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Estimating above-ground biomass (AGB) is important for ecological assessment,
carbon stock evaluation, and forest management. This research assesses the
performance of the machine learning algorithms XGBoost, SVM, and RF using
data from the Sentinel-2 and Landsat-9 satellites. The study assesses the
influence of the significant spectral bands and vegetation indices on the
accuracy of the AGB estimate. The results presented in the paper indicate that
Sentinel-2 data weremore effective than Landsat-9 data. This is mainly because it
had higher spatial and spectral resolution, which enabled the model vegetation
gradients and structural attributes more accurately. The XGBoost model
performed the best with an R2 of 0.82 and RMSE of 0.73 Mg/ha with Sentinel-
2 and R2 of 0.80 and RMSE of 0.71 Mg/ha with Landsat-9. In the current study,
SVM also showed a substantial accuracy with an R2 of 0.79 and RMSE of 0.73 Mg/
ha for Sentinel-2 and R2 of 0.76 and RMSE of 0.80 Mg/ha for Landsat-9. For
Sentinel-2, the random forest achieved an R2 of 0.74 and an RMSE of 0.93 Mg/ha,
and Landsat 9 yielded an R2 of 0.72 and an RMSE of 0.88 Mg/ha. Thus, using
variable importance analysis, the results showed that vegetation indices and
spectral bands have higher importance in predicting AGB. As expected from their
application in biomass research, these predictors consistently emerged as highly
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significant across models and datasets. This study demonstrates the potential of
integrating machine learning with remote sensing data to achieve accurate and
efficient biomass assessment.

KEYWORDS

above-ground biomass (AGB), Larix principis-rupprechtii, remote sensing, machine
learning, Sentinel-2, and Landsat-9

1 Introduction

Forests are crucial for sustaining biodiversity, as they offer
crucial habitats that sustain diverse biodiversity. They are
essential for sustaining ecological balance and enhancing
biodiversity (Ali et al., 2023; Stephenson and Damerell, 2022).
Therefore, an estimate of the forestry biomass determines a given
ecosystem’s ability to capture carbon and maintain a stable carbon
stock (Jafri et al., 2022; Wang et al., 2022). Accurately assessing
forest biomass is critical for analyzing the global carbon cycle and
addressing numerous concerns, including climate change, Forest
strength, and service regulation (Hu et al., 2022; Titus et al., 2021).

Conventional field measurements or remote sensing techniques
often evaluate AGB in forests (Santoro et al., 2021). Satellite imagery
is better than traditional forest inventories and surveys using LiDAR
technology because it can cover larger areas at a lower cost and in
less time (López Serrano et al., 2022). Integrating reference values
within satellite data is a significant process in estimating
aboveground biomass or forest inventories from airborne LiDAR
more precisely (Campbell et al., 2021; Labrière et al., 2023).

The next step involves employing spatial prediction algorithms
to generate precise geographic proportions of AGB (Das et al., 2024;
Sun et al., 2023). Researchers have made significant progress in
mapping forest AGB by combining modeling methods with better
predictor applications from satellite data (Hojo et al., 2023). Past
research has shown that a combination of diverse remote sensing
techniques has successfully quantified and monitored biomass from
forests at a regional level (Coops et al., 2023; Zhang and Shao, 2021).
Consequently, current research indicates that diverse remote sensing
methods, encompassing both passive and active sensors, can
estimate AGB in a designated area (Ma et al., 2024). Researchers
frequently utilize optical remote sensing imagery, distinguished by
spatial, spectral, and temporal resolutions, to assess AGB at diverse
scales (Sedano et al., 2021). Researchers primarily employ moderate
and coarse-resolution data from the Moderate Resolution Imaging
Spectroradiometer (MODIS) (Shahzad et al., 2025; Wongsai
et al., 2020).

When looking at AGB on a small scale, medium-resolution data
from the Sentinel-2 and Landsat satellites is needed, when using
High-quality commercial satellite data from IKONOS, QuickBird,
and WorldView-2, it is possible to get a pretty good idea of AGB at
the forest stand-level (Fu et al., 2022; Lin et al., 2022). To estimate
AGB at the regional level with average spatial resolution, microwave
radar remote sensing data is required. These include synthetic
aperture radar (SAR), interferometric SAR (InSAR), and
polarimetric interferometric SAR (PolInSAR) data (Godinho
Cassol et al., 2021; Ramachandran et al., 2023). The first and
essential step in constructing accurate models for predicting AGB
is indicating the correct algorithm (Araza et al., 2022; Li et al., 2021).

Previous research has frequently used the traditional statistical
regression method for aboveground biomass (AGB) estimation
despite its simplicity and ease of computation (Luo et al., 2024).
This method employs a regression model that combines test data
and remote-sensing features (Han et al., 2019; Hussain et al., 2024).
It does not capture the correlation between forest AGB and RS data
(Zhang et al., 2022). Standard methodologies for predicting and
mapping AGB include interpolation techniques, non-parametric
models, and kriging. Researchers have utilized geo statistics for
AGB data to examine variations and develop sample designs for
satellite and field-based forest monitoring (Li et al., 2020b; Su et al.,
2020). It is challenging to map the continuous forest characteristics
in large, steep areas. Important site factors like soil type, texture,
nutrient status, solar flux density, moisture regime, and water
holding capacity affect the key tree attributes within different
stand types in terms of Diameter at breast height, height, and
volume. When establishing the inventory, measurements of forest
trees and AGB showed spatial dependency within small areas of
stand types (Carmenta et al., 2020; Octavia et al., 2022).

However, this spatial autocorrelation varies depending on the
community’s topographical conditions, residential zones, and the
locations of commercial logging activities (Gibson, 2018;
Shahzad et al., 2024). For AGB, it is clear that several studies
have pointed out the integration of remote sensing technology
with geostatistical and machine learning methods (Musekiwa
et al., 2022; Prăvălie et al., 2023). This combination is especially
advantageous for forecasting extensive regions characterized by
diverse bioclimatic conditions and irregular terrain (Masereti
Makori et al., 2024).

Remote sensing-based AGB estimation uses machine learning
techniques, including decision trees, random forests, and support
vector regression. These strategies improve the model’s ability to
provide accurate biomass predictions, mainly where nonlinearity is a
key reason. The literature published in the last decade reveals that
decision tree-based algorithms like Random Forest (RF) and
Gradient Boosting (GB) yield high accuracy in biomass
estimation modeling (Cameron et al., 2022; Ghasemloo et al.,
2022). Moreover, machine learning techniques encompass
numerous adjustable hyperparameters significantly influencing
the models. The adjustment of these settings has, at times, been
overlooked. Previous studies have shown that the tuning procedure
significantly influences the model performance, with the sensitivity
of parameters varying between stochastic gradient boosting and
random forests (Freeman et al., 2015; Li et al., 2020a; Prakash et
al., 2022).

Research gaps persist in integrating RS data with machine
learning models (XGBoost, SVM, and Random Forest) for
biomass prediction despite applying RS data, particularly
Sentinel-2 and Landsat-9 data, in biomass estimation. While
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earlier literature has established the superiority of high spatial
resolution imagery such as Sentinel-2 over low spatial resolution
imagery such as Landsat-9, there is still a lack of comparative
research on how these datasets perform under different
environmental conditions, especially in forests with structural
homogeneity and a 50-year-old Larix principis-ruprechtii in
Northern China. Some studies have established the
significance of vegetation indices like NDVI, TNDVI, and
NDI45 as biomass predictors. However, they have not
comprehensively studied their contribution to machine
learning algorithms such as XGBoost, SVM, and Random
Forest. However, there is still a lack of comprehensive
investigation into applying indices like GNDVI and NDI45 for
biomass modeling, particularly in temperate forests.

The present study is expected to enhance the precision and
generality of the AGB estimation in L. principis-rupprechtiiMayr
plantations at the Saihanba Mechanical Forest Farm in Hebei
Province, northern China. This is accomplished by integrating
machine learning techniques with remote sensing data. This
research aims to evaluate the performance of three popular
machine learning algorithms, namely XGBoost, Support
Vector Machine (SVM), and Random Forest (RF), to estimate
AGB using Sentinel-2 and Landsat-9 data.

2 Materials and methods

2.1 Location and description of the
study area

The study area included the Saihanba Forest Farm, which is
located in Hebei Province, northern China, and ranges
(41°22′– 42°58′N, 116°53′– 118°3′W). The research site is in the
warm temperate continental monsoon climate zone. The altitude of
the area is (1,010 ~ 1,940 m). The mean annual temperature is
(−1.2°C), and the average annual temperature range is from
(−43.3°C–33.4°C). The annual rainfall is (452.2 mm), and the
annual evaporation is 1,388 mm.

The typical soil types in the region include aeolian sandy soil,
meadow soil, brown soil, and grey forest soil. The total operating
area is 94,000 ha, of which the forest area is 73,333 ha, planted forest
57,333 ha, and natural forest 16,000 ha; the forest coverage rate is
80%, total forest volume is 5.025 million m3.

The most important vegetation zones include grassland,
meadow, conifer and broad-leaved mixed forest, broad-leaved
forest, and shrub forest; the forest density is 75.5%. The main
trees are L. principis-rupprechtii, Picea asperata Mast., and Betula
platyphylla Suk., and the main shrubs are Rhododendron

FIGURE 1
Location of the study sites in China, Chengde City, Hebei Province, Saihanba Mechanical Forest Farm.
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micranthum Turcz., Syringa oblata Lindl. var. alba Rehder., and
Sambucus williamsiiHance. The main herbaceous plants areGalium
verum L. and Menyanthes trifoliata L. (Tao et al., 2023; Xu et al.,
2022) (Figure 1).

2.2 Forest inventory and biomass estimation

We conducted a study for the forest inventory in August 2023.
We meticulously chose the sampling spots, excluding non-forest
regions. The study set up 45 sampling plots in total for the 50-year-
old L. principis-rupprechtii Mayr plantation. We recorded the
coordinates of each tree and plot, using Real-Time Kinematic
(RTK). For analysis, we recorded each plot’s elevation, aspect,
slope, height (in meters), stem density (trees per hectare), and
DBH, measured 1.3 m above the ground using a calibrated
diameter tape and caliper. Stem density was determined by
counting the number of trees within each plot. Tree heights were
measured using a Relascope (Almeida et al., 2021). Soil samples were
obtained from the upper 20 cm layer using a soil auger to determine
soil organic carbon (SOC) (Liu N. et al., 2021). These samples were
put in plastic bags, allowed to air dry, and then taken to a laboratory
for further tests.

To measure total biomass distribution, we use allometric
equations of all tree elements, such as stem, branches, leaves, and
roots. It allows for precise calculations of the distribution of above
and belowground biomass (Zhao et al., 2016). To estimate the

AGC and BGC amount, the obtained AGB and BGB values
were multiplied by 0.5, assuming that the total amount of
aboveground and belowground biomass had a 50% carbon
content (Aye et al., 2022; Eshetu and Hailu, 2020), (Figure 2),
(Supplementary Figure S3).

2.3 Pre-processing of Sentinel 2 and land set
9 satellite data and derivation of variables

The European Space Agency’s Sentinel-2 provides medium-
resolution multispectral imagery for Earth observation. Using the
Google Earth Engine (GEE) platform, acquired and pre-processed
Sentinel-2A and Landsat 9 images for the study area (https://
earthengine.google.com/). The Sentinel-2A data were ortho-
corrected bottom-atmospheric reflectance images, with Bands 2,
3, 4, and 8 selected for analysis, while Bands 1, 5, 6, and 9 were
excluded due to their relevance to atmospheric correction and
hydrological applications. Preprocessing included filtering out
images with cloud cover exceeding 5%, performed using the
Sen2Cor processor for Sentinel-2 Level-1C products. Cloud-
covered pixels were identified, masked, and corrected
accordingly. For Landsat 9, to do a complete analysis, carefully
pick and extract (4) bands (Band 2, Band 3, Band 4, Band 5) that are
thought to be important for lowering errors in estimating forest
AGB and making comparisons useful. The images with less than 5%
cloud cover were retained. We applied the CFMask algorithm,

FIGURE 2
Observed Above-Ground Biomass (AGB) (Mg/ha) by plot, Durning Forest Inventory.
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integrated into the Landsat Surface Reflectance product, to mask
cloud pixels, replacing them with maximum value composites for
data consistency. Both datasets were resampled to a common spatial
resolution (10 m for Sentinel-2 and 30 m for Landsat 9) using
bilinear interpolation and aligned to the WGS84 coordinate system.
The final preprocessed data were split into training (70%) and
validation (30%) samples. Comprehensive processing of Landsat
9 included orthorectification, georectification, and registration,
ensuring high-quality data. (Li et al., 2024), (Table 1), (Figure 3).

2.4 The extraction of remote sensor
parameters from field plots

Diverse methodological strategies are utilized to obtain field
remote-sensing data (Aslam et al., 2024). In this study, the

coordinates of the southwestern corner of each field plot were
used to define the center point, serving as the geographic anchor
for plot-level remote sensing data extraction. Satellite imagery from
Sentinel-2 and Landsat 9 was resampled to match the spatial extent
of the field plots as closely as possible. Despite these efforts, minor
spatial mismatches remained between the pixel grid and plot
boundaries due to geometric distortion, sensor resolution, and
terrain variability.

To reduce the effect of such spatial discrepancies, circular buffer
zones were applied: a 10-m radius for Sentinel-2 (10 m resolution)
and a 30-m radius for Landsat 9 (30 m resolution) around each plot
center. These buffer radii were selected to balance the minimization
of geolocation error with the need to avoid spectral contamination
from adjacent land covers with contrasting canopy structures. The
average pixel value within each buffer was extracted to represent the
spectral signal associated with each plot’s biophysical parameters

TABLE 1 Spectral band characteristics of Sentinel-2A and landsat 9 sensors.

Source Characteristics Predictors Descriptions

Sentinel-2A 10-m Multispectral Surface Reflectance Band 2 Visible Blue (0.458–0.523 μm)

Band 3 Visible Green (0.543–0.578 μm)

Band 4 Red (0.650–0.680 μm)

Band 8 Near-Infrared (0.785–0.900 μm)

Landsat 9 – OLI 30-m Multispectral Surface Reflectance Band 2 Visible Blue (0.450–0.51 μm)

Band 3 Visible Green (0.53–0.59 μm)

Band 4 Red (0.64–0.67 μm)

Band 5 Near-Infrared (0.85–0.88 μm)

FIGURE 3
A flowchart for evaluating Vegetation Indices and modeling algorithms for mapping forest Above Ground Biomass using Sentinel 2 and
Landsat 9 data.
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(Turner et al., 2015). While the buffer-based averaging approach
cannot eliminate all residual spatial discrepancies, it substantially
reduces the influence of pixel-level misalignment by integrating
spectral information across a spatial area representative of the plot.
This methodological choice reflects a practical balance between
spatial accuracy and ecological representativeness, commonly
adopted in similar fields–remote sensing integration studies. We
acknowledge that some degree of residual uncertainty may persist,
but this was considered during model interpretation and is not
expected to significantly bias the results at the scale of analysis.

2.5 Techniques of modeling and evaluation

The machine learning techniques were chosen because they can
handle the complicated problems of Forest biomass estimation,
where variables do not constantly interact in a straight line, there
are many predictors, and there are many drivers. This makes their
use, normalization, and insensitivity to outliers highly suitable. In
the case of evaluating multisensory indices against field-measured
AGB, we used Pearson’s product-moment correlation to perform a
paired analysis (Chen et al., 2018).

We checked and analyzed the provided dataset to overcome the
issue of multicollinearity. This approach included using the variance
inflation factor (VIF) to determine whether any variables were
redundant and, if so, to remove them (Mehmood et al., 2024a;
Thompson et al., 2017). We systematically removed predictor
variables with a coefficient magnitude of 0.8 or higher and high
VIF values of 10 or more from the set in regression analysis
(Kristensen et al., 2015; Pérez-Girón et al., 2020). The R
Statistical Computation program performed the analytical
operations (Table 2).

2.6 Enumeration of the tested algorithms

XGBoost, SVR, and RF should be used because these algorithms
efficiently disentangle intricate and non-linear connections in
natural systems such as the forest ecosystem (Zennaro et al.,
2021). These algorithms can select several essential predictor
factors independently and are well-equipped to handle datasets of
high dimensionality. They are robust, can perform ensemble
analysis, and employ state-of-the-art methods, aligning with our
accurate AGB estimation objective. Detailed evaluation of several
algorithms enhances the scientific credibility of the results and
ensures the selection of the most appropriate approach for
estimating AGB in temperate forests (Oehmcke et al., 2024;
Pham et al., 2023).

2.7 Machine learning methods

XGBoost is the collective model for learning that includes
gradient boosting and complicated regularization techniques to
improve its predictiveness. It consistently generates new models
to rectify errors in previous models while reducing a loss function
given by the user through the second-order Taylor expansion.
Researchers have found XGBoost highly effective for complex
and multiple-variable predictive modeling due to its lack of
missing values and overfitting problems (Mehmood et al., 2024b;
Zhang and Jánošík, 2024).

The SVR regression method transforms the input data into the
higher-dimensional space by the kernel function and attempts to
minimize the prediction errors by shifting a hyperplane. This
approach is beneficial in identifying non-linear relationships that
might exist in the data. Different regression problems can employ
SVR because it has low computational complexity and reasonable
empirical risk (Hussain et al., 2025; Lee et al., 2020). Random Forest
is a learning technique that integrates multiple decision trees
through a process known as bagging. This technique grows each
tree based on a bootstrap sample and employs the remaining data to
compute the out-of-bag (OOB) error. To find the best partition,
every node randomly chooses some explanatory variables.
Environmental modeling and habitat suitability evaluations
widely apply to random forests (RF) due to their applicability in
classification and regression problems (Anees et al., 2024; Teng
et al., 2023).

2.8 Optimizing model parameters

Some of the key parameters for hyperparameter tuning of the
XGBoost model include features such as “nrounds”/“boosting
iteration,” “max depth,” “min child weight,” “gamma,” and
“subsample.” We used a grid search approach to enhance the
model’s performance and identify the optimal parameters. The
variable importance measures for XGBoost are “Gain” and
“Frequency” (Asselman et al., 2023; Mehmood et al., 2025).

SVR tuning is done by choosing the kernel function and the “C”
parameter that defines the width of the margin and permits
misclassification. Thus, the authors have established that SVR’s
flexibility allows for effectively handling complex decision limits
(Mahmood et al., 2023; Shams et al., 2024). RF parameters include
“ntree,” which measures the number of trees, and “mtry,” which
indicates the number of features used randomly for splitting. Grid
search optimized the values of these parameters. We measured the
variable importance using the percent IncMSE and IncNodePurity
(Bouslihim et al., 2024; Li Yudong et al., 2020) (Table 3).

TABLE 2 Overview of machine learning models: Key features, parameters, and references.

Model Description Parameters References

XGBoost Gradient boosting algorithm Learning rate, Number of trees (n), Max depth Coffie and Cudjoe (2023)

SVM Support vector machine for regression Kernel type, C (regularization parameter) Bulut (2023)

RF Ensemble learning method Number of trees (n), Max features, Max depth Aziz et al. (2024)
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2.9 The performance of the models

The performance of the XGBoost, SVR, and RF algorithms for
each variable group was then compared. The evaluations used the
correlation coefficient r, RMAE, RRMSE, and mean error (MAE) to
enable comparison based on the following Equations 1–5
(Bouslihim et al., 2024; Liu H. et al., 2021). The approach with
the highest accuracy was assigned the predictive mapping of the
AGB distribution for each variable group.

In Equations 1–5, yi represents the observed Aboveground
Biomass (AGB) values, with n = 45. ŷⅈ represents the estimated
AGB values derived from each model, and �y denotes the mean of the
observed AGB values. The objective is to minimize the Root Mean
Squared Error (RMSE), Relative Mean Absolute Error (RMAE), and
Mean Error (ME), while maximizing the correlation coefficient r to
achieve more accurate predictions.

RMSE �
����������∑n
_i�1

yi − ŷi( )2
n

√√
(1)

RRMSE � (RMSE
�y

) × 100 (2)

MAE � ∑n
1

yi − ŷi
∣∣∣∣ ∣∣∣∣

n
(3)

MAE � (MAE
�y

) × 100 (4)

ME � ∑n
i

yi − ŷi( )
n

(5)

3 Results

3.1 Field observations and descriptive
statistics

Table 4 presents a comprehensive statistical overview of a 50-
year-old Larix principis-rupprechtii forest stand, providing insights

into its structural attributes and biomass dynamics. Despite the
homogeneity in species composition and age, the forest exhibits
notable variability in several key parameters, reflecting the inherent
complexity of natural systems. The mean DBH of 25.43 cm,
accompanied by a standard deviation of 1.31 cm, suggests a
moderate variation in tree size within the stand, typically ranging
from 22.61 cm to 29.05 cm. Similarly, tree height, with a mean of
19.42 m and a relatively low standard deviation of 0.89 m, points to a
uniform vertical structure, with tree heights distributed between
17.1 m and 21.64 m.

The stand density, averaging 677 trees per hectare, with an
extensive standard deviation of 146 trees per hectare, highlights the
variability in tree spacing and distribution, ranging from 450 to
1000 trees per hectare. The stand’s average AGB is 7.57 Mg/ha, with
a standard deviation of 1.44 Mg/ha and values ranging from 5.07 to
10.29Mg/ha. This variation in AGB reflects individual trees differing
growth potential and carbon sequestration capacity within the
stand (Table 4).

3.2 Correlation analysis of Sentinel-2 and
Landsat-9 data

The correlation study of Sentinel-2 and Landsat-9 data provided
key findings regarding the remote sensing predictors and AGB. For
Sentinel-2, figure (A) with correlation coefficients varying from
(0.32–0.58). Among the variables, vegetation indices emerged as
the most significant predictors, particularly TNDVI and NDI45,
showing correlations of (0.58). They emerged as the strongest
predictors of AGB.

Other indices, such as NDVI (0.56) and GNDVI (0.52), also
demonstrated strong correlations, reflecting their effectiveness in
integrating vegetation density and photosynthetic activity—key
factors influencing biomass accumulation. The NIR band (0.54)
showed a strong correlation among individual spectral bands.
Visible bands, such as Red (0.44) and Green (0.37), exhibited
moderate correlations, with indices like SAVI (0.39) and
MSAVI2 (0.42) showing secondary relevance. The WDVI (0.32)
exhibited the weakest correlation.

TABLE 3 Optimizing algorithm hyperparameters for peak performance.

XGBoost n_estimators = 75, Max_depth = 9, Learning_rate = 0.1, Reg_lambda = 1, Gamma = None,
Colsample_bytree = 0.8

SVM Kernel = rbf, Gamma = 1.5, C = 4

Random Forest (RF) n_estimators = 350, Criterion = mse, Max_depth = none, Min_samples_split = 6, Min_samples_leaf = 2, Max_features = auto, Bootstrap =
true, n_jobs = 1

TABLE 4 Forest stand descriptive statistics.

Parameters Mean Standard error Median Standard deviation Minimum Maximum

DBH (cm) 25.43 0.20 25.34 1.31 22.61 29.05

Height (m) 19.42 0.13 19.42 0.89 17.10 21.64

Density (ha−1) 677 21.9 675 146.88 450 1000

AGB (Mg ha−1) 7.57 0.21 7.54 1.44 5.07 10.29
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In the case of Landsat-9 figure (B), the correlation coefficients
varied between (0.30–0.56), with TNDVI (0.56), NDVI (0.53), and
NDI45 (0.55) emerging as the top predictors of AGB. The band B5,
(0.50) and band B4, (0.42) showed moderate correlations. However,
soil background and atmospheric conditions often influence visible
bands like B2 and B3, exhibiting weaker correlations (0.30) and
(0.35). Some vegetation indices, such as PSSRa (0.43) and MSAVI2
(0.38), also showed moderate correlations, suggesting their
complementary role in enhancing model performance.

The WDVI (0.30) displayed the weakest correlation,
highlighting its limited predictive power for AGB in the context
of Landsat-9 data. When comparing the two datasets, Sentinel-2
consistently outperformed Landsat-9 regarding correlation strength
across all variables. Sentinel-2’s superior spatial and spectral
resolution allows for precisely capturing vegetation characteristics
like canopy structure, leaf area index, and photosynthetic activity.
Stronger connections are seen between Sentinel-2-derived indices
like TNDVI and NDVI, showing that it can accurately model
AGB (Figure 4).

3.3 Variable importance analysis for AGB
estimation

The variable importance analysis of predictors from Sentinel-2
and Landsat 9 images shows essential details about how they
improve the performance of machine learning models such as
XGBoost, SVM, and Random Forest (RF). The present work
focuses on the effects of the spectral bands and vegetation indices
on the model’s biomass and carbon stock assessment performance.
Sentinel-2 shows that GNDVI and GEMI are the most influential

predictors across all models, particularly within the XGBoost.
GNDVI stands out due to its high sensitivity to plant properties,
capturing subtle changes in vegetation vigor. It is a key variable for
modeling above-ground biomass (AGB) and carbon stock because it
can distinguish between important biophysical features like
chlorophyll content and leaf area. Similarly, Landsat 9 highlights
the ND145 index as the most important predictor, excelling
particularly in XGBoost. ND145 can tell a lot about the health of
plants; it can find changes in leaf area and chlorophyll content,
which are important biophysical features for figuring out biomass
and carbon stock. Both Sentinel-2 and Landsat 9 datasets reveal that
indices such as SAVI, TNDVI, WDVI, PSSRa, and IPVI contribute
moderately to the model’s performance. These indices provide
valuable Supplementary Information on vegetation structure,
density, and canopy properties, further refining biomass estimates.

In particular, WDVI and PSSRa in the Sentinel-2 and Landsat
9 datasets make notable contributions by capturing information
related to vegetation moisture content and plant stress, which are
important for biomass modeling under varying environmental
conditions. To further clarify their relative importance, we
quantified and compared the normalized variable importance
scores of vegetation indices across the XGBoost, SVM, and RF
models. This comparison revealed that although GNDVI
consistently ranked highest in both datasets (e.g., 0.183 in
Sentinel-2 and 0.064 in Landsat-9 using XGBoost), indices such
as WDVI (Sentinel-2: 0.026 in XGBoost; Landsat-9: 0.045) and
PSSRa (Sentinel-2: 0.030; Landsat-9: 0.045) demonstrated moderate
yet model-consistent importance across all approaches. The
systematic comparison also showed that WDVI and PSSRa
ranked higher in RF and SVM models relative to XGBoost,
indicating that their influence varies by algorithm but remains

FIGURE 4
Demonstrates how different predictors relate to the field-measured biomass, Sentinel 2 (A) and Landsat 9 (B).
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non-negligible. These findings are summarized in Supplementary
Tables S1, S2, where the importance values of each VI across models
are presented. This numerical evidence strengthens our
interpretation of the ecological relevance of these indices in AGB
estimation (Figure 5).

3.4 Performance evaluation using Sentinel-2
and Landsat-9 data

For this study, we used data from Sentinel-2 and Landsat-9 to
compare how well three machine learning models—XGBoost,
Support Vector Machine (SVM), and Random Forest (RF)—
estimated AGB. Even though Landsat-9 has lower spatial and
spectral resolution than Sentinel-2, both datasets helped estimate
biomass, but Sentinel-2 consistently did better than Landsat-9.

XGBoost consistently delivered the best performance across
both datasets. With Sentinel-2, it achieved a coefficient of
determination R2 of 0.82, an RMSE of 0.73 Mg/ha, and an MAE
of 0.60 Mg/ha, while for Landsat-9, it achieved an R2 of 0.80, an
RMSE of 0.71 Mg/ha, and an MAE of 0.58 Mg/ha. Sentinel-2’s high
spatial and spectral resolution made it easier for the model to pick up
on small changes in canopy reflectance, vegetation structure, and
biomass-related parameters, which led to lower error metrics.
However, XGBoost maintained robust performance with Landsat-
9, demonstrating adaptability across datasets with varying
resolutions. The SVM model also exhibited strong performance,
with Sentinel-2 achieving an R2 of 0.79, RMSE of 0.73 Mg/ha, and
MAE of 0.63 Mg/ha, while Landsat-9 produced an R2 of 0.76, RMSE
of 0.80 Mg/ha, and MAE of 0.66 Mg/ha.

SVM’s capacity to model non-linear relationships was evident,
especially with appropriate kernel selection, making it a viable
alternative for biomass estimation. In contrast, Random Forest

(RF) showed the weakest performance, with Sentinel-2 yielding
an R2 of 0.74, RMSE of 0.93 Mg/ha, and MAE of 0.76 Mg/ha,
and Landsat-9 producing an R2 of 0.72, RMSE of 0.88 Mg/ha, and
MAE of 0.74 Mg/ha. RF’s performance lagged behind the other
models, particularly with Landsat-9, where its reduced ability to
capture fine-scale variations in vegetation structure likely
contributed to the lower accuracy. The coarser resolution of
Landsat-9 likely hindered RF’s capacity to capture the variability
needed for precise biomass estimation effectively. Overall, the results
highlight the critical influence of satellite data resolution on model
performance, with Sentinel-2 providing superior results due to its
higher resolution. However, Landsat-9, despite its limitations,
remains a valuable tool for global biomass estimation,
particularly when paired with effective machine-learning models
like XGBoost and SVM (Figure 6).

3.5 Comparative analysis of Sentinel-2 and
Landsat-9 for AGB mapping using machine
learning models

Comparing Sentinel-2 and Landsat-9-based AGB predictions
made with XGBoost, SVM, and Random Forest models shows how
spatial and spectral resolution affects the accuracy of biomass
mapping. The Sentinel-2-based maps in Figure 7 (S1, S2, S3) had
better spatial resolution. The AGB values ranged from
(5.39–9.15 Mg/ha), showing apparent differences in biomass
across the study area. The XGBoost model, in particular, excelled
in delineating high and low-biomass zones, reflecting its ability to
model complex spatial patterns with high precision.

The SVM model had similar biomass ranges, but the changes
between biomass classes were smoother because it uses a kernel-
based approach that values global trends over local variability. The

FIGURE 5
Shows the variable’s importance derived from XGboost, SVM, and RF from Sentinel 2 (A), Landsat 9 (B).
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FIGURE 6
Predicted above-ground biomass (AGB) using Sentinel-2 (A–C) and Landsat-9 (D–F) data.

FIGURE 7
The study developed maps of AGB using the (XGBoost, SVM, RF) models, and data from the Sentinel 2 (S1, S2, S3) Landsat 9 (L1, L2, L3).
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Random Forest model, in contrast, displayed more localized spatial
noise, with a slightly wider range of AGB predictions from
(4.71–10.15 Mg/ha).

When the same models were used on Landsat-9 data Figure 7
(L1, L2, L3), the lower spatial resolution, but the overall trends in
biomass distribution were still well captured. XGBoost’s predictions
for Landsat-9 resembled those of Sentinel-2, highlighting its
robustness in handling data with lower resolution. The SVM
model again showed smoother transitions, while the Random
Forest model introduced more variability and noise, particularly
with the Landsat-9 dataset. A comparison of the two data sets
showed that Sentinel-2, which had a higher resolution, consistently
made more accurate and detailed biomass maps. On the other hand,
Landsat-9, which had a lower resolution, could still make accurate
biomass predictions for larger-scale uses. Among the machine
learning models, XGBoost consistently outperformed the others
regarding spatial accuracy, its ability to capture non-linear
relationships, and model complex interactions between input
features. This study underscores the importance of selecting the
appropriate remote sensing data and machine learning model for
biomass estimation, with Sentinel-2 offering clear advantages for
studies requiring fine-scale detail and XGBoost emerging as the
most effective model for both datasets. The findings have significant
implications for ecological monitoring, carbon accounting, and
sustainable land management, highlighting the potential for
combining high-resolution satellite data with advanced machine-
learning techniques to improve AGB mapping (Figure 7).

4 Discussion

This research assesses the capability of Sentinel-2 and
Landsat-9 satellite data integrated with machine learning
models for predicting AGB in a 50-year-old Larix principis-
rupprechtii forest stand. It uses sound statistical and machine-
learning techniques to demonstrate the usefulness of both
Sentinel-2 and Landsat-9 satellite data in estimating forest
biomass. The results are helpful for carbon stock assessment,
forest evaluation, and land-use activities.

4.1 Comparisons of correlation analysis

The results consistently demonstrate that Sentinel-2
outperforms Landsat-9 in AGB estimation, attributable to
Sentinel-2’s higher spatial and spectral resolution. Indices from
Sentinel-2, like TNDVI and ND145 (correlation = 0.58) and
NDVI (correlation = 0.56), had stronger links with AGB.
Landsat-9 counterparts (TNDVI = 0.56), (ND145 = 0.55), and
NDVI = 0.53) did. This finding aligns with Castillo et al. (2017),
who highlighted the advantages of higher-resolution imagery in
capturing fine-scale vegetation gradients and structural attributes
critical for biomass estimation.

Fassnacht et al. (2021) found through a correlation analysis
between remote-sensing variables and field-measured AGB. These
indices rely on the spectrum’s NIR and red edge regions, making
them sensitive to canopy architecture, chlorophyll content, and
vegetation vigor.

4.2 The variable importance analysis

A study of the variable importance of Sentinel-2 and Landsat
9 images shows how important spectral bands and vegetation
indices are in machine-learning models for estimating biomass
and carbon stock. This study found that GNDVI was the best
predictor for Sentinel-2 data in all models, especially in XGBoost.
This is similar to Morales-Gallegos et al. (2023), Its sensitivity to
subtle variations in vegetation properties, such as chlorophyll
content and leaf area, positions it as an essential feature for
biomass modeling. Similarly, NDI45 in Landsat 9 was the best
predictor, especially in XGBoost. This aligns with recent research
highlighting how indices like NDI45 and modified versions can
capture important vegetation dynamics for biomass estimation
(Pham et al., 2020). The study also revealed that other indices,
such as WDVI and SAVI, had a relatively low correlation with
biomass. Despite their application in remote sensing for vegetation
and biomass estimation. The results are similar to those of Moghimi
et al. (2024), who reported that these indices do not significantly
contribute to biomass estimation.

Our findings demonstrate that WDVI and PSSRa in Landsat
9 play a crucial role. The results were consistent with the findings of
Vidican et al. (2023), WDVI and PSSRa in Landsat 9 contributed to
capturing moisture stress and vegetation health, which is crucial for
biomass modeling, this study also found that spectral bands like Red
and Blue in Sentinel-2 and Band 3 in Landsat 9 significantly affected
biomass estimation.

These findings resonate with the work of Dong et al. (2020), who
highlighted the importance of these bands for accurate biomass and
carbon stock assessment. Overall, Sentinel-2 and Landsat 9 data
complement each other well. Using them together improves model
performance, making tracking vegetation and classifying land
cover easier.

4.3 Comparison of model performance

The results reveal that XGBoost consistently outperformed SVM
and Random Forest across the Sentinel-2 and Landsat-9 datasets,
achieving higher R2 values and lower error metrics. For Sentinel-2
data, XGBoost attained an (R2 = 0.82), SVM (R2 = 0.79), and
Random Forest (R2 = 0.74). Similarly, with Landsat-9, XGBoost
achieved an R2 of 0.80, outperforming SVM (R2 = 0.76) and Random
Forest (R2 = 0.72). These results are similar to those of Liu H. et al.
(2021), who reported that XGBoost’s gradient-boosting method is
excellent at dealing with complicated, non-linear interactions in
environmental datasets, especially when estimating biomass.

Similarly, Li et al. (2022) found that XGBoost outperformed
traditional tree-based methods for forest biomass modeling,
particularly when integrating multiple vegetation indices. New
research from Miao et al. (2022) supports XGBoost’s ability to
provide high accuracy, especially when combining data from
different sources like Sentinel-2 and Landsat-9, which allows a
more complex understanding of how plants change over time.
SVM exhibited strong predictive capabilities, particularly in
capturing non-linear relationships. However, its performance was
slightly lower than XGBoost across both datasets, with Sentinel-2
results showing an RMSE of (0.73 Mg/ha) compared to XGBoost’s
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(0.69 Mg/ha). This finding is similar to Mehmood et al. (2012), but
its kernel-based approach can sometimes make differences too
smooth. also, this tendency highlights the need for careful kernel
selection to ensure robust spatial transitions. Random Forest
produced comparatively lower accuracy, particularly with
Landsat-9 data, which recorded an RMSE of 0.88 Mg/ha. Thanh
Noi and Kappas. (2017) reported that RF has been popular among
ecological modeling techniques because of its stability and
applicability for high-dimensional data. Yin et al. (2021),
reported that its sensitivity to noise and potential overfitting in
complex landscapes has been underscored in studies.

4.4 Recommendations

Future research should further integrate complementary
datasets, such as LiDAR and hyperspectral imagery, to improve
biomass prediction accuracy. Multitemporal analyses that account
for seasonal and phenological variations could offer a more dynamic
understanding of biomass changes. Also, creating ensemble methods
that use the best parts of several machine learning models could
avoid the problems that come with single algorithms and make
predictions more accurate in complex and varied environments.

5 Conclusion

This study showed that remote sensing data from both Sentinel-
2 and Landsat-9 can estimate the AGB of a L. principis-rupprechtii
forest stand. It focused on the performance evaluation of the
developed machine learning models, including XGBoost, SVM,
and RF. The paper concludes that Sentinel-2, with higher spatial
and spectral resolution, performs better in estimating biomass than
Landsat-9, resulting in higher accuracy and detailed AGB
prediction. It was discovered that to get a good picture of plants’
canopy structure and biomass’s most important chlorophyll
content, use vegetation indices like TNDVI and NDI45 along
with spectral bands like NIR.

The correlation analysis indicated that indices from Sentinel-
2 had excellent correlations with AGB compared to the indices
from Landsat-9. This demonstrates the significance of spatial and
spectral resolution in remote sensing applications. Nevertheless,
due to the coarser spatial resolution of Landsat-9, the results were
helpful in larger-scale biomass mapping, especially when
integrated with machine learning algorithms such as XGBoost
and SVM, which showed good flexibility in handling data of
different spatial resolutions. XGBoost was the best model in this
study, with the highest accuracy in biomass predictions, followed
by SVM, which was also very good at capturing non-linear
patterns. The study that compared Sentinel-2 and Landsat-9
for AGB mapping demonstrates how valuable it could be to
use remote sensing data in combination with modern machine
learning techniques to obtain more accurate and less time-
consuming biomass estimates. This approach has much
potential for ecological assessment, carbon stock estimation,
and sustainable forest management, particularly in areas that
need accurate biomass information to address climate change
and conserve biological diversity.

While Sentinel-2 provides superior accuracy for high-resolution
biomass mapping, Landsat-9 remains a valuable tool for large-scale
applications, especially when paired with effective machine-learning
models. The findings from this study highlight the importance of
selecting the appropriate remote sensing platform and machine
learning technique to optimize biomass estimation, thereby
contributing to the broader field of remote sensing-based
environmental monitoring. Future research should focus on
integrating multi-temporal satellite data and exploring more
advanced machine learning algorithms to further enhance the
accuracy and applicability of biomass mapping for global carbon
accounting and sustainable land management initiatives.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding authors.

Author contributions

JA: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Software, Validation, Visualization,
Writing – original draft, Writing – review and editing. WHa:
Resources, Writing – original draft, Writing – review and editing.
KM: Software, Writing – original draft, Writing – review and
editing. WHu: Formal Analysis, Software, Writing – original
draft, Writing – review and editing. FI: Resources, Writing –

original draft, Writing – review and editing. FS: Writing –

original draft, Writing – review and editing. KH: Writing –

original draft, Writing – review and editing. YQ: Funding
acquisition, Project administration, Supervision, Writing –

original draft, Writing – review and editing. JZ: Funding
acquisition, Project administration, Supervision, Writing –

original draft, Writing – review and editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. Effects of spatial variability
and biological factors on trunk respiration of L. principis-rupprechtii
and its internal mechanism: Grant Number: 31870387.

Acknowledgments

This work was made possible by the support, cooperation, and
collaboration of the SaihanbaMechanical Forest Farm staff provided
invaluable assistance and expertise throughout the project. The
Hebei Forest Department members also played a crucial role in
supporting our efforts. The (State Key Laboratory of Efficient
Production of Forest Resources) contributed significantly with
their advanced research and resources. Furthermore, the
(Engineering Technology Research Center of Pinus tabuliformis
of National Forestry and Grassland Administration) offered

Frontiers in Environmental Science frontiersin.org12

Ali et al. 10.3389/fenvs.2025.1577298

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1577298


essential technological insights and guidance. Their collective efforts
were instrumental in the successful completion of this work.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fenvs.2025.1577298/
full#supplementary-material

References

Ali, J., Malik, S. U., Ashraf, M. I., Zhongkui, J., Husnain, Z., and Gulzar, S. (2023).
Exploring the potential of carbon sequestration in sub-tropical pine forest ecosystem: a
case study in district kurram, Pakistan. Sarhad J. Agric. 39. doi:10.17582/JOURNAL.
SJA/2023/39.3.647.654

Almeida, A., Gonçalves, F., Silva, G., Mendonça, A., Gonzaga, M., Silva, J., et al.
(2021). Individual tree detection and qualitative inventory of a eucalyptus sp. Stand
using uav photogrammetry data. Remote Sens. (Basel) 13, 3655. doi:10.3390/rs13183655

Anees, S. A., Mehmood, K., Rehman, A., Rehman, N. U., Muhammad, S., Shahzad, F.,
et al. (2024). Unveiling fractional vegetation cover dynamics: a spatiotemporal analysis
using MODIS NDVI and Machine Learning. Environ. Sustain Indic. 24, 100485. doi:10.
1016/j.indic.2024.100485

Araza, A., de Bruin, S., Herold, M., Quegan, S., Labriere, N., Rodriguez-Veiga, P., et al.
(2022). A comprehensive framework for assessing the accuracy and uncertainty of
global above-ground biomass maps. Remote Sens. Environ. 272, 112917. doi:10.1016/j.
rse.2022.112917

Aslam, R. W., Shu, H., Tariq, A., Naz, I., Ahmad, M. N., Quddoos, A., et al. (2024).
Monitoring landuse change in Uchhali and Khabeki wetland lakes, Pakistan using
remote sensing data. Gondwana Res. 129, 252–267. doi:10.1016/j.gr.2023.12.015

Asselman, A., Khaldi, M., and Aammou, S. (2023). Enhancing the prediction of
student performance based on the machine learning XGBoost algorithm. Interact.
Learn. Environ. 31, 3360–3379. doi:10.1080/10494820.2021.1928235

Aye, W. N., Tong, X., and Tun, A. W. (2022). Species diversity, biomass and carbon
stock assessment of Kanhlyashay Natural Mangrove Forest. Forests 13, 1013. doi:10.
3390/f13071013

Aziz, G., Minallah, N., Saeed, A., Frnda, J., and Khan, W. (2024). Remote sensing
based forest cover classification using machine learning. Sci. Rep. 14, 69. doi:10.1038/
s41598-023-50863-1

Bouslihim, Y., John, K., Miftah, A., Azmi, R., Aboutayeb, R., Bouasria, A., et al. (2024).
The effect of covariates on Soil Organic Matter and pH variability: a digital soil mapping
approach using random forest model. Ann GIS 30, 215–232. doi:10.1080/19475683.
2024.2309868

Bulut, S. (2023). Machine learning prediction of above-ground biomass in pure
Calabrian pine (Pinus brutia Ten.) stands of the Mediterranean region, Türkiye. Ecol.
Inf. 74, 101951. doi:10.1016/j.ecoinf.2022.101951

Cameron, H. A., Panda, P., Barczyk, M., and Beverly, J. L. (2022). Estimating boreal
forest ground cover vegetation composition from nadir photographs using deep
convolutional neural networks. Ecol. Inf. 69, 101658. doi:10.1016/j.ecoinf.2022.101658

Campbell, M. J., Dennison, P. E., Kerr, K. L., Brewer, S. C., and Anderegg, W. R. L.
(2021). Scaled biomass estimation in woodland ecosystems: testing the individual and
combined capacities of satellite multispectral and lidar data. Remote Sens. Environ. 262,
112511. doi:10.1016/j.rse.2021.112511

Carmenta, R., Coomes, D. A., DeClerck, F. A. J., Hart, A. K., Harvey, C. A., Milder, J.,
et al. (2020). Characterizing and evaluating integrated landscape initiatives.One Earth 2,
174–187. doi:10.1016/j.oneear.2020.01.009

Castillo, J. A. A., Apan, A. A., Maraseni, T. N., and Salmo, S. G. (2017). Estimation and
mapping of above-ground biomass of mangrove forests and their replacement land uses
in the Philippines using Sentinel imagery. ISPRS J. Photogrammetry Remote Sens. 134,
70–85. doi:10.1016/j.isprsjprs.2017.10.016

Chen, L., Ren, C., Zhang, B., Wang, Z., and Xi, Y. (2018). Estimation of forest above-
ground biomass by geographically weighted regression and machine learning with
sentinel imagery. Forests 9, 582. doi:10.3390/f9100582

Coffie, G. H., and Cudjoe, S. K. F. (2023). Using extreme gradient boosting (XGBoost)
machine learning to predict construction cost overruns. Int. J. Constr. Manag. 24,
1742–1750. doi:10.1080/15623599.2023.2289754

Coops, N. C., Tompalski, P., Goodbody, T. R. H., Achim, A., and Mulverhill, C.
(2023). Framework for near real-Time forest inventory using multi source remote
sensing data. Forestry 96, 1–19. doi:10.1093/forestry/cpac015

Das, B., Patnaik, S. K., Bordoloi, R., Paul, A., and Tripathi, O. P. (2024). Prediction of
forest aboveground biomass using an integrated approach of space-based parameters,
and forest inventory data. Geol. Ecol. Landscapes 8, 381–393. doi:10.1080/24749508.
2022.2139484

Dong, T., Liu, J., Qian, B., He, L., Liu, J., Wang, R., et al. (2020). Estimating crop
biomass using leaf area index derived from Landsat 8 and Sentinel-2 data. ISPRS
J. Photogrammetry Remote Sens. 168, 236–250. doi:10.1016/j.isprsjprs.2020.08.003

Eshetu, E. Y., and Hailu, T. A. (2020). Carbon sequestration and elevational gradient:
the case of Yegof mountain natural vegetation in North East, Ethiopia, implications for
sustainable management. Cogent Food Agric. 6, 1733331. doi:10.1080/23311932.2020.
1733331

Fassnacht, F. E., Poblete-Olivares, J., Rivero, L., Lopatin, J., Ceballos-Comisso, A., and
Galleguillos, M. (2021). Using Sentinel-2 and canopy height models to derive a
landscape-level biomass map covering multiple vegetation types. Int. J. Appl. Earth
Observation Geoinformation 94, 102236. doi:10.1016/j.jag.2020.102236

Freeman, E. A., Moisen, G. G., Coulston, J. W., and Wilson, B. T. (2015). Random
forests and stochastic gradient boosting for predicting tree canopy cover: comparing
tuning processes and model performance. Can. J. For. Res. 46, 323–339. doi:10.1139/
cjfr-2014-0562

Fu, B., Sun, J., Wang, Y., Yang, W., He, H., Liu, L., et al. (2022). Evaluation of LAI
estimation of mangrove communities using DLR and ELR algorithms with UAV,
hyperspectral, and SAR images. Front. Mar. Sci. 9. doi:10.3389/fmars.2022.944454

Ghasemloo, N., Matkan, A. A., Alimohammadi, A., Aghighi, H., and Mirbagheri, B.
(2022). Estimating the agricultural Farm soil moisture using spectral indices of Landsat
8, and sentinel-1, and artificial neural networks. J. Geovisualization Spatial Analysis 6,
19. doi:10.1007/s41651-022-00110-4

Gibson, J. (2018). Forest loss and economic inequality in the Solomon Islands: using
small-area estimation to link environmental change to welfare outcomes. Ecol. Econ.
148, 66–76. doi:10.1016/j.ecolecon.2018.02.012

Godinho Cassol, H. L., De Oliveira E Cruz De Aragão, L. E., Moraes, E. C., De Brito
Carreiras, J. M., and Shimabukuro, Y. E. (2021). Quad-pol advanced land observing
satellite/phased array L-band synthetic aperture radar-2 (ALOS/PALSAR-2) data for
modelling secondary forest above-ground biomass in the central Brazilian amazon. Int.
J. Remote Sens. 42, 4985–5009. doi:10.1080/01431161.2021.1903615

Han, L., Yang, G., Dai, H., Xu, B., Yang, H., Feng, H., et al. (2019). Modeling maize
above-ground biomass based on machine learning approaches using UAV remote-
sensing data. Plant Methods 15, 10. doi:10.1186/s13007-019-0394-z

Hojo, A., Avtar, R., Nakaji, T., Tadono, T., and Takagi, K. (2023). Modeling forest
above-ground biomass using freely available satellite and multisource datasets. Ecol. Inf.
74, 101973. doi:10.1016/j.ecoinf.2023.101973

Hu, Y., Zhang, Q., Hu, S., Xiao, G., Chen, X., Wang, J., et al. (2022). Research progress
and prospects of ecosystem carbon sequestration under climate change (1992–2022).
Ecol. Indic. 145, 109656. doi:10.1016/j.ecolind.2022.109656

Hussain, K., Badshah, T., Mehmood, K., Shahzad, F., Anees, S. A., Khan, W. R., et al.
(2025). Comparative analysis of sensors and classification algorithms for land cover

Frontiers in Environmental Science frontiersin.org13

Ali et al. 10.3389/fenvs.2025.1577298

https://www.frontiersin.org/articles/10.3389/fenvs.2025.1577298/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenvs.2025.1577298/full#supplementary-material
https://doi.org/10.17582/JOURNAL.SJA/2023/39.3.647.654
https://doi.org/10.17582/JOURNAL.SJA/2023/39.3.647.654
https://doi.org/10.3390/rs13183655
https://doi.org/10.1016/j.indic.2024.100485
https://doi.org/10.1016/j.indic.2024.100485
https://doi.org/10.1016/j.rse.2022.112917
https://doi.org/10.1016/j.rse.2022.112917
https://doi.org/10.1016/j.gr.2023.12.015
https://doi.org/10.1080/10494820.2021.1928235
https://doi.org/10.3390/f13071013
https://doi.org/10.3390/f13071013
https://doi.org/10.1038/s41598-023-50863-1
https://doi.org/10.1038/s41598-023-50863-1
https://doi.org/10.1080/19475683.2024.2309868
https://doi.org/10.1080/19475683.2024.2309868
https://doi.org/10.1016/j.ecoinf.2022.101951
https://doi.org/10.1016/j.ecoinf.2022.101658
https://doi.org/10.1016/j.rse.2021.112511
https://doi.org/10.1016/j.oneear.2020.01.009
https://doi.org/10.1016/j.isprsjprs.2017.10.016
https://doi.org/10.3390/f9100582
https://doi.org/10.1080/15623599.2023.2289754
https://doi.org/10.1093/forestry/cpac015
https://doi.org/10.1080/24749508.2022.2139484
https://doi.org/10.1080/24749508.2022.2139484
https://doi.org/10.1016/j.isprsjprs.2020.08.003
https://doi.org/10.1080/23311932.2020.1733331
https://doi.org/10.1080/23311932.2020.1733331
https://doi.org/10.1016/j.jag.2020.102236
https://doi.org/10.1139/cjfr-2014-0562
https://doi.org/10.1139/cjfr-2014-0562
https://doi.org/10.3389/fmars.2022.944454
https://doi.org/10.1007/s41651-022-00110-4
https://doi.org/10.1016/j.ecolecon.2018.02.012
https://doi.org/10.1080/01431161.2021.1903615
https://doi.org/10.1186/s13007-019-0394-z
https://doi.org/10.1016/j.ecoinf.2023.101973
https://doi.org/10.1016/j.ecolind.2022.109656
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1577298


classification in Islamabad, Pakistan. Earth Sci. Inf. 18, 212–222. doi:10.1007/s12145-
025-01720-4

Hussain, K., Mehmood, K., Yujun, S., Badshah, T., Anees, S. A., Shahzad, F. N., et al.
(2024). Analysing LULC transformations using remote sensing data: insights from a
multilayer perceptron neural network approach. Ann. GIS, 1–28. Ann GIS 1–28. doi:10.
1080/19475683.2024.2343399

Jafri, Y., Ahlström, J. M., Furusjö, E., Harvey, S., Pettersson, K., Svensson, E., et al.
(2022). Double yields and negative emissions? Resource, climate and cost efficiencies in
biofuels with carbon capture, storage and utilization. Front. Energy Res. 10. doi:10.3389/
fenrg.2022.797529

Kristensen, T., Næsset, E., Ohlson, M., Bolstad, P. V., and Kolka, R. (2015). Mapping
above- and below-ground carbon pools in boreal forests: the case for airborne lidar.
PLoS One 10, e0138450. doi:10.1371/journal.pone.0138450

Labrière, N., Davies, S. J., Disney, M. I., Duncanson, L. I., Herold, M., Lewis, S. L., et al.
(2023). Toward a forest biomass reference measurement system for remote sensing
applications. Glob. Chang. Biol. 29, 827–840. doi:10.1111/gcb.16497

Lee, H., Wang, J., and Leblon, B. (2020). Using linear regression, random forests, and
support vector machine with unmanned aerial vehicle multispectral images to predict
canopy nitrogen weight in corn. Remote Sens. (Basel) 12, 2071. doi:10.3390/rs12132071

Li, X., Zhang, M., Long, J., and Lin, H. (2021). A novel method for estimating spatial
distribution of forest above-ground biomass based on multispectral fusion data and
ensemble learning algorithm. Remote Sens. (Basel) 13, 3910. doi:10.3390/rs13193910

Li, Y., Feng, Z., Chen, S., Zhao, Z., and Wang, F. (2020c). Application of the artificial
neural network and support vector machines in forest fire prediction in the guangxi
autonomous region, China. Discrete Dyn. Nat. Soc. 2020, 1–14. doi:10.1155/2020/
5612650

Li, Y., Li, M., Li, C., and Liu, Z. (2020a). Forest aboveground biomass estimation using
Landsat 8 and Sentinel-1A data with machine learning algorithms. Sci. Rep. 10, 9952.
doi:10.1038/s41598-020-67024-3

Li, Y., Li, M., Liu, Z., and Li, C. (2020b). Combining kriging interpolation to improve
the accuracy of forest aboveground biomass estimation using remote sensing data. IEEE
Access 8, 128124–128139. doi:10.1109/ACCESS.2020.3008686

Li, Y., Li, M., and Wang, Y. (2022). Forest aboveground biomass estimation and
response to climate change based on remote sensing data. Sustain. Switz. 14, 14222.
doi:10.3390/su142114222

Li, Z., Yuan, Q., and Su, X. (2024). High-spatial-resolution surface soil moisture
retrieval using the Deep Forest model in the cloud environment over the Tibetan
Plateau. Geo-Spatial Inf. Sci., 1–20. doi:10.1080/10095020.2024.2307931

Lin, W., Lu, Y., Li, G., Jiang, X., and Lu, D. (2022). A comparative analysis of modeling
approaches and canopy height-based data sources for mapping forest growing stock
volume in a northern subtropical ecosystem of China. GIsci Remote Sens. 59, 568–589.
doi:10.1080/15481603.2022.2044139

Liu, H., Jin, Y., Roche, L. M., O’Geen, A. T., and Dahlgren, R. A. (2021a).
Understanding spatial variability of forage production in California grasslands:
delineating climate, topography and soil controls. Environ. Res. Lett. 16, 014043.
doi:10.1088/1748-9326/abc64d

Liu, N., Li, Y., Cong, P., Wang, J., Guo, W., Pang, H., et al. (2021b). Depth of straw
incorporation significantly alters crop yield, soil organic carbon and total nitrogen in the
North China Plain. Soil Tillage Res. 205, 104772. doi:10.1016/j.still.2020.104772

López Serrano, F. R., Rubio, E., García Morote, F. A., Andrés Abellán, M., Picazo
Córdoba, M. I., García Saucedo, F., et al. (2022). Artificial intelligence-based software
(AID-FOREST) for tree detection: a new framework for fast and accurate forest
inventorying using LiDAR point clouds. Int. J. Appl. Earth Observation
Geoinformation 113, 103014. doi:10.1016/j.jag.2022.103014

Luo, H., Qin, S., Li, J., Lu, C., Yue, C., and Ou, G. (2024). High-density forest AGB
estimation in tropical forest integrated with PolInSAR multidimensional features and
optimized machine learning algorithms. Ecol. Indic. 160, 111878. doi:10.1016/j.ecolind.
2024.111878

Ma, T., Zhang, C., Ji, L., Zuo, Z., Beckline, M., Hu, Y., et al. (2024). Development of
forest aboveground biomass estimation, its problems and future solutions: a review.
Ecol. Indic. 159, 111653. doi:10.1016/j.ecolind.2024.111653

Mahmood, M. S., Elahi, A., Zaid, O., Alashker, Y., Șerbănoiu, A. A., Grădinaru, C. M.,
et al. (2023). Enhancing compressive strength prediction in self-compacting concrete
using machine learning and deep learning techniques with incorporation of rice husk
ash and marble powder. Case Stud. Constr. Mater. 19, e02557. doi:10.1016/j.cscm.2023.
e02557

Masereti Makori, D., Abdel-Rahman, E. M., Odindi, J., Mutanga, O., Landmann, T.,
and Tonnang, H. E. Z. (2024). Multi-pronged abundance prediction of bee pests’ spatial
proliferation in Kenya. Int. J. Appl. Earth Observation Geoinformation 128, 103738.
doi:10.1016/j.jag.2024.103738

Mehmood, K., Anees, S. A., Muhammad, S., Hussain, K., Shahzad, F., Liu, Q., et al.
(2024a). Analyzing vegetation health dynamics across seasons and regions through
NDVI and climatic variables. Sci. Rep. 14, 11775. doi:10.1038/s41598-024-62464-7

Mehmood, K., Anees, S. A., Muhammad, S., Shahzad, F., Liu, Q., Khan, W. R., et al.
(2025). Machine learning and spatio temporal analysis for assessing ecological impacts
of the billion tree afforestation Project. Ecol. Evol. 15, e70736. doi:10.1002/ece3.70736

Mehmood, K., Anees, S. A., Rehman, A., Rehman, N. U., Muhammad, S., Shahzad, F.,
et al. (2024b). Assessment of climatic influences on net primary productivity along
elevation gradients in temperate ecoregions. Trees, For. People 18, 100657. doi:10.1016/j.
tfp.2024.100657

Mehmood, T., Liland, K. H., Snipen, L., and Sæbø, S. (2012). A review of variable
selection methods in Partial Least Squares Regression. Chemom. Intelligent Laboratory
Syst. 118, 62–69. doi:10.1016/j.chemolab.2012.07.010

Miao, J., Zhen, J., Wang, J., Zhao, D., Jiang, X., Shen, Z., et al. (2022). Mapping
seasonal leaf nutrients of mangrove with sentinel-2 images and XGBoost method.
Remote Sens. (Basel) 14, 3679. doi:10.3390/rs14153679

Moghimi, A., Tavakoli Darestani, A., Mostofi, N., Fathi, M., and Amani, M. (2024).
Improving forest above-ground biomass estimation using genetic-based feature
selection from Sentinel-1 and Sentinel-2 data (case study of the Noor forest area in
Iran). Kuwait J. Sci. 51, 100159. doi:10.1016/j.kjs.2023.11.008

Morales-Gallegos, L. M., Martínez-Trinidad, T., Hernández-de la Rosa, P., Gómez-
Guerrero, A., Alvarado-Rosales, D., and Saavedra-Romero, L. de L. (2023). Tree health
condition in urban green areas assessed through crown indicators and vegetation
indices. Forests 14, 1673. doi:10.3390/f14081673

Musekiwa, N. B., Angombe, S. T., Kambatuku, J., Mudereri, B. T., and Chitata, T.
(2022). Can encroached rangelands enhance carbon sequestration in the African
Savannah? Trees, For. People 7, 100192. doi:10.1016/j.tfp.2022.100192

Octavia, D., Suharti, S. M., Dharmawan, I. W. S., Nugroho, H. Y. S. H., Supriyanto, B.,
Rohadi, D., et al. (2022). Mainstreaming smart agroforestry for social forestry
implementation to support sustainable development goals in Indonesia: a review.
Sustain. Switz. 14, 9313. doi:10.3390/su14159313

Oehmcke, S., Li, L., Trepekli, K., Revenga, J. C., Nord-Larsen, T., Gieseke, F.,
et al. (2024). Deep point cloud regression for above-ground forest biomass
estimation from airborne LiDAR. Remote Sens. Environ. 302, 113968. doi:10.
1016/j.rse.2023.113968

Pérez-Girón, J. C., Álvarez-Álvarez, P., Díaz-Varela, E. R., and Mendes Lopes, D. M.
(2020). Influence of climate variations on primary production indicators and on the
resilience of forest ecosystems in a future scenario of climate change: application to
sweet chestnut agroforestry systems in the Iberian Peninsula. Ecol. Indic. 113, 106199.
doi:10.1016/j.ecolind.2020.106199

Pham, T. D., Ha, N. T., Saintilan, N., Skidmore, A., Phan, D. C., Le, N. N., et al. (2023).
Advances in Earth observation and machine learning for quantifying blue carbon. Earth
Sci. Rev. 243, 104501. doi:10.1016/j.earscirev.2023.104501

Pham, T. D., Le, N. N., Ha, N. T., Nguyen, L. V., Xia, J., Yokoya, N., et al. (2020).
Estimating mangrove above-ground biomass using extreme gradient boosting decision
trees algorithm with fused sentinel-2 and ALOS-2 PALSAR-2 data in can Gio biosphere
reserve, Vietnam. Remote Sens. (Basel) 12, 777. doi:10.3390/rs12050777

Prakash, A. J., Behera, M. D., Ghosh, S. M., Das, A., and Mishra, D. R. (2022). A new
synergistic approach for Sentinel-1 and PALSAR-2 in a machine learning framework to
predict aboveground biomass of a dense mangrove forest. Ecol. Inf. 72, 101900. doi:10.
1016/j.ecoinf.2022.101900

Prăvălie, R., Niculiţă, M., Roșca, B., Marin, G., Dumitrașcu, M., Patriche, C., et al.
(2023). Machine learning-based prediction and assessment of recent dynamics of forest
net primary productivity in Romania. J. Environ. Manage 334, 117513. doi:10.1016/j.
jenvman.2023.117513

Ramachandran, N., Saatchi, S., Tebaldini, S., d’Alessandro, M. M., and Dikshit, O.
(2023). Mapping tropical forest aboveground biomass using airborne SAR tomography.
Sci. Rep. 13, 6233. doi:10.1038/s41598-023-33311-y

Santoro, M., Cartus, O., Carvalhais, N., Rozendaal, D. M. A., Avitabile, V., Araza, A.,
et al. (2021). The global forest above-ground biomass pool for 2010 estimated from
high-resolution satellite observations. Earth Syst. Sci. Data 13, 3927–3950. doi:10.5194/
essd-13-3927-2021

Sedano, F., Lisboa, S. N., Sahajpal, R., Duncanson, L., Ribeiro, N., Sitoe, A., et al.
(2021). The connection between forest degradation and urban energy demand in sub-
Saharan Africa: a characterization based on high-resolution remote sensing data.
Environ. Res. Lett. 16, 064020. doi:10.1088/1748-9326/abfc05

Shahzad, F., Mehmood, K., Anees, S. A., Adnan, M., Muhammad, S., Haidar, I., et al.
(2025). Advancing forest fire prediction: a multi-layer stacking ensemble model
approach. Earth Sci. Inf. 18, 270. doi:10.1007/s12145-025-01782-4

Shahzad, F., Mehmood, K., Hussain, K., Haidar, I., Anees, S. A., Muhammad, S., et al.
(2024). Comparing machine learning algorithms to predict vegetation fire detections in
Pakistan. Fire Ecol. 20, 57. doi:10.1186/s42408-024-00289-5

Shams, M. Y., Elshewey, A. M., El-kenawy, E. S. M., Ibrahim, A., Talaat, F. M., and
Tarek, Z. (2024). Water quality prediction using machine learning models based on grid
search method. Multimed. Tools Appl. 83, 35307–35334. doi:10.1007/s11042-023-
16737-4

Stephenson, P. J., and Damerell, A. (2022). Bioeconomy and circular economy
approaches need to enhance the focus on biodiversity to achieve sustainability.
Sustain. Switz. 14, 10643. doi:10.3390/su141710643

Su, H., Shen, W., Wang, J., Ali, A., and Li, M. (2020). Machine learning and
geostatistical approaches for estimating aboveground biomass in Chinese subtropical
forests. For Ecosyst 7, 64. doi:10.1186/s40663-020-00276-7

Frontiers in Environmental Science frontiersin.org14

Ali et al. 10.3389/fenvs.2025.1577298

https://doi.org/10.1007/s12145-025-01720-4
https://doi.org/10.1007/s12145-025-01720-4
https://doi.org/10.1080/19475683.2024.2343399
https://doi.org/10.1080/19475683.2024.2343399
https://doi.org/10.3389/fenrg.2022.797529
https://doi.org/10.3389/fenrg.2022.797529
https://doi.org/10.1371/journal.pone.0138450
https://doi.org/10.1111/gcb.16497
https://doi.org/10.3390/rs12132071
https://doi.org/10.3390/rs13193910
https://doi.org/10.1155/2020/5612650
https://doi.org/10.1155/2020/5612650
https://doi.org/10.1038/s41598-020-67024-3
https://doi.org/10.1109/ACCESS.2020.3008686
https://doi.org/10.3390/su142114222
https://doi.org/10.1080/10095020.2024.2307931
https://doi.org/10.1080/15481603.2022.2044139
https://doi.org/10.1088/1748-9326/abc64d
https://doi.org/10.1016/j.still.2020.104772
https://doi.org/10.1016/j.jag.2022.103014
https://doi.org/10.1016/j.ecolind.2024.111878
https://doi.org/10.1016/j.ecolind.2024.111878
https://doi.org/10.1016/j.ecolind.2024.111653
https://doi.org/10.1016/j.cscm.2023.e02557
https://doi.org/10.1016/j.cscm.2023.e02557
https://doi.org/10.1016/j.jag.2024.103738
https://doi.org/10.1038/s41598-024-62464-7
https://doi.org/10.1002/ece3.70736
https://doi.org/10.1016/j.tfp.2024.100657
https://doi.org/10.1016/j.tfp.2024.100657
https://doi.org/10.1016/j.chemolab.2012.07.010
https://doi.org/10.3390/rs14153679
https://doi.org/10.1016/j.kjs.2023.11.008
https://doi.org/10.3390/f14081673
https://doi.org/10.1016/j.tfp.2022.100192
https://doi.org/10.3390/su14159313
https://doi.org/10.1016/j.rse.2023.113968
https://doi.org/10.1016/j.rse.2023.113968
https://doi.org/10.1016/j.ecolind.2020.106199
https://doi.org/10.1016/j.earscirev.2023.104501
https://doi.org/10.3390/rs12050777
https://doi.org/10.1016/j.ecoinf.2022.101900
https://doi.org/10.1016/j.ecoinf.2022.101900
https://doi.org/10.1016/j.jenvman.2023.117513
https://doi.org/10.1016/j.jenvman.2023.117513
https://doi.org/10.1038/s41598-023-33311-y
https://doi.org/10.5194/essd-13-3927-2021
https://doi.org/10.5194/essd-13-3927-2021
https://doi.org/10.1088/1748-9326/abfc05
https://doi.org/10.1007/s12145-025-01782-4
https://doi.org/10.1186/s42408-024-00289-5
https://doi.org/10.1007/s11042-023-16737-4
https://doi.org/10.1007/s11042-023-16737-4
https://doi.org/10.3390/su141710643
https://doi.org/10.1186/s40663-020-00276-7
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1577298


Sun, L., Feng, Z., Shao, Y., Wang, L., Su, J., Ma, T., et al. (2023). The development of a
set of novel low cost and data processing-free measuring instruments for tree diameter
at breast height and tree position. Forests 14, 891. doi:10.3390/f14050891

Tao, C., Guo, T., Shen, M., and Tang, Y. (2023). Spatio-temporal dynamic of
disturbances in planted and natural forests for the Saihanba region of China.
Remote Sens. (Basel) 15, 4776. doi:10.3390/rs15194776

Teng, H., Chen, S., Hu, B., and Shi, Z. (2023). Future changes and driving factors of
global peak vegetation growth based on CMIP6 simulations. Ecol. Inf. 75, 102031.
doi:10.1016/j.ecoinf.2023.102031

Thanh Noi, P., and Kappas, M. (2017). Comparison of random forest, k-nearest
neighbor, and support vector machine classifiers for land cover classification using
sentinel-2 imagery. Sensors (Basel) 18, 18. doi:10.3390/s18010018

Thompson, C. G., Kim, R. S., Aloe, A. M., and Becker, B. J. (2017). Extracting the
variance in flation factor and other multicollinearity diagnostics from typical regression
results. Basic Appl. Soc. Psych. 39, 81–90. doi:10.1080/01973533.2016.1277529

Titus, B. D., Brown, K., Helmisaari, H. S., Vanguelova, E., Stupak, I., Evans, A., et al.
(2021). Sustainable forest biomass: a review of current residue harvesting guidelines.
Energy Sustain Soc. 11, 10. doi:10.1186/s13705-021-00281-w

Turner, W., Rondinini, C., Pettorelli, N., Mora, B., Leidner, A. K., Szantoi, Z., et al.
(2015). Free and open-access satellite data are key to biodiversity conservation. Biol.
Conserv. 182, 173–176. doi:10.1016/j.biocon.2014.11.048

Vidican, R., Mălinaș, A., Ranta, O., Moldovan, C., Marian, O., Gheţe, A., et al. (2023).
Using remote sensing vegetation indices for the discrimination and monitoring of
agricultural crops: a critical review. Agronomy. doi:10.3390/agronomy13123040

Wang, J., Shi, K., and Hu, M. (2022). Measurement of forest carbon sink efficiency and its
influencing factors empirical evidence from China. Forests 13, 1909. doi:10.3390/f13111909

Wongsai, N., Wongsai, S., Lim, A., McNeil, D., and Huete, A. R. (2020). Impacts of
spatial heterogeneity patterns on long-term trends of Moderate Resolution Imaging
Spectroradiometer (MODIS) land surface temperature time series. J. Appl. Remote Sens.
14, 1. doi:10.1117/1.jrs.14.014513

Xu, A., Wang, D., Liu, Q., Zhang, D., Zhang, Z., and Huang, X. (2022). Incorporating
stand density effects and regression techniques for stem taper modeling of a Larix
principis-rupprechtii plantation. Front. Plant Sci. 13, 902325. doi:10.3389/fpls.2022.
902325

Yin, J., Dong, J., Hamm, N. A. S., Li, Z., Wang, J., Xing, H., et al. (2021). Integrating
remote sensing and geospatial big data for urban land use mapping: a review. Int. J. Appl.
Earth Observation Geoinformation 103, 102514. doi:10.1016/j.jag.2021.102514

Zennaro, F., Furlan, E., Simeoni, C., Torresan, S., Aslan, S., Critto, A., et al. (2021).
Exploring machine learning potential for climate change risk assessment. Earth Sci. Rev.
220, 103752. doi:10.1016/j.earscirev.2021.103752

Zhang, L., and Jánošík, D. (2024). Enhanced short-term load forecasting with hybrid
machine learning models: CatBoost and XGBoost approaches. Expert Syst. Appl. 241,
122686. doi:10.1016/j.eswa.2023.122686

Zhang, Y., Ma, J., Liang, S., Li, X., and Liu, J. (2022). A stacking ensemble algorithm
for improving the biases of forest aboveground biomass estimations from multiple
remotely sensed datasets. GIsci Remote Sens. 59, 234–249. doi:10.1080/15481603.2021.
2023842

Zhang, Y., and Shao, Z. (2021). Assessing of urban vegetation biomass in combination
with LiDAR and high-resolution remote sensing images. Int. J. Remote Sens. 42,
964–985. doi:10.1080/01431161.2020.1820618

Zhao, K., Ji, F., Liu, Y., Liu, X., Jia, Z., and Ma, L. (2016). Growth of Larix principis-
rupprechtii with thinning and pruning. J. Zhejiang A&F Univ. 33, 581–588.

Frontiers in Environmental Science frontiersin.org15

Ali et al. 10.3389/fenvs.2025.1577298

https://doi.org/10.3390/f14050891
https://doi.org/10.3390/rs15194776
https://doi.org/10.1016/j.ecoinf.2023.102031
https://doi.org/10.3390/s18010018
https://doi.org/10.1080/01973533.2016.1277529
https://doi.org/10.1186/s13705-021-00281-w
https://doi.org/10.1016/j.biocon.2014.11.048
https://doi.org/10.3390/agronomy13123040
https://doi.org/10.3390/f13111909
https://doi.org/10.1117/1.jrs.14.014513
https://doi.org/10.3389/fpls.2022.902325
https://doi.org/10.3389/fpls.2022.902325
https://doi.org/10.1016/j.jag.2021.102514
https://doi.org/10.1016/j.earscirev.2021.103752
https://doi.org/10.1016/j.eswa.2023.122686
https://doi.org/10.1080/15481603.2021.2023842
https://doi.org/10.1080/15481603.2021.2023842
https://doi.org/10.1080/01431161.2020.1820618
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1577298

	Remote sensing and integration of machine learning algorithms for above-ground biomass estimation in Larix principis-ruppre ...
	1 Introduction
	2 Materials and methods
	2.1 Location and description of the study area
	2.2 Forest inventory and biomass estimation
	2.3 Pre-processing of Sentinel 2 and land set 9 satellite data and derivation of variables
	2.4 The extraction of remote sensor parameters from field plots
	2.5 Techniques of modeling and evaluation
	2.6 Enumeration of the tested algorithms
	2.7 Machine learning methods
	2.8 Optimizing model parameters
	2.9 The performance of the models

	3 Results
	3.1 Field observations and descriptive statistics
	3.2 Correlation analysis of Sentinel-2 and Landsat-9 data
	3.3 Variable importance analysis for AGB estimation
	3.4 Performance evaluation using Sentinel-2 and Landsat-9 data
	3.5 Comparative analysis of Sentinel-2 and Landsat-9 for AGB mapping using machine learning models

	4 Discussion
	4.1 Comparisons of correlation analysis
	4.2 The variable importance analysis
	4.3 Comparison of model performance
	4.4 Recommendations

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


