that match

known viral immune responses. Similarly, there is a significant

difference in factor value distributions between ICU and

non-ICU patients for the two important related factors. These

ICU factors matched known biological pathways associated

with severe immune response.

We also used EBMF with causal discovery as feature

selection method in order to do clinical prediction of

patients with COVID-19, and the severity of the patient’s

case. We were able to predict with high accuracy both

whether a patient has COVID-19 and whether they

will enter the ICU. These results were achieved with

linear models, which cannot fully capture the non-linear

relationships that exist in biological datasets. Therefore, the

accuracy could increase even further with non-parametric

models (e.g., random forests). Interestingly, we were also

able to find factors associated solely with sex and with

diabetes status, which may be interesting starting points for

future research.

Due to our structural assumptions, the performance of

our framework may suffer if there are many interactions

among observed features (RNA-RNA interactions). RNA-

RNA interactions typically include non-coding RNA (ncRNA)-

ncRNA or ncRNA-message RNA (mRNA). Direct interactions

between mRNA-mRNA are rare because they usually have to

go through protein products and post-translational signaling.
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FIGURE 8

Biological functions significantly associated with Factors that are in the Markov blanket of disease state (LF2, LF5, LF20, LF36) and ICU

Admittance (LF3, LF23).

Research shows that stable mRNA-mRNA interactions are

sometimes detected in vivo (65), but very few mRNA-

mRNA interactions are involved in gene regulation, such

as hly mRNA binding prsA2 mRNA and protect it from

degradation (66, 67). The lack of regulatory function means

that it will not have a large effect on the gene expression,

so in gene expression datasets containing mRNA features

only, mRNA-mRNA interactions can be ignored. When

working with whole transcriptomics data, which can contain

other RNA types (such as ncRNA), there may be more

regulatory RNA-RNA interactions. In this case, we may

overlook some possible dependencies, which is a limitation of

our method.

The authors recognize that the model proposed is not a

complete biological picture since it makes assumptions about the

internal structure and relationships between features. However,

based on our current understanding of gene expression

regulation, we argue that it is a justified and reasonable

approximation. Additionally, all causal discovery methods are

at best approximations when it comes to analyzing gene

expression data since the data are often averages of many

cells (e.g., bulk RNAseq or microarray), have systematic bias

(e.g., single cell RNAseq dropout), or have cyclic relationships,

which violate (to some degree) the assumptions of most

existing causal discovery algorithms. Despite these drawbacks,

the success of probabilistic graphical models in analyzing

biomedical data (68–70) has shown that they can still be good

approximations. Our own simulation and application results

demonstrate the potential of EBMF CausalMGM for gene

expression data.
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FIGURE 9

Intersection between biological function gene sets that are significantly associated with the di�erentially expressed genes and LFs across (A)

disease state and (B) ICU admittance.

FIGURE 10

General linear model prediction ROC using factors contained within the Markov blanket for (A) disease state and (B) ICU admittance.
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