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This study evaluates the impacts of land use and land cover (LULC) changes on
streamflow dynamics and water availability within the Rwanda Hydro-Unity
Network catchment, part of the Nile River basin. Utilizing the Soil and Water
Assessment Tool (SWAT) and the Climatic Water Balance (CWB) model, we
analyze hydrological changes from 1991 to 2020. The findings reveal a
significant increase in surface runoff, water yield, and evapotranspiration,
mainly driven by urban expansion and agricultural intensification, while
groundwater recharge and percolation have declined. Climate variability has
also contributed to increased evapotranspiration and seasonal water deficits,
exacerbating drought risks. The key Findings showed that (1) LULC Changes
(1991–2020): Cropland increased from 33.2% to 72.0%, Built-up areas expanded
from 0.9% to 2.7% and Forest cover declined sharply from 49.9% to 11.8%. (2)
Hydrological Changes: Surface runoff increased from 144.99 mm to 201.73 mm,
Total water yield rose from 304.83 mm to 338.25 mm, Groundwater recharge
declined from 105.58 mm to 88.27 mm and Evapotranspiration increased from
600.39 mm to 657.32 mm. (3) Climate Variability and Water Balance: Rising
temperatures increased potential evapotranspiration (PET), reducing available
water and the long dry season (June–September) showed the most significant
decline in water balance. (4) Flood Risks and Adaptation Strategies: Urbanization
has increased flood risks due to expanded impervious surfaces, Sustainable
solutions, such as reforestation, improved urban drainage, and wetland
restoration, are necessary. The study emphasizes the need for integrated land
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and water management strategies, including sustainable land-use policies, climate
adaptationmeasures, and enhanced floodmitigation practices to ensure long-term
water security in Rwanda.
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LULC, streamflow dynamics, Rwanda hydro-unity network, nile river basin, urbanization,
water yield

1 Introduction

The alteration of Land Use Land Cover (LULC) brought about
by both natural mechanisms and human-induced modifications
significantly impacts the global hydrologic system (Mokaya et al.,
2004; Mahmoud and Gan, 2018). These global hydrological
processes possess the ability to ascertain the availability of water
within a given river basin (Yáñez-Morroni et al., 2024). The
alteration also influences the interaction between soil and water
(Liu et al., 2023). Furthermore, the repercussions extend to surface
and atmospheric systems, which represent the primary sources of
surface water accessibility. Therefore, the impact of LULC alteration
on hydrological processes at a river basin scale remains a pertinent
subject of research on a global scale (Bucha et al., 2024).

The management of the consequences stemming from LULC
alteration on river basins poses challenges in developing nations due
to the incessant growth in population (Egide Hakorimana et al.,
2018). The underlying reasons for this predicament include the
accelerated rate of LULC alteration linked to rural-urban migration,
the escalating demand for agricultural land, and the high frequency
of unsustainable human-nature interactions. The resulting LULC
alteration has given rise to fluctuations in the quantity, duration, and
pattern of streamflow, thus affecting water availability in numerous
regions across Africa.

Research investigations conducted in Rwanda have provided
evidence that modifications to land use and land cover (LULC) have
exerted a discernible influence on streamflow and hydrological cycle
mechanisms within different basins, sub-basins, and catchments
(Uwimana et al., 2017). Research by Hassen (2022) has shown that
transforming forests, shrubs, and grasslands into farmlands impacts
the river’s flow and water loss through evaporation and plant
transpiration. While agricultural fields tend to boost river flow
during the main rainy season and reduce water loss through
evaporation and transpiration, the effects are less predictable
during the shorter rains and dry periods. (Akinyemi, 2017) and
others noted in 2017 that in Northwestern Rwanda, the expansion of
agricultural land by 16% over 3 decades coincided with a 12%
reduction in forested areas. These substantial land use alterations
have altered the hydrological equilibrium of the region, leading to
decreased water infiltration into the soil and heightened runoff.

In Rwanda, the Nyabarongo River serves as a critical resource.
Its waters are essential for the operation of sugar mills, which rely on
it for the cultivation of their sugarcane crops. The river also supports
numerous minor irrigation projects throughout its watershed.
Investments in large-scale farming are made by both
governmental and private entities. Additionally, the Nile River
basin, where the Nyabarongo River is located, is known for its
rapid land use and land cover (LULC) changes, driven by ongoing
demographic growth, the spread of farmland, and increasing urban

development. Such changes exert extra strain on the region’s water
resources, leading to inconsistent water levels.

Extensive research has been conducted on a global scale to
understand the effects of land use and land cover (LULC) changes
on streamflow. For example, Shahid and colleagues in
2018 investigated the impacts of climate change and human
activities on streamflow by employing the ABCD hydrological
model. This model helped assess how LULC and climate
variations affect runoff production at a basin scale in Pakistan.
Similarly, Cong, Shahid (Cong et al., 2017) examined shifts in runoff
patterns and hydrological variable trends, linking these alterations to
environmental changes in China. In Rwanda, a series of studies
(Uwimana et al., 2017; Nambajimana et al., 2019; Guzha et al., 2018)
have pinpointed the repercussions of LULC alterations on surface
runoff. These investigations delved into the repercussions of climate
and land use changes on runoff, employing diverse research
methods. Efforts were also made to gauge the impact of LULC
transformations on the availability of surface water resources.

The research conducted has enhanced our understanding of
how changes in land use and land cover (LULC) affect surface runoff
and water availability within a watershed. However, the findings are
dispersed and lack a clear delineation of how LULC alterations
directly influence streamflow and thus the presence of surface water.
The intricate relationship between LULC dynamics and their effects
on streamflow remains undefined, leaving a gap in our grasp of these
environmental interactions.

The assessment of how changes in land utilization and coverage
affect surface water, as well as the measurement of available surface
water, can be effectively conducted using the Soil and Water
Assessment Tool (SWAT). A thorough grasp of the dynamics of
land use and cover, along with related factors like water consumption,
irrigation expansion, and watershed management, can be achieved by
examining the influence of land use and cover changes on surface
water and by further appraising the availability of this water. This
approach allows for a detailed exploration of the interplay between
land development and water resources.

The Soil and Water Assessment Tool (SWAT) is a widely used
hydrological model designed to simulate the impact of land use, soil
types, and climate conditions on streamflow and water resources
(Arnold et al., 1998). It has been extensively applied in watershed
studies worldwide, particularly in data-scarce regions, due to its ability
to model surface runoff, evapotranspiration, and water balance
dynamics over long periods (Gassman et al., 2007). Several studies
in East Africa, including those by Mango et al. (2011) and Kiprotich
et al. (2021), have demonstrated SWAT’s effectiveness in assessing
hydrological responses to land-use changes, revealing that agricultural
expansion and urbanization often lead to increased runoff and altered
streamflow patterns. In the context of the Rwanda Hydro-Unity
Network catchment, part of the Nile River basin, rapid land-use
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changes necessitate a robust modeling approach to evaluate their
hydrological implications. Given its ability to integrate spatial and
temporal variations, SWAT was chosen for this study to provide
insights into how land-use shifts affect water availability and surface
runoff, complementing seasonal analyses conducted with the Climatic
Water Balance (CWB) model. However, previous research has noted
SWAT’s tendency to overestimate peak flows while effectively
capturing moderate and low-flow conditions (Arnold et al., 2012),
a limitation also observed in this study. Despite these challenges,
SWAT remains a valuable tool for guiding land and water resource
management strategies in the face of evolving land-use patterns and
climate variability.

2 Materials and methods

2.1 Description of the study area

The Rwanda Hydro-Unity Network is the interconnection
nature of catchments and the collaborative approach to water

resource management in Rwanda, it is an integral component of
Nile basin, encompassing diverse ecological regions and serving as
vital water sources. Rwanda Hydro-Unity Network is situated
particularly in the lower part of the Nile basin. The absolute
location of the network is between 29°18′0″E and 30°36′00″E
latitude and 2°28′0″S and 1°36′0″S longitude (Figure 1). The total
area of the catchment is about 11554 square kilometers. As shown in
Figure 1, there are 15streamflow outlets in the catchment. The
elevation of the Rwanda Hydro-Unity Network catchment ranges
between 1320 and 4,495 m above mean sea level.

Rwanda’s topography is a tapestry of undulating hills and deep
valleys, which play a crucial role in the hydrology of the country. The
landlocked nation is characterized by its high elevation, with the
terrain sloping from west to east. This unique topography
significantly influences the catchment areas, which are essential
for water resources management. The country is divided into
several major catchments, which make Rwanda Hydro-Unity
Network including the Kivu, Nyabarongo, Muvumba, Akanyaru,
Akagera, Mukungwa, and Rusizi, each named after the key river
systems they encompass. These catchments are not just physical

FIGURE 1
Study area map with stream networks, outflow points, and topographic levels.
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demarcations but are vital for the integrated water resources
management (IWRM) approach adopted by Rwanda.

2.2 Trend analysis of stream flow,
precipitation and temperature

Prior to initiating the SWAT and Climatic Water Balance
models, an analysis of the temporal trends in hydro-
meteorological variables, including streamflow, precipitation, and
temperature, was performed. The evaluation of these trends utilized
the Mann Kendall Sen’s slope method. This approach was applied to
the primary hydro-meteorological data sets. The calculation of the
Mann-Kendall test statistic ‘S’ follows Equation 1, which is grounded
in the methodologies established by Mann in 1945 and Kendall
in 1948.

S � ∑n−1
i�1

∑n
j�i+1

sign xj − xi( ) (1)

In the context of the Mann-Kendall statistic, ‘S’ represents the
statistic itself, while “xi” refers to a sequential data set that has
been arranged in order of occurrence from the first to the
penultimate position, denoted as i = 1, 2, . . . , n-1.
Concurrently, “xj” is another sequence of data points that
follows “xi” and is ranked from j = i+1, 2, . . . , n. The process
involves taking each data point “Xi” as a benchmark and
comparing it with subsequent data points “Xj” to analyze the
trend (Equation 2). This comparison is crucial for identifying the
direction and strength of the trend within the time series
data. And:

sgn Xj −Xi( ) �
+1 if Xj −Xi( )> 0

0 if Xj −Xi( ) � 0

−1 if Xj −Xi( )〈0
⎧⎪⎪⎨
⎪⎪⎩ (2)

When the annual values for years i and j (with j being later than
i) are represented as Xi and Xj, it is observed that if there are more
than 10 observations, the ‘S’ statistic tends to follow a normal
distribution where the expected value, E(S), is zero, as noted by
Kendall in 1948. Under these conditions, the variance of the
statistic can be described by a specific formula referred to as
(Equation 3):

Var S( ) � n n − 1( ) 2n + 5( ) −∑m
t�1t1 t1 − 1( ) 2t1 + 5( )
18

(3)

In the context of statistical analysis, ‘n’ represents the total
number of observations within the dataset, and ti denotes the tied
ranks within the sample time series. The test statistic Zc is then
computed according to the formula designated as Equation 4, which
is typically used to determine the significance of the observed data in
relation to the hypothesis being tested.

Z �

S − 1
σ

if S> 0

0 if S � 0

S + 1
σ

if S< 0

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(4)

2.3 Model description

In the current research, two analytical models were employed.
The SWATmodel was utilized to assess how changes in land use and
land cover affect streamflow. Meanwhile, the Climatic Water
Balance model was applied to determine the availability of
surface water. These models are instrumental in understanding
environmental impacts on water resources.

2.3.1 SWAT model
The SWAT model is adept at calculating key hydrological

processes including percolation, surface flow, and infiltration,
along with evapotranspiration and various aquifer dynamics
(Mapes and Pricope, 2020). Renowned for its ability to assess the
effects of land use and land cover (LULC) alterations on streamflow
within watersheds, it effectively processes extensive data inputs like
LULC variations, soil properties, and climatic factors. Additionally,
SWAT’s compatibility with ArcGIS as an add-on enhances its utility
for projecting LULC changes and their consequent hydrological.

The SWAT framework employs the water balance equation for
the replication of the hydrological cycle, as delineated in Equation 5
by Neitsch and colleagues in 2011. This approach is instrumental in
understanding the movement and distribution of water within the
Earth’s atmosphere and surface.

SWt � SW0 +∑t
i�1
(Rday − Qsurf − Ea −Wseep − Qgw) (5)

In this statement, SWt represents the final measurement of soil
moisture in millimeters, while SW0 indicates the initial
measurement on a given day. Rday refers to the precipitation
received, Qsurf to the runoff observed, and Ea to the water lost
through evapotranspiration, all recorded in millimeters.
Additionally, Wseep denotes the water percolating into the
subsoil, and Qgw represents the groundwater returning to the
surface, also measured in millimeters, all within the same day.

The research utilized the ArcSWAT extension within ArcMap
and the SWAT-CUP 12 software. ArcSWAT was used to establish
the SWAT project, define the watershed boundaries, and input
various data types such as DEM, LULC, soil, and slope, as well
as to incorporate meteorological data and execute the SWAT model
within ArcMap. SWAT-CUP was applied to adjust and confirm the
SWAT model’s accuracy by employing streamflow data. This
approach facilitated the calibration, confirmation, sensitivity
testing, and uncertainty evaluation of the SWAT model (Huo
et al., 2020).

During the SWAT model’s calibration and validation process,
three key performance indicators were utilized: the R-Square
Coefficient (R2), the Nash–Sutcliffe Efficiency (NSE), and the
Percent Bias (PBIAS). The R2 coefficient quantifies the
correlation strength between the observed data and the model’s
regression line, with values ranging from 0 to 1—where a value
closer to 1 indicates a model with less error variance (Hariri-Ardebili
and Mahdavi, 2023). The NSE metric assesses the size of the data’s
variance against the residual variance, with values from −1 to 1. An
NSE value above 0.5 is deemed satisfactory (Duc and Sawada, 2023).
Lastly, PBIAS measures the tendency of the model’s data to be
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higher or lower than the actual observations, with the ideal value
being 0, indicating no bias.

2.3.1.1 Mode evaluation indicators
2.3.1.1.1 Nash-Sutcliffe Efficiency (NES). The NSE is a
standardized metric designed to assess how accurately the
simulated runoff aligns with the observed runoff (Nash and
Sutcliffe, 1970). It serves as an indicator of the reliability of the
water yield model. The corresponding formula is provided below
(Equation 6).

NES � 1 − ∑n
i−1 OBSi − SIMi( )2

∑n
i−1 OBSi − OBS( )2 (6)

In this context, OBSi represents the observed water yield, SIMi

denotes the simulated water yield, and OBS refers to the average of
the observed values. An NSE value of 1 indicates excellent
simulation performance, while an NSE value of 0 suggests that
the model’s simulations are comparable to the mean of the
observed data.

2.3.1.1.2 Percent bias (PBIAS). The PBIAS quantifies the
discrepancy between the simulated and observed water yields.
The following formula will have applied to calculate PBIAS
(Equation 7)

PBIAS � ∑N

t−1 SIMi − OBSi( )/∑N

t−1OBSi × 100% (7)

In this Formula 8, OBSi represents the observed water yield,
SIMi is the simulated water yield, and N denotes the total number of
samples. The ideal PBIAS value is 0.0. A positive PBIAS indicates a
model bias toward overestimating, while a negative PBIAS suggests a
bias toward underestimating.

2.3.1.1.3 Coefficient of determination (R2). The R2 statistic is
used to assess the extent to which variations in water yield can be
attributed to influencing factors. It reflects the strength of the linear
relationship between water yield and these factors. The formula for
R2 is provided below.

R2 � 1 −
∑
i

ÿi − yi( )2
∑
i

ÿ − yi( )2 (8)

In this equation, ÿi represents the water yield, ÿi denotes the
influencing factor, ÿ is the average of ÿi, and i refers to the total
number of samples. An R2 value of 0 indicates that the water yield
cannot be explained by the influencing factor, while an R2 value of
1 signifies a perfect relationship between the water yield and
the factor.

2.3.2 Climatic water balance (CWB)
The CWB approach assesses water resources in a region by

considering rainfall and potential evapotranspiration (PET)
(Gebreyesus et al., 2021). Prior to utilizing the CWB framework,
one must determine the PET for a given period. While various
techniques for calculating PET exist, depending on the available
data, the method proposed by Hargreaves GH (Hargreaves, 2024) is
often preferred due to its convenience. This particular method

estimates PET by taking into account both the lowest and
highest temperatures, along with solar radiation data using the
following equation (Equation 9).

PET � 0.0023 Tmean + 17.8( ) 
Tmax − Tmin

√( )Ra (9)

Where potential evapotranspiration (PET), measured in
millimeters per day (mm/day), is calculated using the mean
temperature (Tmean), expressed in degrees Celsius (°C), along
with the highest (Tmax) and lowest (Tmin) temperatures, also in
°C. Additionally, extra-terrestrial radiation (Ra), which is quantified
in mm/day, is factored into the equation. The climatic water balance
can then be understood as the total precipitation minus the PET over
a specific time frame (Equation 10).

CWB � P − PET (10)
In this context, ‘CWB’ stands for climatic water balance,

measured in millimeters, which is calculated by subtracting
potential evapotranspiration (PET) in millimeters per day from
precipitation (P) in millimeters. This measure is utilized to assess
the seasonal availability of surface water within a watershed. The
model then estimates this availability, taking into account the effects
of climate change.

The PET in this study was calculated using the method proposed
by Hargreaves and Samani, which estimates PET based on
temperature data and extraterrestrial radiation. This approach
was selected due to its simplicity and minimal data requirements,
making it particularly suitable for regions like the Rwanda Hydro-
Unity Network catchment, where detailed meteorological data (e.g.,
solar radiation, wind speed, and relative humidity) are often limited
or unavailable (Diva, 1982). The Hargreaves method has been widely
used in similar hydrological studies, especially in data-scarce
environments, and has demonstrated reasonable accuracy for
estimating PET in such contexts (Droogers and Allen, 2002).

While the Penman method is recognized for its higher accuracy
under certain conditions, as it incorporates additional meteorological
parameters such as solar radiation, wind speed, and humidity, its
application in this study was constrained by the lack of comprehensive
input data. The Penman method requires detailed and high-quality
meteorological data, which were not consistently available across the
study area and time period (1991–2020) (Allen et al., 2006).
Furthermore, the Hargreaves method was deemed appropriate
given the study’s focus on long-term trends and relative changes in
hydrological dynamics rather than absolute PET values.

It is important to note that the choice of the Hargreaves method
may introduce some uncertainties, particularly in regions with
significant variations in microclimatic conditions. However, the
method’s simplicity and reliability in data-scarce environments
make it a practical choice for this study. Future research could
explore the use of more data-intensive methods, such as the Penman
method, if additional meteorological data become available, to
further refine PET estimates and enhance the accuracy of
hydrological modeling in the region.

2.3.3 Image processing and classification
Following the procurement of the Landsat Mapper and

Enhanced Thematic Mapper Plus (ETM+) from the USGS Earth
Explorer, a series of image pre-processing steps were undertaken to
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refine the image for better classification. This included both
geometrical corrections, such as spatial georeferencing, and
radiometric adjustments, like image enhancement and the
removal of noise and dark objects. The ENVI 5.3 software was
utilized to stack the image bands, and the improved image was then
imported into ArcMap 10.8, where it was masked with the Rwanda
Hydro-unity catchment boundary. Supervised image classification
was executed using ERDAS Imagine 2015, chosen for its ability to be
validated against ground-truthing GPS data points that confirm the
land use classifications on the image. This method involves selecting
representative sample pixels for specific classes and directing the
software to use these samples as a benchmark for classifying the
remaining pixels in the image. The classification process was further
supported by the high-resolution imagery from Google Earth,
integrated with ERDAS Imagine and an in-depth understanding
of the study area. To enhance classification precision, multiple
iterations were performed using the signature editor tool.

In the process of validating image accuracy, each pixel was
treated as a separate unit of validation. The accuracy assessment
included evaluations from the user’s perspective, the producer’s
perspective, an overall accuracy calculation, and the Kappa
Coefficient. The user’s accuracy is concerned with commission
errors, which occur when the classifier incorrectly assigns pixels
to a target class. This is detailed in the work of Foody (Foody, 2020).
On the other hand, the producer’s accuracy focuses on omission
errors, where the classifier fails to identify pixels of the target class, as
discussed by (Budde et al., 2021). Overall accuracy is the ratio of
correctly identified samples, as described by Baldi, Brunak (Baldi
et al., 2000). Lastly, the Kappa Coefficient, calculated as per
(Congalton and Green, 2019) Equation 11, measures the error
reduction achieved by the classification algorithm compared to
random chance, as explained by Fahsi et al. (2000)

KappaCoefficient T( ) � TS × TCS( ) −∑ CT × RT( )
TS2 −∑ CT − RT( ) × 100

(11)
In this context, ‘TS’ stands for Total Sample, ‘TCS’ represents

Total Column Sample, ‘CT’ is an abbreviation for Column Total,
and ‘RT’ signifies Row Total. These terms are typically used in
statistical analysis or data collection methodologies to refer to
different aggregates or subsets of data.

2.3.4 Data types and sources
In the present research, the SWAT model was executed with

essential datasets such as Land Use and Land Cover (LULC), Digital
Elevation Model (DEM), soil characteristics, and meteorological
data on a 4 km by 4 km grid (covering precipitation, temperature
extremes, relative humidity, solar radiation, and wind speed).
Table 1 illustrate the specification of used data set. Additionally,
the model incorporated observed streamflow measurements from
the Rwanda Hydro-Unity Network stations.

The Land Use/Land Cover (LULC) mapping was conducted for
the years 1991 and 2020, chosen based on previous research work,
which identified these years as non-drought and drought periods
within the Nile River basin, side of Rwanda. The purpose of selecting
these specific years was to establish a connection between the SWAT
model’s results and the variations in water availability during wet
and dry conditions. For the creation of the LULC maps, data from

the Landsat Thematic Mapper (TM) for 1991 and the Enhanced
Thematic Mapper Plus (ETM+) for 2020 were utilized. This
information was retrieved from the USGS Earth Explorer website,
which provides a spatial resolution of 30 m by 30 m. Subsequently,
the LULC maps for the years 1991 and 2020, as depicted in Figure 2,
were generated to facilitate the simulation of the SWAT model.

The ASTER Global Digital Elevation Model (ASTER-GDEM), a
high-definition topographic dataset, was sourced from the USGS
Earth Explorer, as depicted in Figure 2C. This dataset served as the
Digital Elevation Model (DEM) input for the SWAT model and was
instrumental in creating a slope map Figure 2D. Utilizing the slope
function within ArcGIS and the DEM as the foundational data, the
slope map for the designated study zone was generated. The ASTER-
GDEM boasts a spatial resolution of 30 m by 30 m and captures
elevation variations ranging from 1320 to 4,495 m above the average
sea level, as illustrated in Figure 2C.

The information regarding soil was obtained from the digital soil
map provided by the Food andAgricultureOrganization (FAO) of the
United Nations and the Ministry of Agriculture (MINAGRI). This
data, including soil types and their specific codes, was inputted
manually into the SWAT soil database, along with their
characteristics as shown in Figure 2B. Within the Rwanda Hydro-
Unity Network, as depicted in Figure 2B, seven distinct soil types have
been identified. The predominant soil type is Dystric Nitisols (Nd39-
3bc-807), which constitutes 58.1% of the total area of the catchment.
Following in abundance are Humic Ferralsols (Fh10-3b-477) and
Mollic Andosols (Tm10-2bc-941), which make up 19.6% and 15.1%
of the area, respectively. The remaining area is composed of four other
soil types: Grumusols (Gh7-2a-57), Lithosols (I-N-c-657), Humic
Cambisol (Bh14-3c-466) and Water (WATER-1972).

Meteorological information was gathered from a pair of sources.
The Rwanda Meteorology Agency supplied data on daily rainfall,
minimum temperatures, and overall temperature trends spanning
from 1991 to 2020. However, due to a lack of data at the necessary
spatial and temporal resolutions from the Rwanda Meteorology
Agency, daily measurements of relative humidity and wind speed for
the study region were retrieved from the aforementioned USGS site,
supplemented by station location details. Additionally, the Rwanda
water Resources Board contributed daily streamflow observations
for the same period.

The study outlines a comprehensive methodological approach,
integrating SWAT and SWAT CUP 12 with R software, as depicted
in Figure 3. This fusion of tools facilitates a robust analysis of
watershed simulations, optimizing calibration through SWAT CUP
12, while R software provides a platform for statistical computation
and graphics. Figure 5 serves as a visual guide to the workflow,
illustrating the sequential steps and the interplay between these
applications in achieving the study’s objectives.

3 Results and discussions

3.1 Trend analysis of hydro-
meteorological data

Hydro-meteorological parameters serve as essential input data
for this research. Observing trends in these parameters, whether they
rise or fall, is crucial for comparing results with the SWAT and CWB
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models. Therefore, an annual Mann-Kendall Sen’s Slope trend
analysis was conducted over a 30-year span from 1991 to 2020.
The findings, detailed in Table 1, reveal a statistically significant

upward trend in the annual streamflow within the Rwanda Hydro-
unity Network, confirmed at a 99% confidence level throughout the
duration of the study.

TABLE 1 Specification of used data set.

Dataset Resolution Source

LULC Data 30 m × 30 m USGS Earth Explorer (Landsat TM/ETM+)

Digital Elevation Model (DEM) 30 m × 30 m USGS Earth Explorer (ASTER-GDEM)

Soil Data - FAO and MINAGRI

Meteorological Data 4 km × 4 km grid Rwanda Meteorology Agency, USGS

Streamflow Data Daily measurements Rwanda Water Resources Board

Ground Truth Data GPS point data Field collection

High-Resolution Imagery - Google Earth

Climatic Data for PET Derived from met data Rwanda Meteorology Agency, USGS

FIGURE 2
The Rwanda Hydro-Unity Network LULC maps (a1,a2), Soil Type Map (b), Elevation Map (c) and Slope Map (d).
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A recent investigation in Rwanda revealed a notable upward
trend in streamflow, as evidenced by data collected from
monitoring stations (Macharia et al., 2023). This trend, which
is statistically significant, suggests changes in streamflow

patterns over time. The findings underscore the importance
of continuous observation and analysis to understand the
dynamics affecting water resources Rwanda Hydro-
Unity Network.

FIGURE 3
Methodological flowchart.
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Table 2 indicates that the study used 30 data points in the series
(n) and the overall trend in precipitation does not show a significant
statistical change, as evidenced by a p-value of 0.129. This trend of
non-significance is consistent across the majority of different part of
Rwanda, including our area of study, as noted in studies by (Muhire
et al., 2015). Despite this, there is a notable high variability in
seasonal patterns, as highlighted by Ayabagabo (Ayabagabo, 2018).
Instances of precipitation occurring in unanticipated seasons have
been documented (Jonah et al., 2021), along with delays in the usual
seasonal onset (Ntirenganya, 2018), and even shifts between seasons
(Ntirenganya, 2014; Twahirwa et al., 2023). Such unpredictability
has had a profound impact on subsistence farming reliant on
rainfall, leading to widespread food insecurity and increased
poverty levels in Rwanda, as discussed by Austin, Beach (Austin
et al., 2020).

Over a 30-year period, trends have shown a significant rise in
both maximum and minimum temperatures, with a 99% confidence
level. This suggests an elevation in temperatures within the study
area, leading to higher rates of evapotranspiration which may
impact the availability of surface water. The reason is the direct
correlation between temperature increases and evapotranspiration
rates (Zomer et al., 2022). Concurrently, a rise in precipitation has
been observed, which could lead to more streamflow since
precipitation directly contributes to streamflow levels. Supporting
this, recent research (Safari and Sebaziga, 2023) has noted a
consistent upward trend in precipitation within the Rwanda
Hydro-Unity Network.

3.2 Verification process for the correctness
of LULC categorization

In the realm of image classification for varying annual datasets, a
generally accepted benchmark for precision is an overall accuracy
exceeding 85% and a Kappa coefficient also surpassing 85%, as noted
by Foody (Foody, 2020). In the case of the Rwanda Hydro-Unity
Network area, a meticulous validation of the land use and land cover
(LULC) categorization for imagery from the year 2020 was
conducted. This process involved the collection of 60 verifiable
ground truth data points via Global Positioning System (GPS) for
each of the six distinct land-use categories identified within the
catchment. The subsequent accuracy evaluation yielded affirmative
results, confirming the reliability of the supervised classification
approach applied to the 2020 imagery. Specifically, the user’s
accuracy, which reflects the proportion of correct predictions for
a given class, was recorded at an impressive 98%. This figure was
derived by dividing the number of correct classifications for a class
by the row total. Moreover, the producer’s accuracy, indicative of the

frequency with which the classified map accurately represents the
actual terrain features, was calculated to be 96%. These figures
collectively contributed to an overall accuracy rate of 98% for the
image classification, while the Kappa coefficient, a statistical
measure of inter-rater agreement for categorical items, stood at a
commendable 97%, as detailed in Table 2 of the referenced
document. This high level of accuracy and agreement
underscores the effectiveness of the classification methodology
employed and the rigorous nature of the validation process,
thereby reinforcing the credibility of the findings. The results not
only demonstrate the precision of the classification but also highlight
the importance of thorough ground truthing in ensuring the
reliability of remote sensing data for land-use analysis.

3.3 Land use and land cover change

The study identified six distinct land use and land cover (LULC)
categories: Forestland, Grassland, Cropland, Built-Up area, Wetland
Area and Water body. These classifications were derived from a
methodical image classification process aimed at monitoring
alterations in the landscape. The objective was to observe the
evolution of these LULC classes over a period spanning from
1991 to 2020. A detailed table was created to illustrate land use
and land cover changes from 1991 to 2020, with data presented at
10-year intervals (Table 3). The findings, which provide a
comprehensive overview of the changes, have been concisely
presented in Table 3. This table likely serves as a crucial
reference point for understanding the extent and nature of
environmental changes in the studied area. The classification
process is instrumental in highlighting shifts in land use patterns,
potentially indicating ecological transformations, urban development,
or changes in agricultural practices. Such insights are invaluable for
policymakers, environmentalists, and urban planners in making
informed decisions that align with sustainable development goals.
The data from 1991 to 2020 would reveal trends and transitions in
land use, offering a narrative of the region’s development and natural
resource management. The study’s approach underscores the
importance of using supervised image classification as a reliable
tool for environmental monitoring and planning.

Table 3 provides Land Use and Land Cover (LULC) data for the
area of study over four time periods: 1991, 2000, 2010, and 2020. The
data, presented in square kilometers (sqKm) and percentages of total
area, reveals significant changes in land use over the 30-year span.
Forestland, for instance, experienced a dramatic decline, dropping
from 5,765.03 sqKm (40.64%) in 1991 to 1,366.12 sqKm (12.04%) in
2020. This reduction, particularly sharp between 1991 and 2000, is
attributed to deforestation for agriculture, logging, and urbanization

TABLE 2 Application of Mann-Kendall and Sen’s slope in hydro-meteorological trend analysis.

Parameters P-value Tau(direction) Sen’s slop n

Streamflow (mm/day) 0.000 0.266 0.0014 30

Total Precipitation (mm 0.1249 −87 0.0000 30

Maximum Temperature (oC) 0.000 0.480 0.0003 30

Minimum Temperature (oC) 0.045 0.259 0.0001 30

Frontiers in Environmental Science frontiersin.org09

Hakorimana et al. 10.3389/fenvs.2025.1575894

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1575894


(Hester et al., 2010). The loss of forestland has profound ecological
consequences, including reduced biodiversity, lower carbon
sequestration, and altered hydrological processes, such as
increased runoff and reduced water infiltration (Benjamin, 2024).

Grassland and cropland also underwent significant changes.
Grassland decreased by 72% between 1991 and 2000, due to
conversion into cropland and built-up areas, though it saw some
recovery after 2000. Cropland, on the other hand, expanded rapidly,
more than doubling from 3,833.25 sqKm (26.90%) in 1991 to
8,318.28 sqKm (63.19%) in 2020. This expansion reflects
agricultural intensification driven by population growth and food
demand. While this supports food security, it comes at the cost of
natural ecosystems, potentially leading to soil erosion, nutrient
runoff, and reduced water quality. Urbanization also played a
significant role, with built-up areas growing steadily, particularly
between 2000 and 2010, reflecting population growth and economic
development. This expansion contributes to the loss of natural
habitats and increases impervious surfaces, raising flood risks and
altering local microclimates.

Wetlands and water bodies showed more stability over the 30-
year period. Wetlands experienced a decline between 1991 and
2000 but recovered somewhat after 2000, due to conservation
efforts and natural regeneration (Nabahungu and Visser, 2011).
By 2020, wetlands had stabilized, with a slight increase compared to
2010. Overall, the data highlights the significant impact of
deforestation, agricultural expansion, and urbanization on the
Hydro Unity Network area of Rwanda. These changes have
important implications for ecological balance, hydrological
processes, and sustainable development, underscoring the need
for proactive land use planning and conservation efforts to
mitigate environmental degradation and promote sustainable
resource management.

The study revealed changes in land use and land cover (LULC)
from 1991 to 2020 (Table 4), showing a decrease in Forest and
Grassland while Cropland, Built-up area, Wetland and Water Body
shown increased. Notably, cropland was the most significant, with
an 8318.3 km2 increase, accounting for a 72% rise, primarily due to
the country’s significant population growth over the last decade,
which has led to a higher demand for food and thus more land being
converted into cropland (Rwanyiziri et al., 2020; Musafiri, 2016).

Additionally, Rwanda has been investing in land husbandry,
water harvesting, and hillside irrigation to enhance resilience to
climate change, reduce soil erosion, halt land degradation, and

increase land productivity (Munyantarama, 2016). Statistically,
Forest shown a decrease of 1366.1 km2 which represent 38.1% of
decrease, Grassland known a decrease of 920.9 km2 which equal
to 3% loss.

Built up area suit to Urbanization has shown an increase of
315.5 km2 which equal to 1.9% (Nduwayezu et al., 2021). Meanwhile,
conservation efforts and the need to sustainably manage natural
resources have led to the deliberate creation and preservation of
wetlands and water bodies, and the know an increase of 0.2% each
one (Mkonda, 2022; Gakuba, 2024; Rammal and Berthier, 2020).

Alterations in Land Use and Land Cover (LULC) within a
watershed can significantly impact the river’s streamflow and the
availability of surface water. The type of land cover, soil
characteristics, and annual precipitation are closely linked to the
average yearly streamflow of a watershed. For example, urban areas,
with their impermeable surfaces and limited infiltration, are prone
to generating higher runoff (Rammal and Berthier, 2020; Zölch et al.,
2017), this is particularly evident in certain catchment zones.

3.4 SWAT model results

3.4.1 Hydrological response unit (HRU) definition
In the context of the SWAT simulation, the Rwanda Hydro-

Unity Network catchment area was segmented into 29 smaller units
known as sub-basins. These sub-basins were then further dissected
into Hydrological Response Units (HRUs), which were delineated
based on a trio of criteria: the predominant land use, soil type, and
slope variations found within each sub-basin. The HRUs emerged
from the intersection of the newly created slope map, depicted in
Figure 3B, with themaps of soil and land use, shown in Figures 2, 3C,
respectively. To define the HRUs, thresholds of 12% for land use,
15% for soil type, and 17% for slope were applied. This methodology
led to the formation of 189 distinct HRUs through the SWATmodel.
These HRUs served a dual purpose: they were not only the
fundamental building blocks for the simulation but also provided
the essential data for calibrating the streamflow within the
SWATCUP12 tool. It’s important to note that an HRU is the
most granular division within a sub-basin and does not
necessarily mirror the overall characteristics of the larger sub-
basin it resides in. This level of detail in the simulation allows for
a more precise analysis of how different land characteristics can
affect water flow and distribution in a catchment area.

TABLE 3 Detailed LULC 1991–2020.

Class area 1991 2000 2010 2020

SqKm % SqKm % SqKm % SqKm %

Forestland 5,765.0 49.9 3,303.4 28.6 1,394.8 12.1 1,366.1 11.8

Grassland 1,269.6 11.0 356.0 3.1 925.9 8.0 920.9 8.0

Cropland 3,833.3 33.2 7,259.2 62.8 8,351.8 72.3 8,318.3 72.0

Built-up-area 98.8 0.9 114.9 1.0 298.8 2.6 315.6 2.7

Wetland 373.7 3.2 287.6 2.5 351.9 3.0 400.5 3.5

Water bodies 215.4 1.9 234.6 2.0 232.6 2.0 234.4 2.0
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3.4.2 Sensitivity analysis
In the initial stage of the SWAT CUP simulation, sensitivity

analysis is conducted to determine the key input parameters of the
model. This analysis is crucial for assessing how variations in
watershed conditions can lead to significant changes in
hydrological sensitivity (Herman et al., 2013). According to
Wang DanDan, Yu XinXiao (Wang DanDan et al.), this step is
essential for calibrating the model accurately, as it involves
pinpointing the parameters that are most influential on the
model’s output, thereby ensuring precision in the simulation results.

In the sensitivity analysis detailed in Table 5, a set of ten
parameters was selected based on their strong correlation with
streamflow. These parameters include critical environmental
factors like temperature and precipitation, as well as key
hydrological components such as groundwater. Additionally,
factors influencing land management, specifically land use and
cover, along with surface features and soil properties, were given
precedence due to their impact on streamflow dynamics. This
prioritization ensures that the most influential variables are
considered in evaluating the system’s responsiveness to
environmental changes.

Following the sensitivity analysis, the four parameters that
demonstrated the highest sensitivity were selected to adjust the
streamflow, as depicted in Figure 4. These parameters underwent a
sensitivity evaluation over a period of 4 years within the SWAT CUP
framework, employing the SUFI-2 method for global sensitivity
analysis. This rigorous approach ensures that the most influential
factors are considered in the calibration process, enhancing the
accuracy and reliability of the streamflow modeling.

The sensitivity of the parameters was assessed by analyzing the
t-statistic and p-value. This method is commonly used in statistics to
determine the reliability of the parameters, where the t-statistic
measures the degree of deviation from the null hypothesis, and the
p-value indicates the probability of observing the results given that
the null hypothesis is true. A low p-value, in conjunction with a high
t-statistic, typically suggests that the parameter has a significant
impact on the model and is not due to random chance.

3.4.3 Model calibration and validation
The calibration and Validation of the SWAT model for the

Rwanda Hydro-Unity Network is a critical process to ensure
accurate simulation of streamflow. The use of the Sufi-2

algorithm within the SWAT Cup interface allows for a systematic
adjustment of the most sensitive parameters, enhancing the model’s
performance over the calibration period of 2011–2013 and
Validation Period 2014–2015. Despite the initial unsatisfactory
results from the Arc SWAT calibration and Validation, the
subsequent iterative approach with 200 simulations and
10 iterations signifies a thorough attempt to refine the model
outputs. The incorporation of the 1991 LULC map further
anchors the calibration and Validation to a specific temporal
context, providing a more precise representation of the
catchment conditions during that period. The employment of
statistical indices like NSE, R2, and PBIAS offers a quantitative
assessment of the calibration and The Validation, comparing the
simulated data against measured values to gauge the model’s
predictive reliability. This meticulous calibration and Validation
process is essential for developing a robust model that can inform
water resource management and planning in the catchment area.

The calibration and validation coefficients for the observed and
modeled streamflow were assessed using three statistical
indicators: Nash-Sutcliffe Efficiency (NSE), coefficient of
determination (R2), and Percent Bias (PBIAS). For Calibration,
the results indicated that the NSE was 0.76, suggesting a very good
model performance. The R2 value was 0.80, indicating a strong
correlation between observed and modeled data. Meanwhile, the
PBIAS was 1.21, which implies that the model predictions are on
average higher than the observed values. For Validation, R2, NSE,
and PBIAS were 0.81, 0.79, and 1.34. Overall, these metrics suggest
that the model is reliable for simulating streamflow within the
calibration and validation period.

Figure 5 illustrates that the daily measured and modeled
streamflow are consistent with the predictions of the chosen
parameters, as per the calibration and Validation results of the
statistical model evaluator. The SWATmodel tends to predict higher
daily stream flows than observed and lower values for minimal
stream flows. However, it performs better in simulating medium
stream flows. This overestimation is attributed to SWAT’s
heightened sensitivity to periods of significant streamflow,
particularly during the rainy season, as noted by Spruill et al., in
2000. These findings suggest that while the SWAT Cup model is
adept at simulating medium flows, accurate simulation of high and
low flows requires meticulous parameter tuning and iterative
calibration and Validation. Consequently, the calibration and

TABLE 4 Comparative analysis of LULC changes between 1991 and 2020.

SN 1991 2020 Gain Loss

LULC class LULC area (sq.km) % LULC area (sq.km) %

1 Forestland 5,765.0 49.9 1,366.1 11.8 0 38.1

2 Grassland 1,269.6 11.0 920.9 8.0 0 3

3 Cropland 3,833.3 33.2 8,318.3 72.0 38.8 0

4 Built-up-area 98.8 0.9 315.6 2.7 1.9 0

5 Wetland 373.7 3.2 400.5 3.5 0.2 0

6 Water bodies 215.4 1.9 234.4 2.0 0.2 0

Total 11555.8 100 11555.8 100 41.1 41.1
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validation outcomes endorse the use of the SWAT model for
streamflow simulation in the Rwanda Hydro-Unity Network,
contingent on the careful selection of critical streamflow
parameters. During the period under observation, a consistent
correlation was noted between stream flow and rainfall; periods
with higher rainfall coincided with increases in stream flow.

3.5 Climatic water balance model results

The catchment’s seasonal Potential Evapotranspiration (PET)
was determined using 3 decades of climatic data, spanning from
1991 to 2020. This calculation of seasonal PET is crucial as it
provides a clear understanding of the water balance, which is

TABLE 5 Accuracy measurement Matrix for classification models (2020).

Forest Grass land Cropland Built-up area Wetland Waterbody Total user User. Acc %

Forest 60 0 0 0 0 0 60 100

Grassland 0 60 0 0 0 0 60 100

Cropland 0 0 59 1 0 0 60 95

Built-up Area 0 0 0 60 0 0 60 100

Wetland 0 0 0 0 60 0 60 100

Water body 0 0 0 0 0 60 60 100

Total Producer 60 60 59 61 60 60 360

Pr. Acc. % 100 100 100 89 100 100 98

Overall, Acc. = 98%

Kappa = 97%

Us. Acc. = User’s Accuracy; Pr. Acc. = Producer’s Accuracy; Acc. = accuracy.

FIGURE 4
Dot plot representation of optimal sensitivity parameters in model calibration (Y-axis: p-value, X-axis: t-statistic).
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closely linked to the periods of crop cultivation. Consequently, the
PET values were established for each of the four distinct seasons: the
extended period of rainfall from March to May, the prolonged dry
spell between June and September, the brief rainy interval occurring
fromOctober to November, and the short dry phase fromDecember
to February.

Figure 6 illustrates that during the Short rain season, typically
spanning October to November, the Rwanda Hydro-Unity
Network’s potential evapotranspiration (PET) consistently
exceeded 200 mm per day across several years. The peak PET
measurement reached 246 mm per day within this same period.
In comparison, the Long Dry Season, from June to September,
exhibited PET values that were notably higher than those recorded
during the Short dry season (December to February) and Long Rain
Season (March to May) seasons. Notably, the Long rain season and
Short Rain seasons experienced greater fluctuations in PET.
Evapotranspiration plays a crucial role in the hydrological cycle,
impacting both the volume and quality of surface water, as noted by
Feng et al. (2020). Despite the Rwanda Hydro-Unity Network
catchment showing trends of increasing streamflow, the elevated
PET levels have had a significant effect on the availability of
surface water.

The analysis using the Mann-Kendall trend method revealed a
notable rise in PET trends, with a 95% confidence level, during the
Short rain season (ON) and Long rain season (MAM) (Table 6).
Similarly, the Long dry season (JJAS) season exhibited a
considerable upward trend in PET, with a 90% confidence level,

as documented in the study (Table 7). The Rwanda Hydro-Unity
Network experiences higher temperatures during the Short (ON)
and Long rain season (MAM), as reported by Ngarukiyimana et al.
(2021), hence, highly vulnerable to climate change. These seasons,
Short rain (ON) and Long Rain (MAM), are crucial for rainfall in the
basin and across Rwanda, marking a period when farmers are
heavily involved in agricultural activities, predominantly in the
rainfed farming system, as highlighted by Jonah et al. (2021).

The Rwanda Hydro-Unity Network catchment’s climatic water
balance demonstrates seasonal fluctuations, reflecting the changes in
precipitation and temperature throughout the year. Figure 7
illustrates that the Long Dry Season (JJAS), spanning June to
September, has consistently exhibited a negative water balance
over a span of 30 years, signifying a period of aridity. The dry
months bring a pronounced dryness to the region, resulting in a
substantial water balance shortfall. In contrast, the Short rain and
dry seasons, occurring from December to February and October to
November respectively, display a mix of positive and negative
climatic water balances. However, it is the positive balances that
are more prevalent. The short dry (DJF) season marks a time of
transition, where the focus shifts from the cultivation phase to the
harvesting of key crops. Concurrently, the Short rain season (ON) is
a preparatory period for rainfed agriculture, which is a common
practice across the catchment area.

In the Rwanda Hydro-Unity Network catchment area, the
period from March to May, spanning is recognized as the
primary rainy season. Consequently, as depicted in Figure 7, the

FIGURE 5
Calibrated and validated hydrograph for daily streamflow analysis of Rwanda hydro-unity network.
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Climatic Water Balance (CWB) is predominantly high and
favorable, with only 2 years being the exception when compared
to other seasons. Notably, the CWB has exceeded 500 mm during
this period. This abundance of water is vital for the rain-dependent
agriculture within the catchment (Uwimbabazi et al., 2022). The
majority of the agricultural planting coincides with this season, and
conversely, a lack of water during the Long Dry Season (JJAS), from
June to September, signals potential drought conditions affecting
future harvests, as indicated by Miklyaev et al. (2020).

In the period from 2017 to 2019, the CWB recorded low values
across all seasons, as depicted in Figure 7. This trend was attributed
to an increase in Potential Evapotranspiration (PET) coupled with
a decrease in precipitation levels. Similarly, Niyonsenga et al.
(2024) observed that the recent period has been marked by

meteorological drought conditions within the whole country of
Rwanda where included our study area. Areas that were once moist
are now experiencing dryness, and droughts are emerging in
regions of the basin that historically did not experience such
conditions.

The seasonal CWBMann Kendall t-test results corroborated the
initial findings. Table 8 reveals that, there was a notable downward
trend in CWB during the four seasons. Specifically, the Long dry
season’s CWB trend was significant at the 94% level, while the Short
Rain and Long Rain seasons’ trends were significant at the 89% level.
It’s possible that the elevated PET trends during the Long Dry
contributed to the steeper declines in CWB. Over a span of 30 years,
the Rwanda Hydro-Unity Network catchment’s seasonal CWB
experienced a marked reduction, which aligns with the
diminished water availability from 1991 to 2020, suggesting a
prevailing meteorological drought in recent times.

3.6 Impact of land use and land cover
changes on surface water availability

The SWAT model’s ability to measure surface water through
various parameters was demonstrated in the Rwanda Hydro-Unity
Network catchment, using land use and land cover (LULC) data
from 1991 to 2020. This comparison revealed an increase in average
surface runoff from 144.99 mm to 201.73 mm over the period,

FIGURE 6
Seasonal evapotranspiration patterns of Rwanda’s hydro-unity network (1991–2020).

TABLE 6 Seasonal trend patterns for PET applying Mann-Kendall and Sen’s
slope.

Season P-value Tau
(direction)

Sen’s
slop

Long Rainy
Season (MAM)

0.005 0.384 0.492

Long Dry Season: (JJAS) 0.050 0.270 0.292

Short Rainy Season (ON) 0.002 0.501 0.492

Short Dry Season: (DJF) 0.045 0.276 0.319
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influenced by changes in LULC classifications, particularly in built-
up and cropland, which grew by 1.8% and 38.8%, respectively. The
urban sprawl of Kigali City, situated within the catchment area, has
been encroaching on adjacent rural zones, contributing to this trend.
The study suggests that urbanization enhances the horizontal water
flow on the surface, leading to higher runoff levels.Weatherl, Henao
Salgado (Weatherl et al., 2021) noted that urban areas expedite

lateral water movement, thereby increasing runoff. The surge in
runoff is primarily linked to LULC alterations, as other factors like
aquifer recharge and soil percolation showed a decline during the
same timeframe (Table 9).

During the period of study, the catchment’s total water yield saw
an upward trend. The 1991 and 2020 land use and land cover
(LULC) scenarios reveal a notable increase in water yield, quantified

FIGURE 7
Temporal changes in seasonal water balance of Rwanda hydro–unity network (1991–2020).

TABLE 7 Variables employed in the sensitivity analysis of the SWAT model.

S.N Parameter_Name Description Min_value Max_value Rank

1 A__CN2.mgt SCS runoff curve number −0.2 0.2 1

2 A__ALPHA_BF.gw Base flow alpha factor 0 1 2

3 A__GW_DELAY.gw Groundwater delay 30 450 3

4 A__GWQMN.gw Threshold depth of water in the shallow aquifer required for return flow to occur 0 2 4

5 A__TLAPS.sub Temperature lapse rate −10 10 5

6 A__OV_N.hru Manning’s “n” value for overland flow 0.01 1 6

7 A__PLAPS.sub Precipitation lapse rate −1,000 1,000 7

8 A__IGRO.mgt Land cover status code 0 1 8

9 A__SOL_Z (. . .).sol Depth from soil surface to bottom of layer 0 3,500 9

10 A__CH_L2.rte Length of main channel −0.05 500 10
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at 33.42 mm. This rise in both surface runoff and water yield has
been linked to severe climate occurrences, specifically flooding,
within the catchment area. The Rwanda Hydro-unity Network
catchment has witnessed a surge in such extreme weather events
in recent times. Urban expansion in Kigali City from 1991 to
2020 has heightened the city’s vulnerability to floods. The study
indicates that despite the lack of a significant long-term change in
precipitation patterns, it is the augmented surface runoff that
primarily drives the increased frequency of flood events.

4 Discussion

The study examines the effects of land use and land cover
(LULC) changes on streamflow and water availability in the
Rwanda Hydro-Unity Network catchment, part of the Nile River
basin. Using the SWAT and ClimaticWater Balance (CWB)models,
the study analyzes hydrological changes from 1991 to 2020. The
results indicate a significant transformation in LULC, with cropland
increasing from 33.2% to 72.0% and built-up areas expanding from
0.9% to 2.7%, while forest cover declined drastically from 49.9% to
11.8%. These changes have led to increased surface runoff (rising
from 144.99 mm in 1991 to 201.73 mm in 2020), higher water yield
(304.83 mm–338.25 mm), and reduced groundwater recharge,
exacerbating the risk of flooding and water scarcity.

The study finds that surface runoff has increased due to
urbanization and deforestation, which reduce infiltration rates. The
SWAT model shows a rise in runoff from 144.99 mm in 1991 to
201.73 mm in 2020, leading to higher overland flow and flood risks.
Additionally, groundwater recharge has declined due to reduced
vegetation cover, limiting the soil’s ability to retain and slowly
release water. This hydrological shift has significant implications

for water security, particularly in the dry season when water
availability is already low. While the increase in water yield might
seem beneficial, it is primarily driven by excessive runoff, which can
contribute to soil erosion and declining water quality.

Climate variability also plays a role in the changing hydrological
patterns, although the study finds LULC changes to be a more
dominant factor. The Mann-Kendall trend analysis shows an
increase in streamflow and temperatures over the 30-year period,
while precipitation changes were less significant. Rising temperatures
have increased potential evapotranspiration (PET), worsening water
deficits, especially during the long dry season (June–September). The
CWBmodel indicates a seasonal decline in water balance, emphasizing
the vulnerability of the catchment to prolonged droughts. The
increasing PET rates reduce groundwater recharge and available
surface water, making the region more susceptible to water shortages.

Flood risks are particularly high in urban areas like Kigali due to
the rapid expansion of impervious surfaces. The study highlights that
built-up areas have grown, leading to a loss of natural infiltration
zones, which accelerates surface runoff and increases flood hazards.
The findings align with previous research, showing that urban
expansion without proper drainage planning exacerbates flooding
risks. To mitigate this, the study suggests implementing urban flood
management strategies such as improved drainage infrastructure,
green spaces, and wetland restoration. Additionally, capturing and
storing excess surface runoff for irrigation and urban agriculture could
help manage floods while improving food security.

To address these hydrological challenges, the study calls for
integrated land and water management strategies. Reforestation,
agroforestry, and wetland conservation are critical in enhancing
groundwater recharge and reducing excessive runoff. Additionally,
climate adaptation measures such as improved water storage
infrastructure (e.g., reservoirs and rainwater harvesting) and
promoting drought-resistant crops can help increase resilience to
climate variability. While the study provides valuable insights, it
acknowledges limitations in model calibration and data availability,
particularly regarding PET estimation methods. Future research
should incorporate socioeconomic factors, such as population
growth and land tenure, to develop more comprehensive land
and water resource management policies.

5 Conclusion

This study assessed the impacts of land use and land cover
(LULC) changes on streamflow and water availability in the
Rwanda Hydro-Unity Network catchment using the SWAT and
Climatic Water Balance models. The results indicate significant
LULC transformations between 1991 and 2020, including rapid
agricultural expansion and urbanization, leading to increased
surface runoff, higher water yield, and reduced groundwater
recharge. Additionally, climate variability has exacerbated seasonal
water deficits and increased potential evapotranspiration, making the
catchment more vulnerable to water shortages and flooding. The
results showed that (1) LULC Changes: Cropland increased from
33.2% to 72.0%, Built-up areas expanded from 0.9% to 2.7% and
Forest cover declined from 49.9% to 11.8%. (2) Hydrological Changes:
Surface runoff increased from 144.99 mm to 201.73 mm, Total water
yield rose from 304.83 mm to 338.25 mm, Groundwater recharge

TABLE 8 Seasonal trend analysis of CWB using Mann-Kendall and Sen’s
slope.

Season P-value Tau(Direction) Sen’s slop

DJF 0.004 −0.3701 −2.8546

ON 0.004 −0.3701 −2.8546

JJAS 0.032 −0.2781 −2.1409

MAM 0.372 0.1172 0.892

TABLE 9 Parameters of water availability under the LULC scenarios from
1991 to 2020 in the Rwanda Hydro-Unity Network catchment area.

SN Parameters 1991 2020

1 Surface Runoff (mm) 144.09 201.73

2 Lateral Soil Flow (mm) 95.2 85.86

3 Groundwater Shallow Aquifer Flow (mm) 31.28 15.4

4 Percolation Out of Soil (mm) 59.84 24.53

5 Evapotranspiration (ET) (mm/s) 600.39 657.32

6 Total Aquifer Recharge (mm) 105.58 88.27

7 Total Water Yield (mm) 304.83 338.25
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declined from 105.58 mm to 88.27 mm and Evapotranspiration
increased from 600.39 mm to 657.32 mm. (3) Climate Variability
andWater Balance: Higher temperatures increased PET, exacerbating
seasonal water shortages, the long dry season (June–September)
experienced the most significant water deficits. (4) Flood Risks and
Adaptation Strategies: Urbanization has led to increased flood risks,
especially in Kigali, implementing green infrastructure, wetland
restoration, and improved urban drainage is necessary to mitigate
flooding. Given these findings, the study calls for integrated land and
water resource management, including sustainable land-use practices,
reforestation, and improved urban water management systems.
Strengthening climate adaptation measures, such as developing
water storage infrastructure and promoting drought-resistant
crops, will enhance the resilience of the catchment against future
environmental changes. By implementing these strategies, Rwanda
can achieve long-term water security and sustainable development.
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