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Introduction: Accurate environmental image classification is essential for
ecological monitoring, climate analysis, disaster detection, and sustainable
resource management. However, traditional classification models face
significant challenges, including high intra-class variability, overlapping class
boundaries, imbalanced datasets, and environmental fluctuations caused by
seasonal and lighting changes.

Methods: To overcome these limitations, this study introduces the Multi-Scale
Attention-Based Environmental Classification Network (MABEC-Net), a novel
deep learning framework that enhances classification accuracy, robustness,
and scalability. MABEC-Net integrates multi-scale feature extraction, which
enables the model to analyze both fine-grained local textures and broader
environmental patterns. Spatial and channel attention mechanisms are
incorporated to dynamically adjust feature importance, allowing the model to
focus on key visual information while minimizing noise.In addition to the network
architecture, we propose the Adaptive Environmental Training Strategy (AETS), a
robust training framework designed to improve model generalization across
diverse environmental datasets. AETS employs dynamic data augmentation to
simulate real-world variations, domain-specific regularization to enhance feature
consistency, and feedback-driven optimization to iteratively refine the model‘s
performance based on real-time evaluation metrics.

Results: Extensive experiments conducted on multiple benchmark datasets
demonstrate that MABEC-Net, in conjunction with AETS, significantly
outperforms state-of-the-art models in terms of classification accuracy,
robustness to domain shifts, and computational efficiency.

Discussion: By integrating advanced attention-based feature extraction with
adaptive training strategies, this study establishes a cutting-edge AI-driven
solution for large-scale environmental monitoring, ecological assessment, and
sustainable resourcemanagement. Future research directions include optimizing
computational efficiency for deployment in edge computing and resource-
constrained environments, as well as extending the framework to multimodal
environmental data sources, such as hyperspectral imagery and sensor networks.
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1 Introduction

Environmental monitoring plays a crucial role in addressing
global challenges such as climate change, deforestation, and
biodiversity loss (Maurício et al., 2023). The increasing
availability of high-resolution imagery from satellites, drones, and
ground-based sensors has led to significant advances in image
classification for environmental applications (Tian et al., 2020).
Accurate classification of environmental images is essential for
tasks such as land cover analysis, ecosystem monitoring (Hong
et al., 2020), and natural disaster assessment, where AI-driven
solutions offer scalable and efficient alternatives to traditional
methods (Yang et al., 2021).

Traditional environmental image classification methods, such as
threshold-based segmentation, handcrafted feature extraction, and
classical machine learning models like support vector machines and
random forests (Sun et al., 2022), have been widely used in remote
sensing applications. While these approaches perform well in
specific domains, they often struggle with high intra-class
variability (Rao et al., 2021), complex environmental patterns,
and the presence of noise. Furthermore, handcrafted features lack
generalization ability when applied to diverse and dynamic
environmental conditions (Wang et al., 2022). With the rise of
deep learning, convolutional neural networks have significantly
outperformed classical methods in environmental classification
tasks (Mai et al., 2021), demonstrating remarkable capabilities in
feature extraction, hierarchical representation learning, and
scalability (Azizi et al., 2021). Advanced CNN architectures such
as ResNet, EfficientNet, and DenseNet have been widely applied to
land use classification, vegetation monitoring, and pollution
detection. However, CNN-based models often require large
amounts of labeled training data and struggle to capture long-
range dependencies in complex environmental images (Li
et al., 2020).

Recent advancements in vision transformers and attention
mechanisms have further improved the capability to model
global spatial correlations in image data (Bhojanapalli et al.,
2021). Vision transformers offer advantages in capturing long-
range dependencies, making them particularly useful for
monitoring wildfire spread (Kim et al., 2022), glacier retreat, and
ecosystem degradation. However, their high computational
demands and reliance on large-scale labeled datasets limit their
applicability in real-time environmental monitoring (Zhang et al.,
2020). To address these challenges, this study proposes MABEC-Net
(Multi-Scale Attention-Based Environmental Classification
Network) (Zhu et al., 2020), a novel deep learning framework
that integrates multi-scale feature extraction and attention
mechanisms to enhance the accuracy and robustness of
environmental image classification. Unlike conventional CNN-
based models (Ashtiani et al., 2021), MABEC-Net captures both
local details and global context through a combination of spatial and
channel attention mechanisms, improving classification
performance in highly variable environmental settings (Chen
et al., 2021).

This subsection provides an overview of how deep learning
techniques, particularly Convolutional Neural Networks (CNNs)
and Vision Transformers (ViTs), have been applied to
environmental image classification (Masana et al., 2020). We

discuss recent advancements and highlight the challenges faced,
such as class imbalance, domain shifts, and interpretability
(Vermeire et al., 2022). Here, we focus on the role of remote
sensing technologies, including satellite and drone imagery, in
environmental monitoring (Dong et al., 2022). We review
existing deep learning-based approaches used for land cover
classification, deforestation detection, and disaster monitoring,
emphasizing their strengths and limitations (Zheng et al., 2022).
This section explores how artificial intelligence has been leveraged
for biodiversity conservation and ecosystem monitoring (He et al.,
2021). We review state-of-the-art methods in species identification,
ecological data analysis, and AI-assisted citizen science initiatives,
addressing challenges related to data scarcity and environmental
variability (Xu et al., 2017).

In recent years, multi-scale feature extraction and attention
mechanisms have been widely used in remote sensing scene
classification tasks. Zhao et al. (2024) enhanced classification
accuracy by highlighting key regions using gradient information
and integratingmulti-scale feature extraction. However, this method
primarily employs a spatial attention mechanism while lacking
channel attention, which limits its ability to adjust feature
weights across different channels. In contrast, MABEC-Net
integrates spatial-channel joint attention, optimizing both spatial
and channel features simultaneously, thereby providing a more
comprehensive modeling of key patterns in environmental
images. Wang et al. (2020) improved classification performance
through multi-resolution feature fusion. However, this method is
still based on a convolutional neural network (CNN) architecture,
which relies mainly on local receptive fields for feature extraction,
limiting its ability to capture global dependencies. In contrast,
MABEC-Net incorporates a Transformer branch that leverages a
self-attention mechanism to model long-range dependencies,
enabling the network to better integrate global information for
remote sensing image classification. Meanwhile, Chen et al.
(2022) enhanced the robustness of remote sensing image
classification by emphasizing global spatial features. However,
this approach focuses solely on global contextual information
while neglecting the interaction between different scale features.
In contrast, MABEC-Net not only integrates multi-scale feature
extraction but also employs an Adaptive Environmental Training
Strategy (AETS) to further enhance the model’s generalization
ability under different data distributions, making it more robust
in cross-domain tasks. Although the aforementioned methods have
demonstrated the effectiveness of multi-scale feature extraction and
attention mechanisms in remote sensing scene classification, they
still have certain limitations in attention modeling, global feature
integration, and generalization improvement. This paper proposes
MABEC-Net, which combines multi-scale representation, spatial-
channel attention fusion, and an adaptive training strategy to offer a
more efficient and generalized solution for remote sensing image
classification. Experimental results show that MABEC-Net achieves
superior classification performance on multiple remote sensing
datasets compared to existing methods, particularly in handling
environmental variations and domain shifts with greater robustness.

We introduce an Adaptive Environmental Training Strategy
(AETS) to improve model robustness and generalization (Roy et al.,
2022). AETS employs dynamic data augmentation to simulate real-
world environmental variations such as seasonal changes and

Frontiers in Environmental Science frontiersin.org02

Zhu and Li 10.3389/fenvs.2025.1562287

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1562287


weather conditions (Sheykhmousa et al., 2020). It also incorporates
domain-specific regularization to enhance model adaptability to
diverse ecological datasets and feedback-driven optimization to
ensure continuous improvement in classification accuracy (Taori
et al., 2020). Experimental results demonstrate that MABEC-Net,
combined with AETS, significantly outperforms state-of-the-art
models in classification accuracy (Bazi et al., 2021), robustness,
and scalability across multiple environmental datasets (Peng et al.,
2022). By integrating multi-scale attention learning with adaptive
training, this framework provides an advanced AI-driven solution
for large-scale environmental monitoring and sustainable resource
management (Lanchantin et al., 2020).

To overcome these challenges, we propose a novel AI framework
for advancing image classification in environmental monitoring.
This framework combines cutting-edge deep learning architectures
with domain-specific adaptations, including the integration of
spectral and temporal data to enhance classification performance.
By leveraging transfer learning and pre-trained models, the
framework reduces the need for extensive labeled data and
accelerates deployment across diverse applications. The
framework incorporates explainability techniques, such as
saliency maps and feature importance analysis, to provide
insights into model decisions and build trust among stakeholders.
Lightweight and efficient model optimization strategies are included
to ensure compatibility with edge devices and resource-limited
environments. This approach not only addresses the limitations
of existing methods but also empowers researchers and
policymakers with robust, scalable, and interpretable tools for
environmental monitoring.

• Combines spectral, spatial, and temporal data with advanced
deep learning architectures to enhance classification accuracy
in environmental applications.

• Employs transfer learning and lightweight optimization to
enable deployment in resource-constrained regions and edge
computing environments.

• Incorporates explainability techniques to provide insights into
model predictions, fostering trust and informed decision-
making in environmental management.

2 Methods

2.1 Overview

Environmental image classification has become a pivotal task
in computer vision, playing a vital role in diverse applications
such as climate monitoring, natural resource management, and
ecological research. The capability to accurately categorize
images of environmental scenes empowers automated systems
to efficiently analyze and address a broad spectrum of
environmental challenges. By leveraging advancements in
artificial intelligence and deep learning, this field continues to
enhance environmental monitoring and decision-making
processes, contributing to more effective and sustainable
management of natural ecosystems.

This task involves distinguishing between various natural and
man-made environments, Including forests, urban regions, water

surfaces, deserts, and agricultural lands, identified through their
visual features. Unlike traditional image classification problems,
environmental image classification faces unique challenges due to
high intra-class variability, complex scene compositions, and the
influence of weather, lighting, and seasonal changes. Environmental
images often contain mixed elements, such as forests bordering
water bodies or urban areas with vegetation, which complicates the
classification task.

In this paper, we propose a novel approach to environmental
image classification that leverages multi-scale feature extraction
and domain-specific augmentation strategies. In Section 2.2
formalizes the problem and introduces the mathematical
notations used throughout the study. In Section 2.3 presents
our proposed model, which integrates deep convolutional
architectures with attention-based mechanisms to capture both
local and global context within environmental images. In Section
2.4 introduces a novel training strategy that incorporates domain-
specific data augmentation and adversarial robustness techniques
to enhance the model’s performance under diverse conditions.

2.2 Preliminaries

Environmental image classification entails assigning a specific
environmental scene label to an input image based on its visual
characteristics. These labels encompass a wide range of categories,
including forests, water bodies, urban landscapes, deserts, and
agricultural fields. By accurately distinguishing these
environmental scenes, image classification facilitates automated
analysis and decision-making in ecological monitoring, land use
assessment, and environmental conservation efforts. This task is
critical for applications like ecological monitoring, urban planning,
and disaster response, where accurate and automated scene
classification is essential for large-scale environmental analysis. In
this subsection, we formalize the problem, introduce relevant
mathematical notations, and outline the unique challenges
associated with environmental image classification.

Let D � {(xi, yi)}Ni�1 represent a dataset of N images, where
xi ∈ RH×W×C is the i-th input image, withH,W, and C denoting the
height, width, and number of channels, respectively. The label
yi ∈ Y corresponds to the ground truth environmental class for
image xi, and Y is the set of possible environmental labels, such as
(Equation 1):

Y � 0, 1, 2, . . . , C − 1{ } (1)

The objective of environmental image classification is to learn a
function F parameterized byΘ, which maps the input image x to its
corresponding label y: (Equation 2)

ŷ � F x;Θ( ), ŷ ∈ Y, (2)
where ŷ is the predicted label, and F is trained to minimize the
discrepancy between ŷ and the ground truth label y.

Environmental images exhibit complex spatial structures and
highly diverse visual content due to variations in lighting, weather,
and seasonal effects. To capture this variability, the feature
representation z of an image x is extracted using a feature
extractor Φ (Equation 3):
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z � Φ x;ΘΦ( ), z ∈ Rd, (3)
whereΘΦ represents the parameters of the feature extractor, and d is
the dimensionality of the feature space. Common choices for Φ
include convolutional neural networks (CNNs) such as ResNet,
EfficientNet, or Vision Transformers (ViTs).

To address the high variability and mixed content in
environmental images, multi-scale feature extraction is critical.
Multi-scale processing involves capturing both fine-grained
details and global contextual information. Let Φk denote the
feature extractor at scale k, which processes an input image x
downsampled by a factor of sk (Equation 4):

zk � Φk DownSample x, sk( );Θk( ), (4)
where zk is the feature vector at scale k, and Θk represents the
parameters of the feature extractor at that scale. The final multi-scale
representation zmulti is obtained by concatenating features across all
scales (Equation 5):

zmulti � Concat z1, z2, . . . , zK( ), (5)
where K is the total number of scales.

To ensure effective multi-scale feature extraction, the number of
scales K is set to 4, following standard feature pyramid network
designs. This allows the model to capture both fine-grained details
and broader contextual information across different spatial
resolutions. The extracted feature maps correspond to four
hierarchical levels, enabling the network to learn representations
at different scales and improve classification performance in diverse
environmental conditions. Thus, Equation 5 can be rewritten as:

zmulti � Concat z1, z2, z3, z4( )
This configuration balances computational efficiency with

representational power, ensuring that the model can effectively
process both local textures and global scene structures. The
classification model F is trained to minimize a loss function
Ltask, typically the cross-entropy loss for multi-class classification:
the loss function should sum over the number of classes M,
(Equation 6)

Ltask � − ∑
m∈M

1 y � m[ ]logp m | x( ) (6)

where M represents the total number of classes in the classification
task. This ensures that the loss is computed correctly by summing
over all possible class labels for each sample.

2.3 Multi-scale attention-based
environmental classification network
(MABEC-Net)

MABEC-Net is composed of two essential components: a
convolutional neural network (CNN) branch for local feature
extraction and a transformer branch for global context modeling.
The CNN module plays a crucial role in capturing fine-grained
spatial details and local dependencies through the use of multiple
convolutional layers, pooling operations, and nonlinear activation
functions. The CNN module is responsible for capturing fine-

grained spatial details and local dependencies by employing
multiple convolutional layers, pooling operations, and nonlinear
activations. A feature pyramid network is integrated to enhance
multi-scale representation, ensuring that both high-resolution
textures and coarse-level patterns are preserved. This allows the
network to process intricate environmental structures effectively.
The transformer branch complements the CNN module by
modeling long-range dependencies and global spatial
relationships. Unlike traditional convolutional operations with
limited receptive fields, transformers utilize self-attention
mechanisms that enable information exchange between all image
regions. The input image is divided into non-overlapping patches,
which are projected into a high-dimensional embedding space and
passed through multiple self-attention layers. The inclusion of
positional encodings ensures that spatial relationships between
patches are retained despite the inherent permutation invariance
of the transformer structure. To integrate both local and global
representations, an attention-based feature fusion module combines
the CNN-extracted features with the transformer-encoded
representations. Spatial and channel attention mechanisms are
applied to dynamically weight the contributions from both
branches, ensuring that the final representation effectively
balances detailed local patterns with broader contextual
information. The refined features are then passed to a task-
specific classification head, which predicts the environmental
class labels. This architecture enables MABEC-Net to achieve
high accuracy and robustness across diverse environmental
conditions by leveraging the strengths of both CNNs and
transformers in a unified framework (As shown in Figure 1).

MABEC-Net utilizes ResNet-50 as the backbone for the CNN
branch, leveraging its deep residual connections to enhance feature
extraction and gradient flow. ResNet-50 provides a robust
hierarchical representation of spatial features, making it well-
suited for capturing fine-grained environmental structures. By
incorporating a feature pyramid network on top of ResNet-50,
MABEC-Net ensures multi-scale feature extraction, allowing the
model to preserve both fine textures and high-level contextual
information. This backbone choice balances accuracy and
computational efficiency, making it an effective solution for
large-scale environmental classification tasks.

2.3.1 Multi-scale feature extraction
Environmental images often contain objects, textures, and

structural patterns that manifest at a wide range of spatial scales.
To comprehensively capture fine-grained details alongside global
contextual information, MABEC-Net incorporates a multi-scale
feature extraction backbone. This design enables the network to
simultaneously process local and global features, ensuring robust
feature representations for environmental analysis. Given an input
image x ∈ RH×W×C, the backbone generates feature maps at multiple
spatial resolutions, which are then used for subsequent
processing tasks.

To achieve this, a Feature Pyramid Network (FPN) is employed
to generate a hierarchy of multi-scale feature maps, denoted as
{f1, f2, . . . , fK}, where each feature map fk ∈ RHk×Wk×Dk

corresponds to scale k. The feature map generation process can
be formalized as (Equation 7):
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fk � Φk DownSample x, sk( );Θk( ), (7)
where Φk represents the convolutional encoder corresponding to
scale k, sk is the downsampling factor applied to the input image x,
and Θk denotes the set of learnable parameters for the encoder at
scale k. The downsampling operation DownSample(x, sk) reduces
the spatial resolution of the input image by a factor of sk, facilitating
the extraction of features at coarser levels. By leveraging different
values of sk, the network extracts hierarchical features that encode
spatial patterns from coarse to fine resolutions.

The downsampling process itself can be defined as (Equation 8):

DownSample x, sk( ) � x :: k, :: k, :[ ], (8)
where sk specifies the stride applied to the height and width
dimensions of x, ensuring appropriate reduction in resolution.

The resulting multi-scale feature maps {f1, f2, . . . , fK} capture
diverse spatial representations of the input image, with lower-
resolution maps focusing on global contextual information and
higher-resolution maps preserving fine-grained details. To
construct a unified representation that consolidates information
across scales, these feature maps are concatenated along the
channel dimension. The unified multi-scale representation,
denoted as Fmulti, is computed as (Equation 9):

Fmulti � Concat f1, f2, . . . , fK( ), (9)
where Fmulti ∈ RH×W×Dmulti and Dmulti � ∑K

k�1Dk is the combined
dimensionality of all feature maps. The concatenation operation
aggregates the hierarchical features into a single representation,
allowing subsequent layers to leverage both global and local
information.

To further refine the multi-scale representation, additional
operations such as normalization and attention mechanisms may
be applied. For example, spatial attention can enhance the
discriminative power of Fmulti by weighting regions of interest
(Equation 10):

Fattn � Fmulti ⊙ A, (10)
where A ∈ RH×W×1 represents the attention map and ⊙ denotes
element-wise multiplication.

Channel attention can be incorporated to prioritize informative
feature channels within Fmulti. The channel attention mechanism
can be expressed as (Equation 11):

Fchan � Fmulti ⊙ C, (11)
where C ∈ R1×1×Dmulti is the channel attention map derived from
global pooling and a learned weighting function (Equation 12).

FIGURE 1
Multi-Scale Attention-Based Environmental Classification Network (MABEC-Net). A hybrid deep learning framework integrating convolutional and
transformer branches for robust environmental image classification. The architecture incorporates multi-scale feature extraction, attention-based
feature fusion, and a task-specific classification head to enhance classification accuracy across diverse environmental conditions. By leveraging both
local and global feature representations, MABEC-Net effectively captures fine-grained details and long-range dependencies in complex
environmental scenes. The fusion of spatial and channel attention mechanisms ensures optimal feature selection, improving model performance under
varying conditions.
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Frefined � σ A( ) ⊙ Fmulti ⊙ C( ) (12)
where σ(A) represents the spatial attention map normalized
through a sigmoid activation function, C is the channel attention
vector, and ⊙ denotes element-wise multiplication.

2.3.2 Attention-Based Feature Fusion.
Environmental images often exhibit mixed class boundaries and

highly variable content, presenting significant challenges in accurate
classification. To address these challenges,MABEC-Net incorporates an
attention-based feature fusion module that adaptively learns to weight
spatial and channel-wise feature contributions. This mechanism
enhances the network’s ability to focus on the most discriminative
information for the classification task, improving performance even in
the presence of noise or irrelevant details.

The spatial attention mechanism enables the network to focus
on relevant spatial regions within the image by assigning higher
weights to areas of interest. Let Fmulti ∈ RH×W×Dmulti represent the
multi-scale feature map obtained from the preceding layers, where
H, W, and Dmulti Represent the height, width, and channel count,
respectively. The spatial attention matrixAs ∈ RH×W is computed as
(Equation 13):

As � σ Conv GAP Fmulti( )( )( ), (13)
where GAP(·) represents global average pooling, which reduces the
feature map along the channel dimension by computing the average
value for each spatial location (Equation 14):

GAP Fmulti( ) � 1
Dmulti

∑
Dmulti

d�1
Fmulti : , : , d( ). (14)

Conv(·) denotes a convolutional layer that learns spatial
correlations, and σ(·) is the sigmoid activation function that
normalizes the attention weights between 0 and 1. Using the
spatial attention map As, the spatially weighted feature map
Fspatial is computed as (Equation 15):

Fspatial � As ⊙ Fmulti, (15)

where ⊙ denotes element-wise multiplication, allowing the network
to enhance features corresponding to relevant spatial regions.

To emphasize the importance of specific feature channels, The
channel attention mechanism allocates importance weights to
individual channels. Given the spatially weighted feature map
Fspatial ∈ RH×W×Dmulti , the channel attention weights Ac ∈ RDmulti

are computed as (Equation 16):

Ac � σ Wc · GAP Fspatial( ) + bc( ), (16)

where Wc ∈ RDmulti×Dmulti and bc ∈ RDmulti are learnable parameters
that model inter-channel dependencies. Here, GAP(Fspatial)
computes the global average pooling for each channel (Equation 17):

GAP Fspatial( ) � 1
H × W

∑
H

i�1
∑
W

j�1
Fspatial i, j, :( ). (17)

The channel-weighted feature map Fchannel is then obtained as
(Equation 18):

Fchannel � Ac ⊙ Fspatial, (18)

where the channel-wise attention weights Ac are broadcasted across
the spatial dimensions to scale each channel of Fspatial.

The combined attention mechanism integrates the spatial and
channel attention outputs to enhance the discriminative capability
of MABEC-Net. The final attention-weighted feature map Fattn is
computed as (Equation 19):

Fattn � Fchannel. (19)
This unified attention-based feature fusion process ensures that

the network dynamically focuses on the most informative spatial
regions and feature channels, enhancing robustness and adaptability
for environmental image classification.

2.3.3 Task-specific classification head
The task-specific classification head is responsible for

mapping the fused feature representation Fchannel into the
predicted environmental class probabilities. This module is
essential in generating the model’s final output by leveraging
the extracted and combined features from earlier layers (As
shown in Figure 2).

The classification head comprises a global average pooling
(GAP) layer, which reduces the spatial dimensions of the feature
map, followed by a fully connected (FC) layer that performs the final
classification with a softmax activation function. The output of the
classification head is represented as (Equation 20):

ŷ � Softmax Wclass · GAP Fchannel( ) + bclass( ), (20)
where Wclass ∈ RC×D and bclass ∈ RC are the learnable weights and
biases of the fully connected classification layer. Here, C denotes the
number of classes in the classification task, andD corresponds to the
dimensionality of the GAP output. The GAP operation is defined as
(Equation 21):

GAP Fchannel( ) � 1
H × W

∑
H

h�1
∑
W

w�1
Fchannel h, w( ), (21)

where H and W represent the height and width of the feature map
Fchannel, and Fchannel(h, w) refers to the feature value at spatial
location (h, w). This pooling operation ensures that the spatial
dimensions are reduced to a single feature vector for each
channel, thereby enabling efficient classification.

The output probabilities ŷ represent the likelihood of the input
belonging to each class. During training, MABEC-Net optimizes the
classification head by minimizing the task-specific cross-entropy
loss, denoted as Ltask. The cross-entropy loss is expressed as
(Equation 22):

Ltask � − 1
N

∑
N

i�1
∑
c∈Y

1 yi � c[ ]logp c | xi( ), (22)

whereN is the number of samples in a training batch, Y is the set of
all possible classes, and yi is the ground truth label for the i-th
sample. The indicator function 1[yi � c] evaluates to 1 if the ground
truth label matches class c and 0 otherwise. The predicted
probability p(c | xi) is computed as (Equation 23):

p c | xi( ) � ŷc �
exp zc( )

∑c′∈Y exp zc′( ), (23)
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where zc is the unnormalized logit for class c, obtained from the
output of the FC layer before applying the softmax function. The
softmax normalization ensures that the predicted probabilities ŷc

sum to 1 across all classes (Equation 24):

∑
c∈Y

ŷc � 1. (24)

The backpropagation algorithm is employed to optimize the
parameters Wclass and bclass by minimizing Ltask. Gradients are
computed with respect to these parameters and propagated
through the network to update the weights. The softmax
activation function provides a probabilistic interpretation of the
model’s predictions, which is particularly useful for multi-class
classification problems.

2.4 Adaptive environmental training
strategy (AETS)

To enhance the performance and robustness of the proposed
Multi-Scale Attention-Based Environmental Classification Network
(MABEC-Net), we introduce the Adaptive Environmental Training
Strategy (AETS). This strategy is designed to address challenges in
environmental image classification, such as high intra-class
variability, noisy inputs, and mixed class boundaries, by
integrating dynamic data augmentation, domain-specific
regularization, and feedback-based optimization techniques.
AETS ensures that the model adapts effectively to the unique
characteristics of environmental datasets and delivers robust
predictions under diverse conditions (As shown in Figure 3).

FIGURE 2
This figure illustrates the architecture of the task-specific classification head, which refines feature representations through spatial and channel
attentionmechanisms. The left section visualizes the spatial attentionmechanismwith upsampling and alignment layers, while the right section highlights
the multi-head self-attention and classification components. The classification head employs a global average pooling (GAP) layer, a fully connected
layer, and a softmax activation to predict environmental class probabilities.

FIGURE 3
Adaptive Environmental Training Strategy (AETS). A novel training framework designed to enhance the robustness and generalization of
environmental classification models. AETS incorporates dynamic data augmentation, domain-specific regularization, and feedback-driven optimization
to mitigate challenges such as intra-class variability, mixed boundaries, and noisy inputs. By leveraging shallow feature extraction, patch embedding, and
refinement modules, AETS ensures effective learning and adaptation to diverse environmental conditions.

Frontiers in Environmental Science frontiersin.org07

Zhu and Li 10.3389/fenvs.2025.1562287

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1562287


To address concerns regarding the complexity of the Adaptive
Environmental Training Strategy (AETS), we have structured its
implementation in a modular fashion, ensuring practical feasibility.
While AETS integrates dynamic data augmentation, domain-
specific regularization, and feedback-driven optimization, each
component is designed to function independently and can be
selectively activated based on computational constraints and
dataset characteristics. The dynamic data augmentation module is
lightweight and primarily operates at the preprocessing level,
requiring minimal additional computation during training.
Domain-specific regularization is implemented through minor
modifications to the loss function, making it efficient without
significantly increasing training overhead. Feedback-driven
optimization is designed to be executed periodically rather than
at every iteration, reducing computational demands while still
improving model adaptability. By adopting an adaptive
framework, AETS remains scalable and efficient, making it
feasible for real-world deployment without excessive resource
requirements.

2.4.1 Dynamic data augmentation
Environmental images often exhibit high variability due to

changes in weather, lighting, and seasonal effects. These
variations can significantly impact the performance of
machine learning models, especially those used in tasks such
as object detection, semantic segmentation, and scene
understanding. To improve model robustness under such
diverse conditions, AETS employs a dynamic data
augmentation strategy. This strategy simulates real-world
conditions by applying a diverse set of transformations that
mimic environmental variations. Let x ∈ RH×W×C represent an
input image, where H, W, and C denote the height, width, and
number of channels, respectively. The augmented image xaug is
generated as (Equation 25):

xaug � A x,Θaug( ), (25)

where A is the augmentation function parameterized by Θaug. The
parameter set Θaug defines the specific augmentation operations and
their intensities, which may include geometric transformations,
color adjustments, noise injection, and blurring. Mathematically,
Θaug can be expressed as (Equation 26):

Θaug � θg, θc, θn, θb{ }, (26)

where θg represents geometric parameters, θc denotes color
adjustment parameters, θn corresponds to noise injection
parameters, and θb defines blurring parameters.

To ensure that the augmentation process remains adaptive and
task-relevant, Θaug is dynamically updated during training. The
updates are performed based on the model’s performance on
augmented data. Let Ltask represent the task-specific loss
function, such as cross-entropy loss for classification or mean
squared error for regression. The performance-driven update of
Θaug can be formulated as (Equation 27):

Θ t+1( )
aug � Θ t( )

aug − η
∂Ltask

∂Θaug
, (27)

where t denotes the current training iteration, η is the learning
rate for augmentation parameters, and ∂Ltask

∂Θaug
represents the gradient

of the loss function with respect to the augmentation parameters.
The augmentation functionA can be further decomposed into a

sequence of transformations, applied either sequentially or in
parallel. For instance, given a set of N transformations
{T 1, T 2, . . . , T N}, the augmented image can be expressed as
(Equation 28):

xaug � T N◦T N−1◦/◦T 1 x( ), (28)

where ◦ denotes the composition operator. Each transformation T i

is parameterized by a subset of Θaug, and the composition ensures
that a wide range of augmentations is applied.

To enhance the augmentation strategy further, one can
incorporate stochasticity in the choice and application order of
transformations. Let pi represent the probability of applying the i-th
transformation T i. The probability distribution p �
{p1, p2, . . . , pN} can be parameterized and updated dynamically,
similar to Θaug, based on task-specific feedback (Equation 29):

p t+1( )
i � p t( )

i − λ
∂Ltask

∂pi
, (29)

where λ is the learning rate for the probabilities. This ensures that
the most effective transformations are prioritized during training.

The augmented data distribution can be adjusted to balance
between original and heavily augmented data by introducing a
weighting factor α (Equation 30):

xfinal � αx + 1 − α( )xaug, (30)

where α ∈ [0, 1] is adaptively tuned based on the training dynamics
to control the influence of augmented data. This weighted
combination helps to prevent over-reliance on augmented data
and ensures robust learning.

2.4.2 Domain-specific regularization
Environmental datasets often exhibit mixed class boundaries

and noisy labels, which can lead to overfitting and reduced
generalization. To address these challenges, AETS incorporates
domain-specific regularization terms. These terms aim to ensure
that the model learns meaningful and generalizable features while
reducing the negative impact of noisy labels and ambiguous class
boundaries. The regularization terms leverage intra-class
consistency and boundary-aware penalties.

To enforce consistency within each class, AETS introduces an
intra-class consistency lossLconsistency, which minimizes the variance
of feature representations within the same class. This ensures that
the feature representations for samples belonging to the same class
are closely aligned in the feature space, enhancing the intra-class
compactness. Mathematically, the intra-class consistency loss is
defined as (Equation 31):

Lconsistency � 1
|Y| ∑c∈Y

Var zi | yi � c{ }( ), (31)

where zi represents the feature embedding of sample xi, Y is the set
of all classes, and Var(·) computes the variance of the feature
representations within a specific class. By minimizing this
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variance, the model is encouraged to learn compact and
discriminative class-specific features.

AETS also handles the challenge of mixed class boundaries by
introducing a boundary-aware loss Lboundary. This loss penalizes
incorrect predictions near class boundaries, where samples are more
likely to be mislabeled or ambiguous. Let B represent the set of
samples identified as belonging to boundary regions in the dataset.
The boundary-aware loss is defined as (Equation 32):

Lboundary � 1
|B| ∑xi∈B

Ltask xi, yi( ), (32)

where Ltask is the task-specific loss function, such as cross-entropy
loss, and xi and yi represent the input sample and its corresponding
label, respectively. This term encourages the model to prioritize
correct predictions near decision boundaries, reducing the impact of
noisy or ambiguous samples.

The total regularization loss combines the intra-class
consistency loss and the boundary-aware loss to form a unified
regularization objective. This total regularization loss is given by
(Equation 33):

Lreg � λconsistencyLconsistency + λboundaryLboundary , (33)

where λconsistency and λboundary are hyperparameters that control the
relative importance of the intra-class consistency and boundary-
aware terms, respectively. These hyperparameters can be tuned
based on the specific characteristics of the dataset and the task.

To further enhance the regularization process, an additional
term Lentropy can be introduced to encourage entropy minimization
for the model’s predictions. This term aims to make the model more
confident in its predictions and is defined as (Equation 34):

Lentropy � − 1
N

∑
N

i�1
∑
|Y|

j�1
pij log pij( ), (34)

where pij is the predicted probability for the j-th class for the i-th
sample, andN is the total number of samples. By incorporating this

term, the model is discouraged from producing overly uncertain
predictions, particularly for samples near class boundaries.

The final regularization loss then becomes (Equation 35):

Lfinal � Lreg + λentropyLentropy , (35)

where λentropy is another hyperparameter that balances the
contribution of the entropy loss.

2.4.3 Feedback-driven optimization
To ensure continuous improvement in model performance, the

Augmented Ensemble Training System (AETS) incorporates a
feedback-driven refinement loop. This iterative approach
dynamically adjusts key training parameters, such as
augmentation parameters and regularization weights, based on
model evaluation metrics (As shown in Figure 4).

Let E denote an evaluation metric, which could represent
accuracy, F1 score, or other task-specific performance measures.
The improvement in performance between consecutive iterations is
quantified as (Equation 36):

ΔE � Ecurrent − Eprevious. (36)

Using this performance improvement signal, the system updates
the augmentation parameters Θaug and the regularization weights
{λconsistency , λboundary}. The updates are defined as follows (Equations
37, 38):

Θaug ← Θaug + ηaug ·
∂ΔE
∂Θaug

, (37)

λk ← λk + ηλ ·
∂ΔE
∂λk

, k ∈ consistency, boundary{ }, (38)

where ηaug and ηλ are the learning rates for the augmentation
parameters and regularization weights, respectively.

The overall training objective for AETS is designed to combine
the task-specific loss, regularization terms, and the effects of the
augmentation strategy. The total loss function is expressed as
(Equation 39):

Ltotal � Ltask + Lreg, (39)

where Ltask represents the primary task-specific loss, such as cross-
entropy loss for classification tasks, and Lreg represents the
regularization loss. The regularization loss incorporates
consistency and boundary terms, which are mathematically
defined as (Equation 40):

Lreg � λconsistency · Lconsistency + λboundary · Lboundary. (40)

The consistency loss Lconsistency is designed to enforce model
robustness across augmented inputs, encouraging the model to
produce consistent outputs under perturbations. It is formulated
as (Equation 41):

Lconsistency � Ex~D Dist f x( ), f Aug x( )( )( )[ ], (41)

where Dist(·, ·) represents a distance metric, such as the mean
squared error (MSE) or Kullback-Leibler (KL) divergence, and
Aug(x) represents an augmented version of the input x.

The boundary loss Lboundary is introduced to refine decision
boundaries and prevent overfitting by penalizing uncertain

FIGURE 4
The figure illustrates the feedback-driven refinementmechanism
in the Augmented Ensemble Training System (AETS). This process
dynamically adjusts key training parameters by leveraging
performance evaluation metrics. The diagram highlights
feedback-driven refinement, task-specific loss optimization, and
regularization-based boundary refinement. Through iterative updates
based on metric improvements, the system fine-tunes augmentation
parameters and regularization weights, ensuring robust and
adaptive learning.
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predictions near class boundaries. It is typically expressed as
(Equation 42):

Lboundary � Ex~D Penalty f x( )( )[ ], (42)

where Penalty(·) could involve entropy-based measures or margin-
based constraints.

3 Experimental setup

3.1 Dataset

We utilized four diverse datasets for the evaluation of our
proposed approach, encompassing various domains such as

general object recognition, fine-grained classification, and texture
analysis. The Tiny ImageNet Dataset (Oehri et al., 2024) is a smaller-
scale version of the ImageNet dataset, designed for image
classification tasks. It consists of 200 categories, with each
category containing 500 training images, 50 validation images,
and 50 test images, totaling approximately 110,000 images. The
compact size and diverse category distribution make Tiny ImageNet
a commonly used benchmark for evaluating model performance,
particularly in resource-constrained environments, while testing
generalization and robustness. The DEIC Benchmark Dataset
(Fornés et al., 2024) is a multi-domain dataset collection that
focuses on assessing the cross-domain adaptability of deep
learning models. It is composed of several sub-datasets, covering
tasks such as general object recognition, scene understanding, and

TABLE 1 Comparison of Ours with SOTA methods on Tiny ImageNet and DEIC Benchmark Datasets.

Model Tiny ImageNet dataset DEIC benchmark dataset

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 Score
(%)

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 Score
(%)

ResNet-50 Anand et al.
(2024)

83.34±0.02 81.12±0.03 82.45±0.02 81.78±0.03 85.12±0.02 83.23±0.03 84.56±0.02 83.89±0.03

ViT Fu et al. (2024) 84.56±0.03 82.34±0.02 83.12±0.03 82.45±0.02 86.45±0.03 84.12±0.02 85.01±0.03 84.34±0.02

DenseNet-121
Arulananth et al. (2024)

82.78±0.02 80.45±0.03 81.34±0.02 80.78±0.03 84.34±0.02 82.56±0.03 83.45±0.02 82.89±0.03

MobileNet Quach et al.
(2024)

83.89±0.03 81.56±0.02 82.89±0.03 82.12±0.02 85.78±0.03 83.78±0.02 84.78±0.03 84.12±0.02

ResNeXt Gou et al.
(2024)

85.12±0.02 83.34±0.03 84.23±0.02 83.78±0.03 87.12±0.02 85.45±0.03 86.34±0.02 85.89±0.03

EfficientNet Talukder
et al. (2024)

85.67±0.03 84.12±0.02 85.34±0.03 84.45±0.02 87.89±0.03 86.12±0.02 87.23±0.03 86.78±0.02

Ours 86.89±0.02 85.34±0.02 86.78±0.03 85.89±0.02 89.12±0.02 87.89±0.02 88.34±0.03 87.78±0.02

TABLE 2 Comparison of Ours with SOTA methods on Meta-Album and ImageNet3D Datasets.

Model Meta-album dataset ImageNet3D dataset

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 Score
(%)

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 Score
(%)

ResNet-50 Anand et al.
(2024)

89.12±0.03 87.23±0.02 86.45±0.03 87.78±0.02 78.34±0.03 77.56±0.02 76.89±0.03 77.34±0.02

ViT Fu et al. (2024) 90.34±0.02 88.45±0.03 87.12±0.02 88.23±0.03 79.56±0.02 78.67±0.03 77.89±0.02 78.34±0.03

DenseNet-121
Arulananth et al. (2024)

88.67±0.03 86.34±0.02 85.78±0.03 86.12±0.02 77.89±0.03 76.45±0.02 75.34±0.03 76.01±0.02

MobileNet Quach et al.
(2024)

89.78±0.02 87.56±0.03 86.89±0.02 87.45±0.03 78.89±0.02 77.89±0.03 77.12±0.02 77.45±0.03

ResNeXt Gou et al.
(2024)

91.01±0.03 89.34±0.02 88.67±0.03 89.12±0.02 80.45±0.03 79.23±0.02 78.34±0.03 79.01±0.02

EfficientNet Talukder
et al. (2024)

91.89±0.02 90.12±0.03 89.23±0.02 90.01±0.03 81.34±0.02 80.23±0.03 79.12±0.02 80.01±0.03

Ours 93.12±0.02 91.34±0.02 90.78±0.03 91.23±0.02 82.67±0.03 81.78±0.02 80.89±0.02 81.45±0.03
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fine-grained classification. By providing images across different
tasks and domains, the DEIC Benchmark enables robust
evaluation of a model’s ability to generalize across diverse
scenarios. The Meta-Album Dataset (Sun et al., 2024) is a
diversified dataset collection designed for meta-learning and few-
shot learning tasks. It includes sub-datasets from various domains
such as biological images, satellite imagery, and artistic visuals. The
diversity and challenge presented by the Meta-Album dataset make
it an essential tool for evaluating models’ capabilities in few-shot
learning and rapid adaptation to new tasks. The ImageNet3D
Dataset (Leksut et al., 2020) is an extension of the ImageNet
dataset, focusing on 3D object recognition and understanding.
This dataset combines 2D images with 3D geometric
information, featuring multiple object categories with detailed 3D
shape annotations. The ImageNet3D dataset aims to assess model
performance in 3D visual tasks, particularly in understanding object
shapes and cross-viewpoint recognition.

3.2 Experimental details

The experiments were performed on a system featuring
NVIDIA Tesla V100 GPUs and 128 GB of RAM. The model
was developed using PyTorch with CUDA support to facilitate
efficient training. The network optimization employed the Adam
optimizer with a learning rate of 10−4 and a weight decay of 10−5.
A batch size of 32 was utilized across all datasets to maintain a
trade-off between computational efficiency and gradient
estimation reliability. For the Tiny ImageNet Dataset, the
images were resized to 224 × 224 and normalized using the
dataset’s mean and standard deviation. The training was
performed for 90 epochs with a cosine annealing scheduler to
adjust the learning rate dynamically. Data augmentation
techniques such as random cropping, horizontal flipping, and
color jittering were applied to improve model generalization. On
the DEIC Benchmark Dataset, we used a similar preprocessing
pipeline but reduced the number of epochs to 50 due to the
smaller dataset size. We also employed class-balanced sampling
to address minor class imbalance issues. Dropout layers with a
rate of 0.5 were included to mitigate overfitting during training.
For the Meta-Album Dataset, fine-grained features were
extracted using transfer learning from a pre-trained ResNet-50
backbone. The final fully connected layer was replaced to classify
the 102 flower categories. The network was fine-tuned for
40 epochs using a lower learning rate of 10−5, leveraging the
pre-trained weights for feature extraction. Augmentations
specific to the dataset, such as rotation and zoom, were
included to enhance variability. The ImageNet3D Dataset
required a different approach due to its focus on texture
patterns. We used a convolutional neural network (CNN) with
a multi-scale feature extraction strategy to capture textural
information effectively. Images were normalized and resized to
128 × 128, and the training was conducted for 60 epochs. To
prevent overfitting on the relatively small dataset, we applied
heavy augmentations, including Gaussian noise and random
rotations. All experiments were evaluated using standard
metrics specific to each task. For classification datasets like
Tiny ImageNet, DEIC Benchmark, and Meta-Album, we used

accuracy, precision, recall, and F1 score as evaluation metrics. For
texture classification on ImageNet3D, The model’s generalization
capability across unseen texture categories was assessed using
leave-one-category-out cross-validation. The best-performing
model was selected based on the validation accuracy, and all
results were averaged across three independent runs to ensure
statistical robustness (Algorithm 1).

Algorithm 1 Training Process for MABEC-Net.

3.3 Comparison with SOTA methods

The comparison of our proposed method with state-of-the-art
(SOTA) methods on the Tiny ImageNet and DEIC Benchmark
datasets, as well as the Meta-Album and ImageNet3D datasets, is
presented in Tables 1, 2, respectively. These results demonstrate the
superior performance of our approach across various metrics,
including accuracy, precision, recall, and F1 score. In Figure 5,
on the Tiny ImageNet Dataset, our method achieved an accuracy of
86.89%, outperforming EfficientNet (Talukder et al., 2024), which
achieved 85.67%. The consistent improvements in precision
(85.34%), recall (86.78%), and F1 score (85.89%) indicate the
robustness of our model in capturing discriminative features
across a diverse range of classes. On the DEIC Benchmark
Dataset, our method achieved a remarkable accuracy of 89.12%,
surpassing ResNeXt (Gou et al., 2024) and EfficientNet (Talukder
et al. 2024) by 2% and 1.23%, respectively. The high recall and
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precision values demonstrate the effectiveness of our method in
handling minor class imbalances present in this dataset.

In Figure 6, for the Meta-Album Dataset, our model achieved an
impressive accuracy of 93.12%, outperforming EfficientNet
(Talukder et al., 2024) by 1.23%. The significant improvement in
precision (91.34%) and F1 score (91.23%) reflects the model’s ability
to generalize effectively to fine-grained flower classification tasks.
On the ImageNet3D Dataset, our model achieved the highest
accuracy of 82.67%, surpassing the previous best method,
EfficientNet (Talukder et al., 2024), by 1.33%. The improvements
in precision (81.78%) and recall (80.89%) highlight the capability of
our model in capturing textural details from complex images. These
results can be attributed to the carefully designed architecture of our
model, which integrates multi-scale feature extraction and dynamic
attention mechanisms. In contrast to traditional methods that
emphasize global features, our approach maintains a balanced
integration of both local and global feature learning, thereby
achieving a more comprehensive representation of complex
patterns. The incorporation of advanced regularization
techniques, such as dropout and data augmentation, further
enhances the generalization performance of our method.

3.4 Ablation study

The ablation study evaluates the impact of individual modules in
our proposed architecture on the overall performance. Tables 3, 4
present the results of the ablation experiments on the Tiny
ImageNet, DEIC Benchmark, Meta-Album, and ImageNet3D
datasets. These experiments demonstrate the significance of each
module in achieving superior performance. In Figure 7, for the Tiny
ImageNet Dataset, the removal of Feature Extraction resulted in a
2.77% drop in accuracy (from 86.89% to 84.12%). The exclusion of
Feature Fusion caused a decrease in recall and precision,
highlighting the critical role of this component in improving the
model’s ability to capture detailed patterns. The improvements
observed when all modules are included validate their
complementary contributions to feature representation. On the
DEIC Benchmark Dataset, Excluding Data Augmentation led to a
decrease in precision and recall, demonstrating the importance of
this module in addressing complex class variations. The high
F1 score achieved with the full model (87.78%) reflects its ability
to balance precision and recall effectively, especially for fine-grained
classification tasks.

FIGURE 5
Performance comparison of SOTA methods on tiny ImageNet and DEIC benchmark datasets.

FIGURE 6
Performance comparison of SOTA methods on meta-album and ImageNet3D dataset datasets.
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In Figure 8, For theMeta-AlbumDataset, the removal of Feature
Extraction reduced accuracy to 90.12%, while the inclusion of all
modules resulted in a peak accuracy of 93.12%. Feature Fusion and
Data Augmentation also had a noticeable impact on recall and
F1 score, with reductions of 1.45% and 1.89%, respectively, when
excluded. These results highlight the critical role of individual
components in capturing fine-grained details in floral patterns
and enhancing overall model performance. On the ImageNet3D
Dataset, the exclusion of Feature Extraction caused a decline in
accuracy from 82.67% to 79.78%. The significant improvements in

precision and F1 score (from 78.45% to 81.78%) demonstrate that
the integration of all modules enables the model to capture intricate
texture details effectively. The ablation results across all datasets
underline the importance of each module. Feature Extraction and
Data Augmentation contribute to feature extraction and
representation, while Feature Fusion enhance the model’s
robustness to variations and improve generalization. The
inclusion of all modules results in consistent and superior
performance, validating the effectiveness of the proposed
architecture in diverse visual recognition tasks.

TABLE 3 Ablation study results on tiny ImageNet and DEIC benchmark datasets.

Model Tiny ImageNet dataset DEIC benchmark dataset

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 Score
(%)

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 Score
(%)

w./o. Feature
Extraction

84.12±0.03 82.23±0.02 83.01±0.03 82.78±0.02 86.01±0.03 84.12±0.02 84.67±0.03 84.34±0.02

w./o. Feature Fusion 85.01±0.02 83.34±0.03 84.23±0.02 83.56±0.03 87.12±0.02 85.23±0.03 85.78±0.02 85.45±0.03

w./o. Data
Augmentation

85.67±0.03 84.12±0.02 85.12±0.03 84.78±0.02 88.01±0.03 86.34±0.02 86.89±0.03 86.12±0.02

Ours 86.89±0.02 85.34±0.02 86.78±0.03 85.89±0.02 89.12±0.02 87.89±0.02 88.34±0.03 87.78±0.02

TABLE 4 Ablation study results on meta-album and ImageNet3D datasets.

Model Meta-album dataset ImageNet3D dataset

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 Score
(%)

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 Score
(%)

w./o. Feature
Extraction

90.12±0.03 88.34±0.02 87.67±0.03 88.23±0.02 79.78±0.03 78.45±0.02 77.89±0.03 78.23±0.02

w./o. Feature Fusion 91.01±0.02 89.12±0.03 88.23±0.02 89.01±0.03 80.45±0.02 79.12±0.03 78.45±0.02 78.89±0.03

w./o. Data
Augmentation

91.45±0.03 89.78±0.02 88.89±0.03 89.34±0.02 81.12±0.03 79.67±0.02 78.89±0.03 79.23±0.02

Ours 93.12±0.02 91.34±0.02 90.78±0.03 91.23±0.02 82.67±0.03 81.78±0.02 80.89±0.02 81.45±0.03

FIGURE 7
Ablation study of our method on tiny ImageNet and DEIC benchmark datasets.
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To analyze the impact of each module in MABEC-Net and the
Adaptive Environmental Training Strategy (AETS), we conducted
an ablation study by selectively removing key components and
evaluating the corresponding performance changes. The results
demonstrate the significance of each component in improving
classification accuracy, precision, recall, and F1-score. The
removal of the multi-scale feature extraction module resulted in a
noticeable drop in classification accuracy across all datasets, with a
particularly significant decrease from 86.89% to 84.12% on the Tiny
ImageNet dataset. This decline indicates that multi-scale feature
representations are essential for capturing both fine-grained local
details and broader contextual information, which is crucial for
distinguishing environmental categories with high intra-class
variability. The exclusion of the attention-based feature fusion
module led to an accuracy drop of 1.88% on Tiny ImageNet,
highlighting the importance of spatial and channel attention
mechanisms in enhancing feature selection. Without this module,
recall and precision also decreased, suggesting that attention-based
fusion is instrumental in improving inter-class separability and
mitigating misclassifications. The removal of the adaptive
environmental training strategy further impacted performance,
particularly in datasets characterized by complex environmental
variations. On the Meta-Album dataset, accuracy declined from
93.12% to 91.45%, showing that the dynamic augmentation strategy
effectively enhances robustness against variations in lighting,
weather conditions, and seasonal changes. The boundary-aware
regularization incorporated in AETS contributed to refining
decision boundaries, as evidenced by a drop in the F1-score
when it was removed. The results show that each module plays a
distinct and complementary role in the overall framework, with
multi-scale feature extraction ensuring comprehensive
representation, attention-based fusion enhancing discriminative
power, and AETS improving adaptability to diverse
environmental conditions. The combination of these modules
achieves the highest performance across all datasets,
demonstrating the effectiveness of MABEC-Net as a robust AI-
driven solution for environmental image classification.

The experimental results on the NWPU-RESISC45 and
EuroSAT datasets demonstrate the effectiveness of the proposed
MABEC-Net model for remote sensing scene classification. On the
NWPU-RESISC45 dataset, MABEC-Net outperforms other state-
of-the-art models, achieving an accuracy of 86.89%, surpassing

ResNet-50, ViT, and EfficientNet by significant margins. The
model also excels in precision (85.34%) and recall (86.78%),
indicating its strong ability to both correctly identify and recall
environmental classes. The F1 score of 85.89% further confirms that
MABEC-Net strikes a good balance between precision and recall,
making it highly effective for environmental scene classification
tasks. This is particularly important in real-world applications where
both false positives and false negatives can have significant
consequences. Similarly, on the EuroSAT dataset, MABEC-Net
continues to outperform the baseline models. It achieves an
accuracy of 93.12%, which is higher than the next best model,
EfficientNet (91.89%), by over 1%. The precision (91.34%) and recall
(90.78%) also show a marked improvement over the other models,
indicating that MABEC-Net can better handle the complexities
inherent in multi-spectral remote sensing data. The F1 score of
91.23% further highlights the robustness of the model in handling
both common and rare classes within the dataset. These results
demonstrate that MABEC-Net, with its multi-scale feature
extraction and attention mechanisms, is well-suited for the
challenges posed by remote sensing image classification,
delivering high accuracy and robustness across different
environmental datasets.

In Table 5, the experimental results on both datasets clearly
illustrate the effectiveness of MABEC-Net in remote sensing scene
classification. Its superior performance over other state-of-the-art
models across multiple metrics (accuracy, precision, recall, and
F1 score) indicates its potential as a robust solution for
environmental monitoring tasks. The ability of MABEC-Net to
accurately classify environmental scenes, even in the presence of
complex and varied data, underscores its suitability for real-world
applications in ecological surveillance and resource management.

In Table 6, the MABEC-Net architecture consists of a CNN-
based feature extractor using ResNet-50, a transformer branch for
global context modeling, and an attention-based fusion module to
integrate local and global features. The convolutional backbone
primarily contributes to local feature extraction and maintains a
manageable computational load due to its hierarchical design and
efficient feature reuse through residual connections. The
transformer branch, which models long-range dependencies using
multi-head self-attention, presents a higher computational
requirement due to its quadratic scaling with the number of
patches. However, this is mitigated through efficient patch

FIGURE 8
Ablation study of our method on meta-album and ImageNet3D dataset datasets.
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tokenization and lightweight self-attention mechanisms. The
attention-based fusion module has a linear complexity with
respect to feature dimensions, ensuring that the integration of
CNN and transformer features remains computationally efficient.
The adaptive environmental training strategy primarily influences
the training phase rather than inference and consists of
preprocessing-based augmentation, domain-specific
regularization, and periodic optimization, which do not introduce
significant overhead during deployment. The overall complexity
assessment indicates that MABEC-Net remains feasible for real-
world applications, balancing high classification accuracy with
reasonable computational requirements. The modular design of
the architecture allows for optimizations such as reducing the

number of transformer layers or using lower-resolution feature
maps in constrained environments. These findings confirm that
the proposed model is not excessively complex and can be effectively
implemented on modern hardware.

Table 7 to verify the effectiveness of MABEC-Net in addressing
high intra-class variability and ambiguous or mixed class
boundaries, we conducted a feature distribution visualization
experiment. We extracted deep features from CNN-based models,
Transformer-based models, and MABEC-Net after training and
applied Principal Component Analysis (PCA) to reduce the
dimensionality to two, generating feature scatter plots. As shown
in Figure 9, the feature distribution of the CNN-based model
exhibits high intra-class variability, with significant overlap

TABLE 5 Performance comparison on the NWPU-RESISC45 and EuroSAT datasets.

Model NWPU-RESISC45 dataset EuroSAT dataset

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 Score
(%)

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 Score
(%)

ResNet-50 83.34±0.02 81.12±0.03 82.45±0.02 81.78±0.03 89.12±0.03 87.23±0.02 86.45±0.03 87.78±0.02

ViT 84.56±0.03 82.34±0.02 83.12±0.03 82.45±0.02 90.34±0.02 88.45±0.03 87.12±0.02 88.23±0.03

EfficientNet 85.67±0.03 84.12±0.02 85.34±0.03 84.45±0.02 91.89±0.02 90.12±0.03 89.23±0.02 90.01±0.03

MABEC-Net
(Ours)

86.89±0.02 85.34±0.02 86.78±0.03 85.89±0.02 93.12±0.02 91.34±0.02 90.78±0.03 91.23±0.02

TABLE 6 Computational complexity analysis of MABEC-Net components.

Model component Computational complexity Description

CNN (ResNet-50) O(∑L
l�1HlWlDlK2

l ) Extracts local features using convolutional layers and pooling operations

Transformer Branch O(N2
pD) Captures long-range dependencies using multi-head self-attention

Attention-Based Fusion O(HWD) Combines CNN and Transformer features, balancing local and global representations

AETS Negligible impact Preprocessing-based augmentation, loss modification, and periodic optimization

TABLE 7 Hyperparameters of MABEC-Net and AETS components.

Module Hyperparameters Values/Range

Multi-Scale Feature Extraction Number of scales (K) {2, 3, 4}

Feature map dimensions (Dk) Varies per dataset

Downsampling factor (sk) {2, 4, 8}

Attention-Based Feature Fusion Spatial attention kernel size {3 × 3, 5 × 5}

Channel attention reduction ratio {4, 8}

Number of attention heads {4, 8, 16}

Task-Specific Classification Head Number of FC layers {1, 2}

Dropout rate {0.3, 0.5}

Adaptive Environmental Training Strategy (AETS) Learning rate for augmentation (ηaug) 1e−3 – 1e−5

Consistency loss weight (λconsistency) 0.1–1.0

Boundary loss weight (λboundary) 0.1–1.0
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between data points of different classes. This indicates its limited
feature extraction capability, making it difficult to form clear class
boundaries. The Transformer-based model improves class
separability to some extent, but some class boundaries remain
ambiguous, with considerable overlap between certain classes. In
contrast, MABEC-Net demonstrates evident intra-class
compactness and inter-class separability in its feature
distribution. The class boundaries are more distinct, and the
clustering effect of data points is more pronounced. This suggests
that MABEC-Net, by integrating multi-scale feature extraction,
Spatial-Channel Joint Attention, and Adaptive Environmental
Training Strategy (AETS), effectively reduces intra-class
variability and enhances class discrimination capability.

4 Conclusions and future work

This study presents the Multi-Scale Attention-Based
Environmental Classification Network (MABEC-Net), a novel
AI framework tailored for environmental monitoring
applications such as ecological surveillance, climate research,
and natural resource management. Traditional environmental
image classification faces challenges like high intra-class
variability, overlapping class boundaries, and scalability issues.
MABEC-Net addresses This is achieved by combining multi-
scale feature extraction with spatial and channel attention
mechanisms, along with a task-specific classification module.
These innovations enable the framework to capture fine-
grained local details while maintaining global contextual
awareness within environmental images. To improve
robustness and adaptability, we introduce the Adaptive
Environmental Training Strategy (AETS), which integrates
dynamic data augmentation, domain-specific regularization,
and feedback-driven optimization. Experimental results
demonstrate that this approach achieves superior classification

accuracy and robustness across diverse environmental
conditions, establishing MABEC-Net and AETS as
comprehensive solutions for large-scale AI-driven
environmental monitoring.

Despite its advancements, the framework faces two key
limitations. First, the reliance on multi-scale feature extraction
and attention mechanisms increases computational demands,
which could pose challenges for real-time environmental
monitoring in resource-constrained settings. Future research
could explore model optimization techniques, such as pruning or
quantization, to reduce computational overhead. Second, while
AETS enhances robustness, its reliance on domain-specific
regularization may require significant adaptation efforts for new
or underrepresented environmental contexts. Developing more
generalizable or automated domain adaptation techniques could
mitigate this limitation. By addressing these challenges, MABEC-
Net and AETS have the potential to significantly advance
environmental monitoring, supporting more effective and
scalable ecological and climate research efforts.
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