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Predicting potential transmission
risk of Everglades virus in Florida
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identifications
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The overlap between arbovirus host, arthropod vectors, and pathogen distributions
in environmentally suitable habitats represents a nidus where risk for pathogen
transmission may occur. Everglades virus (EVEV), subtype II Venezuelan equine
encephalitis virus (VEEV), is endemic to southern Florida where it is transmitted
by the endemic vector Culex cedecei between muroid rodent hosts. We
developed an ecological niche model (ENM) to predict areas in Florida suitable
for EVEV transmission based upon georeferenced vector-host interactions from
PCR-based blood meal analysis from blood-engorged female Cx. cedecei
females. Thirteen environmental variables were used for model calibration,
including bioclimatic variables derived from Daymet 1 km daily temperature and
precipitation values, and land use and land cover data representing percent land
cover derived within a 2.5 km buffer from 2019 National Land Cover Database
(NLCD) program. Maximum temperature of the warmest month, minimum
temperature of the coldest month, and precipitation of the driest month
contributed 31.6%, 28.5% and 19.9% to ENM performance. The land cover types
contributing the greatest to the model performance were percent landcover of
emergent herbaceous and woody wetlands which contributed 5.2% and 4.3% to
model performance, respectively. Results of the model output showed high
suitability for Cx. cedecei feeding on rodents throughout the southwestern
portion of the state and pockets of high suitability along the northern east coast
of Florida, while areas with low suitability included the Miami-Dade metropolitan
area and most of northern Florida and the Panhandle. Comparing predicted
distributions of Cx. cedecei feeding upon rodent hosts in the present study to
historical human cases of EVEV disease, as well as antibodies in wildlife show
substantial overlap with areas predicted moderate to highly suitable for these
vector/host associations. As such, the findings of this study likely predict the
most accurate distribution of the nidus of EVEV to date, indicating that this
method allows for better inference of potential transmission areas than models
which only consider the vector or vertebrate host species individually. A similar
approach using host blood meals of other arboviruses can be used to predict
potential areas of virus transmission for other vector-borne diseases.
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Introduction

The overlap between arbovirus host and vector distributions

in environmentally suitable habitats can provide useful

information toward understanding where risk for pathogen

transmission to humans or domestic animals may occur.

Landscape epidemiology is a sub-discipline of landscape

ecology which studies dynamic interactions between

pathogens, hosts, and vectors across heterogeneous

environments at multiple spatiotemporal scales (1, 2). The

formal concept outlining associations between vector-borne

disease and specific landscape features or habitat types was

initially proposed by Pavlovsky (3) who suggested that vector-

borne pathogen transmission could only occur in

environments which support the overlap of three critical

biological elements, including: competent vectors, vertebrate

hosts, and the pathogen. Together, these components are

often referred to as a nidus, or an area where pathogen

transmission takes place (2, 3).

Ecological niche modeling (ENM) is used to predict potential

geographic distributions of species by correlating environmental

values with georeferenced occurrence points for model

calibration (4). In the study of vector-borne diseases, ENMs

have been used to predict distributions of vectors (5, 6),

vertebrate hosts (7) and pathogens (8, 9), based upon

georeferenced detections of each independent aspect of the

nidus. Ecological niche models predicting the potential

distribution of vectors, hosts, or pathogens are typically

generated separately. While important, these single-species

ENMs provide potential distributions for just one component

of the nidus of pathogen transmission, a practice that is likely

to overestimate the areas where pathogen transmission occurs.

Although methods are available that can test whether

environmental similarities exist in predicted distributions across

two species (10–12), overlap is not evidence of interactions

(typically blood-feeding) between vectors and hosts.

Furthermore, separate models may not use the same covariates

in model calibration, introducing an added challenge to making

predictions across broader geographic areas. Similarly, several

factors could affect the interactions between vector, host, and

pathogen, such as the presence of dilution hosts which may

draw vector species away from potential reservoir hosts (13),

which are not accounted for when modeling disease system

components individually. Therefore, a niche model using

presence data available for known interactions (actual contact

through blood-feeding) of two or more components of the

nidus overlap should constitute a more accurate approach to

predicting areas of potential pathogen transmission than

modeling just vector, host, or pathogen distributions alone.

Everglades virus (EVEV) is an enzootic subtype of

Venezuelan equine encephalitis virus (VEEV) and is

maintained between the enzootic vector mosquito and rodent

hosts in southern Florida (14). Culex cedecei is the only
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confirmed natural vector of EVEV in Florida, and feeds to a

large extent on rodents, especially the hispid cotton rat

(Sigmodon hispidus Say and Ord) (15–18). For this reason,

interactions between Cx. cedecei and the hispid cotton rat are

generally considered to be the primary drivers of EVEV

transmission (16, 19). However, several other muroid rodent

species are the natural hosts of EVEV and other enzootic

subtypes of VEEV distributed throughout the Americas (14,

20). This is supported by the detection of substantial virus

titers for VEEV subtypes from Rattus spp. in Colombia (21),

along with high seroprevalence for EVEV in cotton mice

(Peromyscus gossypinus Le Conte) and hispid cotton rats in

Florida (22–25). Culex cedecei has also been found to feed

heavily on black rats (Rattus rattus Linnaeus), cotton mice,

and hispid cotton rats in areas where EVEV has been

detected from mosquitoes in nature (17), providing evidence

that all three rodent species are capable of developing

viremias high enough for the transmission of EVEV to Cx.

cedecei in Florida. Everglades virus can therefore be

considered a single vector system, with few host species,

wherein only rodent hosts and the mosquito vector are

necessary to maintain pathogen transmission (12).

In the case of EVEV, modeling only the hosts would not

provide a distribution representative of the risk of EVEV, but

could greatly overestimate EVEV risk due to the ability of the

three primary rodent hosts to utilize a range of habitat types

(26, 27) and their wide geographical distributions. Likewise,

although the distribution of the vector species Cx. cedecei may

be more limited in its utilization of habitats and known

distribution, modeling only the distribution of this species

may also result in over-estimation of the potential distribution

of EVEV foci if Cx. cedecei does not feed on EVEV hosts

throughout its range, or across all types of climate and land

cover habitats. It is also not straightforward to model the

distribution of incidence of disease in humans, as these

infections may not accurately represent the locations where

they contracted the pathogen. Sloyer et al. (2022) has

previously modeled the potential distributions of Cx. cedecei

in Florida using environmental variables which include

temperature, precipitation, and enhanced vegetation index

(EVI). Results showed that the potential distribution of Cx.

cedecei ranges from low to high suitability throughout much

of the southern half of the Florida Peninsula. This model

however did not take into account landscape composition and

configuration and also cannot inform on whether or not Cx.

cedecei feeds upon rodent hosts of EVEV in all areas. Aside

from direct observations, and baited traps, the most common

method of determining mosquito-host interactions is by

performing polymerase chain reaction (PCR)-based blood

meal analysis from blood-engorged mosquitoes to determine

the host species origin of the blood meal (28, 29).

The objective of this study was to use geographically

referenced blood meals of Cx. cedecei to generate an ENM
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using climate and landscape variables to predict suitable

environments for interactions between Cx. cedecei and rodent

hosts of EVEV in Florida. Resulting outputs generated by the

ENM predict areas suitable for Cx. cedecei to feed on rodent

hosts. We then overlay EVEV infections from previous studies

in humans (30–33), wildlife (24, 25, 34, 35), and dogs (36) to

illustrate how our model corresponds to natural infections in

vertebrate animals. This method allows for the generation of a

model representing the interaction between two components

of the nidus of pathogen transmission rather than a single

component, making it potentially more informative for

inferring areas of potential transmission of EVEV.
Materials and methods

Data collection and preparation

Georeferenced Cx. cedecei and rodent host interactions

derived from blood meals were compiled from a combination

of targeted field collections and previously published data

(16–18). In both targeted field collections and published data,

blood-engorged Cx. cedecei were collected using resting

shelters, as previously described (37). Targeted data collection

for this study occurred from the central counties of Orange

and Brevard to Miami-Dade and Collier counties in the south
FIGURE 1

Georeferenced occurrence points (orange circles) used in the model repres
publications (16–18).
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(Figure 1). Previously published data of blood-engorged Cx.

cedecei were processed and collected in a similar manner to

those collected for the present study and described in greater

detail therein (Supplementary Table S1) (16–18).

Vertebrate host identifications were determined using PCR-

based blood meal analysis of blood-engorged Cx. cedecei. For

samples collected for this study, blood-engorged mosquitoes

were stored on dry ice or in a −80 freezer until samples were

processed. To process blood meals, engorged abdomens of Cx.

cedecei were smeared onto Whatman Flinders Technology

Associates (FTA) cards to preserve host DNA (38). For this,

small sections of the blood samples of FTA cards were cut

out using box-cutter razor blades, disposing of contaminated

blades between each sample, and placed into 1.5 ml micro

centrifuge tubes with five to ten glass beads for DNA

extraction. DNA from blood-engorged Cx. cedecei was

extracted using InstaGene™ Matrix (Catalog #: 732-6030; Bio-

Rad Laboratories, Inc., Hercules, CA, USA) using a previously

described protocol (39, 40). Host DNA was amplified from

the extracted product using primers which target the 16s

rRNA and cytochrome b genes as described in previous

publications of mosquito host-use (16, 18, 41). Samples were

screened using two 16s rRNA targeting primers including

16L1/H3056 for reptiles and amphibians, and L2513/H2714

for mammals (42, 43). The primer pair L0/H1, which targets

the same region of the cytochrome b gene was used for
enting Cx. cedecei rodent blood meals from this study and previous
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species-level identification of birds (44). Polymerase chain

reaction cycling conditions were identical to those previously

published (40, 41). Successful amplicon products were sent to

Eurofins Genomics for Sanger sequencing and resulting

sequences were identified to vertebrate host species using the

National Center for Biotechnology Information (NCBI)

GenBank Basic Local Alignment Search Tool (BLAST) (39).

Georeferenced occurrence points for vector-rodent

interactions were defined as one of three rodent species blood

meals from the primary enzootic vector Cx. cedecei from field

sites in Florida, USA. The three rodent species chosen to

build the model included hispid cotton rat, cotton mouse, and

black rat based on potential to develop infectious titers of

VEEV subtypes as reported in host competence studies and

viral isolations (19, 21, 25, 45, 46). Sequences for Rattus spp.

(R. rattus and Rattus norvegica Berkenhout) were highly

similar (99% similarity). For this analysis, we consider Rattus

spp. blood meals to originate from R. rattus (black rat) due to

a small but consistently higher percent match in NCBI

BLAST. After combining a total of 49 positive georeferenced

rodent blood meals from this study and previous studies, the

data were thinned spatially within a 0.001 degree distance

(∼1 km), which removed 1 record, with 48 occurrence points

remaining for model calibration (Figure 1).
Model calibration area

We defined our model calibration area using the M-

calibration region described in (47, 48). We limited the

calibration area based on the known and modeled distributions

of Cx. cedecei in Florida, including all of Peninsular Florida,

the Florida Keys, and part of the Florida Panhandle, as

previously described by Sloyer et al. (6). The calibration region

for this model extends further north and west than the current

known distributions of Cx. cedecei in Florida.
Environmental data

Bioclimatic variables derived from Daymet 1 km daily

temperature and precipitation values from 2010 to 2020 (49)

using the “bioclim” function in the “dismo” package in R

served as climate variables in the model (50). National Land

Cover Database (NLCD) from 2019 served as the land use

and land cover data in the model (51). Percent land cover

representing landscape composition, and edge density

representing landscape configuration were calculated within a

2.5 km distance and aligned to the bioclimatic variables using

custom R code, allowing us to combine these data in the

same model and predict across new locations.

The bioclimatic and landscape variables were checked for

multicollinearity to identify variable candidate sets, as
Frontiers in Epidemiology 04
correlation between layers can contribute to difficulty in model

interpretation (52). To check for multicollinearity, bioclimatic

and landscape variable raster data were first masked to the M-

calibration region and the variance inflation factor (VIF) values

were calculated using the “vif” function in the “usdm” package

in R (53). Four bioclimatic variables and percent land cover

and edge density for ten NLCD habitat classes were checked

for multicollinearity with a threshold value >5.

Two candidate sets of climatic and landscape variables were

compiled based on their putative suitability to predict suitable

habitat for Cx. cedecei and rodent species which include the

hispid cotton rat, cotton mouse, and black rat, based on

published habitat observations or recorded host-utilization by

Cx. cedecei (6, 17, 26, 27, 54).
Model calibration and evaluation

Models were run in the ENMeval v.2.0.0 package in R using

the “glmnet” algorithm (55, 56). Georeferenced occurrence data

was partitioned into training and testing data internally using

the “ENMevaluate” function with a spatial block method to help

reduce potential bias from spatial autocorrelation. Candidate

models were generated separately for the two candidate sets

including either edge density or percent land cover values using

all combinations of the following feature classes: “linear”,

“product”, “quadratic”, “linear + product”, “quadratic + product”,

“linear + quadratic”, and “linear + product + quadratic”.

Regularization multiplier values ranged sequentially between 1

and 4. Models were evaluated using an information criterion

approach, ranking the models from lowest to highest Akaike’s

information criterion score (AIC) values and observing

differences between the AUC train and test values (57). The best

performing model was then run in Maxent (58) using the same

parameter settings, but running with 50 bootstrapped replicates,

and no extrapolation or clamping to produce variable response

curves. Models were then projected to a broader area across

Florida using the default “cloglog” output.
Results

Results of the blood meal analyses on mosquitoes captured

with resting shelters were categorized as vector-host interactions

and georeferenced to provide occurrence records for ecological

niche models. These models were used to predict where

suitable habitat for Cx. cedecei and EVEV rodent hosts

(cotton rats, cotton mice, and black rats), may be located, in

order to predict areas where higher potential EVEV

transmission may occur in Florida. A total of 175 blood

engorged Cx. cedecei were collected and processed as a part of

the present study. Of these, 150 blood meals (85.7%) were

successfully identified to vertebrate host species. There were
frontiersin.org
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an additional five host species identifications which were

identified from multiple host species blood meals, accounting

for a total of 155 vertebrate host identifications. Vertebrate

hosts included 13 species of mammal comprising 95.5% of

identifications, four species of birds (3.9% of all host

identifications), and one reptile host (Table 1). From the 155

host identifications, 68 (43.9%) were found to be derived from

one of the three rodent hosts, with 22 of the 68 rodent host

identifications from unique locations and used in the model

(Table 1). Another 27 georeferenced rodent blood meals were

compiled from previously published studies (16–18).

Calculations of the VIF initially showed correlation between

environmental variables, especially landscape metrics, resulting

in the evaluation of two separate candidate sets and the

elimination of the developed medium habitat classification in

the final set of variables. Two candidate variable sets were

used in model runs, each set included the four bioclim

variables and either the edge density habitat classes or the

percent land cover habitat classes (Supplementary Table S2).

All calculated VIF values were <5 for both candidate sets,

indicating low correlations between layers used for model

calibration.

A total of 48 models were generated using ENMeval across

the two candidate sets of environmental variables. The best

performing model in ENMeval was identified based on the

lowest AICc value = 920.3, a high AUC of the receiver

operating characteristic (ROC) (0.925) and a low difference in

the AUC of the ROC of the internal training and testing data
TABLE 1 Number and percent of total of host blood meals by host-class us

Host class Common name Latin name

Mammal
Nine-banded armadillo Dasypus novemcinct
Black rat Rattus rattus
Dog Canis lupus familiar
Rabbit Sylvilagus spp.
Eastern woodrat Neotoma floridana
Hispid cotton rat Sigmodon hispidus
Human Homo sapiens
Cotton mouse Peromyscus gossypin
Raccoon Procyon lotor
River otter Lontra canadensis
Virginia opossum Didelphis virginiana
White-tailed deer Odocoileus virginian
Wild boar Sus scrofa

Bird
Chicken Gallus gallus
Common yellowthroat Geothlypis trichas
Green heron Butorides virescens
Loggerhead shrike Lanius ludovicianus

Reptile
Brown anole Anolis sagrei

Total

Blood meals determined by PCR-based assays using primers which targeted the 16s rR

sequences were identified to vertebrate host species using the National Center for B

(BLAST).
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(0.057). The best model was generated using the “percent land

cover” variable set (Table 2), a combination of “linear”

+ “product” feature classes, and a regularization multiplier

value of 3. Results from the model run in the Maxent

software program using the same parameter values had an

AUC of the ROC value = 0.919. Four environmental variables

and nine habitat classifications were retained in the best

performing model (Table 2). Three of the four environmental

variables contributed to 80% of the model performance, with

maximum temperature of the warmest month contributing

the most (31.6%), followed by minimum temperature of the

coldest month (28.5%), and precipitation of the driest month

(19.9%) (Table 2). Precipitation of the wettest month

contributed the least to model performance of the four

environmental variables (4.6%). In contrast, landscape

variables including percent land cover contributed less to

model performance, with six of the nine variables

contributing <1.0% (Table 2). The three habitat classifications

contributing the greatest to the model performance included

emergent herbaceous wetlands (5.2%), woody wetlands (4.3%),

and developed open (2.7%).

For maximum temperature of the warmest month, the

environmental variable with the greatest percent contribution,

environmental suitability remained high across the entire

range of maximum temperature of the warmest month

(Figure 2). In contrast, environmental suitability generally

increased as maximum temperature of the coldest month

increased, with suitability tapering off at the highest
e and species use for Cx. cedecei in Florida.

Blood-meals (n) Percent of total (%)

148 95.5
us 6 3.9

9 5.8
is 1 0.6

34 21.9
10 6.5
49 31.6
1 0.6

us 10 6.5
7 4.5
1 0.6
15 9.7

us 4 2.6
1 0.6

6 3.9
3 1.9
1 0.6
1 0.6
1 0.6

1 0.6
1 0.6

155

NA and cytochrome b genes for reptiles, amphibians, birds, and mammals. DNA

iotechnology Information (NCBI) GenBank Basic Local Alignment Search Tool
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TABLE 2 Estimates of the relative contributions and permutation importance of each environmental and landscape variable used in the final model.

Variable Percent contribution Permutation importance

Max temperature of warmest month (bio5) 31.6 0.3

Min temperature of coldest month (bio6) 28.5 27.8

Precipitation of driest month (bio14) 19.9 3.9

Emergent herbaceous (percent land cover) (95) 5.2 6.2

Precipitation of wettest month (bio13) 4.6 4.1

Woody wetlands (percent land cover) (90) 4.3 4.8

Developed open (percent land cover) (21) 2.7 11.1

Mixed forest (percent land cover) (43) 0.9 0.3

Developed low (percent land cover) (22) 0.9 3.0

Cultivated crops (82) 0.8 0.9

Grassland/Herbaceous (percent land cover) (71) 0.5 4.4

Shrub/Scrub (percent land cover) (52) 0.1 1.0

Deciduous forest (percent land cover) (41) 0.1 0.3

Sloyer et al. 10.3389/fepid.2022.1046679
temperatures (Figure 2). Response curves for precipitation of

the driest month indicated a marginal decrease in suitability

with increased precipitation during the driest month, whereas

precipitation of the wettest month showed a slight decrease as

precipitation decreased during the wettest month (Figure 2).

The three habitat classifications contributing greatest to model

performance included the emergent herbaceous wetlands,

woody wetlands, and developed open landscapes (Table 2).

Suitability values for these variables all showed slight increases

as percent land cover increased for each of the classes

(Figure 2).

The model predicted that substantial areas of Florida are

suitable for Cx. cedecei feeding upon rodents, with large

suitable areas in the southern half of the Florida Peninsula,

and smaller areas along the Atlantic Coast, the central

peninsula, and the northern Gulf Coast (Figure 3). The area

of highest predicted environmental suitability was observed in

southernmost Florida, consisting of the Florida Keys, and the

majority of Collier, Miami-Dade and Monroe Counties.

Standard deviation values in these regions were low,

indicating lower variability in model outputs and higher

confidence in the predicted suitability in these areas

(Figure 3). Areas of high suitability were also predicted

throughout Lee County, Glades County, Highlands County,

the western half of Charlotte County, and the southern half of

Sarasota County, with areas of moderate suitability predicted

throughout much of these counties (Figure 3). Although low

suitability was predicted throughout the Miami Metropolitan

Area (City of Miami to West Palm Beach), there were pockets

of predicted high suitability on the western margins of these

urban areas, where they reach the greater Everglades area

(Figure 3). Standard deviation values were higher in these

transitional areas, indicating lower model confidence for these

areas (Figure 3). An area of patchy high suitability was

observed west of Cape Canaveral, consisting of substantial
Frontiers in Epidemiology 06
portions of five counties (Brevard, Lake, Orange, Osceola and

Seminole Counties) (Figure 3). Smaller low-to-moderate areas

of suitability are also predicted for coastal portions of the

entire Atlantic Coast, excluding the Miami Metropolitan area.

Small areas of the Florida Panhandle were predicted to have

low suitability for vector-host interactions (portions of

Franklin, Gulf and Leon Counties) (Figure 3). These areas of

low predicted suitability in the Panhandle had moderate

standard deviation values, indicating relatively high variability

in model confidence in these regions.
Discussion

The objective of this study was to model areas where EVEV

virus transmission could occur using georeferenced Cx. cedecei

blood meals derived from rodent hosts, to investigate whether

this method produces accurate models to predict the

distribution of the nidus of transmission. The best performing

model included four climate variables summarizing

parameters for precipitation and temperature, and nine

landscape variables using percent land cover data. Collectively,

climate variables contributed to 84.6% of the model, while

landscape variables contributed only 15.4% of the model. In

general, areas with the greatest predicted suitability for Cx.

cedecei feeding upon rodents included subtropical regions of

southern Florida, as well as less-developed areas in central

Florida (Figure 3). Other areas with high predicted suitability

included areas inland from Cape Canaveral through Lake

County, and along the Atlantic Coast (Figure 3).

Precipitation and temperature bioclimatic variables

contributed the greatest to model performance, suggesting

that climatic factors play an important role in constraining

the distribution where Cx. cedecei encounters and feeds upon

rodents. This is likely due to the way that water levels and
frontiersin.org
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FIGURE 2

Response curves of bioclimatic and habitat classification variables used in the final model. X-axes represent standardized values of model variables.
Only the seven variables contributing the most (>96%) to model performance were included in the figure.
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temperature limits throughout the year influence both the

subterranean larval habits of Cx. cedecei as well as the

reproductive cycles of the vertebrate hosts of EVEV. For

example, the model showed that suitability of Cx. cedecei

feeding on rodent hosts increased with increased minimum

temperatures during the coldest month, which corresponds to

the subtropical portions of the state (Figure 2). Since the

minimum temperature during the coldest month contributes a

substantial amount to the performance of our model, it is

understandable that much of southwestern Florida is

considered suitable for Cx. cedecei to feed on rodent hosts,

since these are where the warmest temperatures occur in
Frontiers in Epidemiology 07
Florida (59). This interpretation is supported by the finding

that suitability for Cx. cedecei feeding upon rodents remained

high, and even increased slightly, with increasing temperatures

during the warmest month (Figure 2), which contributed the

most to model performance (31.6%), indicating that Cx.

cedecei feeds upon rodents in tropical areas of the state.

Therefore, with potentially increased annual temperatures and

changes in mean daily minimum and maximum temperatures

predicted in the coming years due to climate change (60, 61),

prevalence of suitable areas were Cx. cedecei feeds upon

rodent hosts is likely to increase, especially in areas with

similar woody wetland coastal habitats such as areas along the
frontiersin.org
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FIGURE 3

Model projections of the predicted distribution of Cx. cedecei/
rodent host interactions in Florida. (A) Model predicting the
distribution of Everglades virus vector/host interaction in Florida,
USA including the calibration and projection region; red areas
indicate high predicted suitability, while blue areas predict low
suitability; (B) standard deviation of predicted suitability of the
model across 50 bootstrap replicates; yellow areas show areas
with higher standard deviation while blue areas indicate a lower
standard deviation.
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Gulf Coast including the Florida Panhandle, Louisiana, and the

Texas coast. Finally, that suitability for Cx. cedecei to feed on

rodent hosts decreased with increasing precipitation during

the driest month (contributing to 19.9% of model

performance) could be due to poorly defined wet and dry

seasons of temperate (northern) Florida, where Cx. cedecei is

not known to occur. However, that increased precipitation

during the driest months would decrease suitability for vector/

host interactions is somewhat surprising, considering that

most EVEV amplification is thought to occur during the
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months of July through October (the height of the wet

season) in the northern Everglades, when both hispid cotton

rats and cotton mice are concentrated in hardwood

hammocks of the Everglades (45). Because climate might be a

primary driver of the phenology of both vector and host, it is

predictable that precipitation and temperature variables had

such high contributions to model performance (24, 45).

Landscape variables contributed considerably less than

climate variables to the performance of the best model

(Table 2). The landscape variables with the greatest

contributions were percentage of emergent herbaceous wetland,

which contributed 5.2% to model performance, and percentage

of woody wetlands, contributing 4.6% (Table 2). Emergent

herbaceous wetlands constitute marshes, which cover a large

portion of the Greater Everglades Ecosystem, and during the

dry season, are important reproductive habitats for the cotton

rat and cotton mouse. Woody wetlands include mangrove

forests, cypress swamps, and hardwood swamps, which are

confirmed habitats of Cx. cedecei. Culex cedecei may encounter

and feed upon muroid rodents where these habitat classes

overlap, indicating that EVEV transmission may not be

restricted to the hardwood hammocks of the southern

Everglades ecosystem, as earlier studies indicated (15, 19, 23,

25, 45, 62). This is corroborated by Fish et al. (63) which

reported EVEV isolations from mosquito pools from diverse

habitats, including hardwood hammocks, mangroves, strand

swamp, and pinelands. Everglades virus was detected in

mosquitoes in all of these habitats in 2013 (a high-water year),

but in only hardwood hammocks in 2014 (a low-water year),

suggesting that hardwood hammocks may be primarily crucial

for the maintenance of EVEV during dry periods, likely

because hardwood hammocks provide subterranean refuge for

larval Cx. cedecei in limestone solution holes and are the only

available dry habitat accessible to rodents during periods of

high water (35). Although the landscape variables used here

did not contribute as much to model performance as expected,

it is possible that additional habitat variables such as water

table depth would have a more substantial impact on the

model, considering the larval habitat of Cx. cedecei in many

subterranean habitats such as solution-holes or crab burrows.

Areas predicted suitable for Cx. cedecei blood meals from

rodents corresponded closely to locations of historical EVEV

cases in humans and infections in wildlife, but not for a

recent serosurvey of dogs (Figure 4). The seven locations

where historical human cases and detection of antibody

presence of EVEV recorded from 1960 to 1971 occurred in

areas predicted to be moderate to highly suitable for Cx.

cedecei/rodent interactions in Florida, supporting the notion

that proximity to areas where Cx. cedecei actively feeds upon

rodent amplifying hosts could lead to higher spillover risk to

humans (30–33). In some areas, however, such as Vero Beach,

Florida, where a 78-year-old man was diagnosed with EVEV

in 1968, our models predict only moderately suitable
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FIGURE 4

Model projections of the predicted distribution of Cx. cedecei/
rodent host interactions in Florida, overlaid with historical
detections of infections and antibodies to EVEV in Florida. Dark
values represent higher probability of Cx. cedecei/rodent host
interactions. Dog symbols represent locations where EVEV
neutralizing antibodies were found in Florida dogs, rodent symbols
represent locations where EVEV neutralizing antibodies or EVEV
was detected in Florida wildlife, while human symbols represent
human disease due to EVEV.
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environments for Cx. cedecei/rodent host interactions for EVEV

(32). Vero Beach has undergone significant development since

the 1960’s, likely reducing suitable habitat for EVEV

transmission since that period (64). Georeferenced data of

antibody and virus detection in wildlife in Florida undertaken

in the 1970’s also show much overlap with areas predicted

highly suitable for Cx. cedecei blood meals from rodent hosts

(22, 24, 34), also supporting the importance of these

organisms in transmission of EVEV. In contrast, the predicted

distribution of Cx. cedecei blood meals from rodent hosts in

Florida do not overlap substantially with serological evidence

of EVEV exposure in sentinel dogs (36). Coffey et al. (36)

speculate that other vector species may be involved in

transmission of EVEV, however no other mosquito species in

Florida feeds heavily upon rodents, the only recognized

vertebrate hosts of EVEV (15, 65–69). Therefore, more work

is needed to determine whether Cx. cedecei occurs outside of

the regions predicted to be suitable for the presence of Cx.

cedecei feeding on rodent hosts in this study to help to

explain antibody detections in sentinel dogs in these areas.

Although most previous studies suggest that the distribution

of Cx. cedecei blood meals from rodent hosts are likely to be

accurately represented by our model, future studies of

arbovirus detection in other Florida mosquito and vertebrate

populations may still be warranted to rule out the possibility
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of other vector and host species involvement in the

transmission of EVEV.

In total, there were 14 locations where Cx. cedecei was

collected but no rodent blood meals were detected, indicating

that Cx. cedecei feeds readily upon nonrodents and host use of

this vector is influenced by local environment and available

mammals (16, 18). At most of these sites (13 of 14), insufficient

sampling (two or fewer blood meals), may have affected the lack

of rodent blood meals. However, given the naturally high

fraction of blood meals that Cx. cedecei takes from rodents

[>50% (15),], we expect that even with low sample sizes (n > 3)

rodent blood meals would be detected. At one location in Polk

County, three blood-engorged Cx. cedecei were analyzed, and

two females fed upon cottontail rabbit while a third fed upon

Virginia opossum, suggesting that even if Cx. cedecei does

encounter rodents at this site, its feeding upon rodents could be

too infrequent to support EVEV transmission.

This study has several limitations. Sampling was fairly

opportunistic, relying heavily upon properties with access

granted to mosquito control district personnel. More

sampling, across more sites distributed across all landcover

classes may have yielded additional insights into the

environmental drivers of vector-host contact. The assumption

that EVEV is maintained in nature solely by Cx. cedecei and

rodent amplifying hosts, while supported by many studies (15,

65–70), is not supported by evidence from EVEV-seropositive

dogs in areas of Florida that are far outside the known range

of Cx. cedecei (36). There are also other aspects of virus

transmission which are not considered in this model such as

pathogen presence and detection, vector competency of

varying populations of Cx. cedecei, and host competency of

rodent populations and subspecies (71) (vector and host

competence is known to change between populations of

mosquito species and subspecies of hosts). Pathogen presence

and detection was not undertaken as a part of this study

primarily because we wished to model the potential areas

where pathogen transmission might occur due to the

interactions between vectors and vertebrate hosts.

Furthermore, many thousands of mosquitoes (approximately

1,000 female mosquitoes per site) must be collected, identified

and pool screened by virus isolation or PCR to sample the

minimum number needed to detect EVEV in the vector,

exponentially increasing the effort and expense. We show that

with a small number of blood-engorged specimens per site,

the conditions conducive for transmission can be modelled

across the landscape. Including virus data may also limit risk

estimates, and potentially introduce spatial sampling biases

(12). Finally, in this effort, we did not compare predicted

distributions of Cx. cedecei rodent bloodmeals with predicted

distributions of vector or host species alone. Cotton rats have

a ubiquitous distribution occupying a broad range of habitats

in the study area and therefore model predictions may not be

widely informative. However, Sloyer et al. (2022) presents an
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ecological niche model predicting the potential distribution of

Cx. cedecei in Florida, which exhibits greater habitat

constraints, and this model output provides a valuable

resource for visual comparison.

In this study, we employ geographically referenced Cx.

cedecei blood meals to investigate whether locations where

vectors feed upon EVEV pathogen hosts can be used in

ecological niche modeling to predict areas where the potential

nidus of transmission may occur. This method should allow

for better inference of potential transmission areas than

models which only consider the vector or amplification host

species individually. Comparing predicted distributions of Cx.

cedecei feeding upon rodent hosts in the present study to

historical human cases of EVEV disease, as well as antibodies

in wildlife show substantial overlap with areas predicted

moderate to high for these vector/host associations. As such,

the findings of this study likely predict the most accurate

distribution of the nidus of EVEV to date. A similar approach

using host blood meals of other arboviruses can be used to

predict potential areas of virus transmission for other vector-

borne diseases such as eastern equine encephalitis virus, West

Nile virus, or St. Louis encephalitis virus in the United States.

Knowledge of areas where vectors feed on amplifying hosts of

arboviruses can infer risk to potential human spillover of

disease, drawing attention to areas where undiagnosed causes

of encephalitis or acute disease in humans could be the result

of arbovirus infection.
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