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High ground - level ozone (O3) concentrations severely undermine urban air
quality and threaten human health, creating an urgent need for precise and
effective ozone - level predictions to aid environmental monitoring and policy -
making.This study incorporated the historical concentrations of ozone and
nitrogen dioxide (NO2) from the past 3 hours as lagged features into a Lagged
Feature Prediction Model (LFPM), evaluated using nine machine - learning
algorithms (including XGBoost). Initially, XGBoost combined with SHAP
identified 11 key features, boosting computational efficiency by 30% without
sacrificing prediction accuracy. Then, ozone concentrations were predicted
using six meteorological variables.Results showed that LSTM - based methods,
especially ED - LSTM, performed best amongmeteorological - only models (R2 =
0.479). Yet, predictions based solely on meteorological variables had limited
accuracy. Adding five pollutant variables markedly improved the predictive
performance across all machine - learning methods. XGBoost achieved the
highest accuracy (R2 = 0.767, RMSE = 11.35 μg/m3), a 125% relative
improvement in R2 compared to meteorological - variable - only predictions.
Further application of the LFPM model enhanced prediction accuracy for all nine
machine - learning methods, with XGBoost still leading (R2 = 0.873, RMSE =
8.17 μg/m3).These findings conclusively demonstrate that integrating lagged
feature variables significantly enhances ozone prediction accuracy, offering
stronger support for environmental monitoring and policy - formulation.
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1 Introduction

With the accelerating pace of urbanization, air pollution has emerged as a critical global
challenge, where ozone (O3) concentration dynamics have become a pivotal indicator of
atmospheric quality (Ellingsen et al., 2008; Li et al., 2019). As a secondary pollutant formed
through complex photochemical processes, O3 levels exhibit strong dependencies on
meteorological parameters, vehicular emissions, and industrial activities (Suciu et al.,
2017; Wang et al., 2017; Tan et al., 2022). While stratospheric ozone serves as a
protective shield against ultraviolet radiation, elevated ground-level ozone
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concentrations demonstrate profound detrimental effects:
epidemiological studies directly associate chronic exposure with
respiratory morbidity (e.g., asthma exacerbation) and ocular
damage at peak concentrations (Li, 2020b; Maji and Namdeo,
2021; Zheng et al., 2021; Niu, 2022). Furthermore, O3

phytotoxicity induces leaf chlorosis and stomal dysfunction,
ultimately driving agricultural yield reduction–a growing concern
for food security (Emberson, 2020; Peng et al., 2020). These
multifaceted impacts underscore the urgency of ozone pollution
mitigation. Mechanistically, tropospheric O3 generation primarily
stems from sunlight-driven reactions between nitrogen oxides
(NOx) and volatile organic compounds (VOCs) (Bais et al., 2015;
Monks et al., 2015; Wang et al., 2023). The complexity of these
photochemical reactions, coupled with their pronounced
spatiotemporal variability, poses substantial obstacles in
developing reliable predictive models and effective control strategies.

Current research on ozone pollution prediction primarily
employs deterministic and statistical approaches. Deterministic
methods, such as process-based numerical modeling systems,
require explicit parameterization of intricate physicochemical
mechanisms. These models often face challenges including
prohibitive computational costs and uncertainties stemming from
emission inventories and parameterization schemes (Sun et al.,
2021; Yang and Zhao, 2023). Conversely, traditional statistical
techniques like linear regression can identify linear correlations
between predictors and ozone levels but fail to resolve the
complex nonlinear couplings between O3, its precursors (NOx

and VOCs), and meteorological drivers, leading to compromised
predictive accuracy (Comrie, 1997; Zhou et al., 2023). In contrast,
machine learning (ML) approaches exhibit superior capability in
modeling such nonlinear interactions while maintaining
computational efficiency, effectively overcoming the limitations of
conventional methods. Distinct from physics-based frameworks,
ML operates within a non-parametric paradigm, eliminating
dependence on a priori assumptions about data distributions. By
autonomously extracting discriminative features from
multidimensional datasets through explicit learning mechanisms,
ML has garnered substantial research attention in recent years for
pollution forecasting applications (Mallet et al., 2009; Zhu
et al., 2024).

Recent advancements in ML have revolutionized ozone
concentration modeling, particularly demonstrating exceptional
efficacy in localized regional applications. Empirical evidence
increasingly substantiates ML algorithms’ capability to precisely
simulate ground-level ozone dynamics, with state-of-the-art
models consistently achieving superior predictive performance
(R2 > 0.8 in most implementations). Notably, spatial
implementations showcase remarkable success: In the Beijing-
Tianjin-Hebei megacity cluster, (Ma et al., 2021), developed a
Random Forest (RF)-based prediction framework achieving
robust predictive performance (R2 = 0.85), effectively capturing
regional transport patterns. At national scale, (Li et al., 2020),
employed Gradient Boosting Regression Trees (GBRT) for
China-wide ozone simulation, demonstrating exceptional
generalizability through ten-fold cross-validation (R2 = 0.89).
Regional refinement was exemplified by (Yang et al., 2024),
whose RF implementation in the topographically complex
Sichuan Basin yielded an R2 of 0.87, outperforming conventional

chemical transport models. Seasonal predictability was further
verified by (Chen et al., 2024) through comparative analysis of
4 ML algorithms in the Pearl River Delta’s autumn ozone episodes,
identifying Support Vector Regression (SVR) as optimal (R2 = 0.88).

Emerging methodological innovations further demonstrate
ML’s transformative potential in ozone prediction (Cheng et al.,
2022). pioneered a hybrid architecture integrating Variational
Autoencoders (VAE) with Generative Adversarial Networks
(GAN), achieving sub-minute temporal resolution (hourly
predictions) without compromising accuracy - a critical
advancement for real-time monitoring systems. Comparative
analysis by Du et al. (2022) across decade-long Houston ozone
datasets (2010–2020) identified XGBoost as the optimal algorithm,
outperforming conventional approaches in capturing emission
trend interactions. Region-specific adaptations have proven
particularly effective in tropical environments (Dhanya et al.,
2022). synergized meteorological parameters with Principal
Component Analysis (PCA)-enhanced Artificial Neural Networks
(ANN) for South Bangalore, India, demonstrating comparable
efficacy between standalone ANN and PCA-ANN frameworks
(R2 > 0.82). Conversely, integrated modeling paradigms
combining multi-source data reveal fundamental chemical regime
transitions (Wang et al., 2019). reconciled satellite retrievals, in-situ
measurements, and regional chemical transport modeling to decode
ozone-precursor relationships, identifying a widespread shift from
VOC-sensitive to NOx-sensitive O3 formationmechanisms - though
notable regional exceptions necessitate location-specific control
strategies. Notwithstanding their mechanistic insights, purely
physics-based numerical models face inherent limitations:
excessive computational resource requirements, dependency on
error-prone emission inventories, and specialized operational
expertise create substantial implementation barriers for
widespread policymaking applications.

Although machine learning techniques have been widely
applied to ozone pollution prediction, existing studies have
mainly focused on optimizing model structures, with limited
systematic evaluations of feature engineering, especially lag
features (i.e., using historical data to construct input variables)
across different time scales. Considering that ozone
concentration is influenced by the accumulation effect of
precursor pollutants and meteorological conditions with time
lags, this study proposes a prediction model that integrates
different lag feature variables (LFPM). This model constructs
feature variables by combining historical ozone (1–3 h) and
nitrogen dioxide (1–3 h) observation data and systematically
evaluates its prediction performance based on nine machine
learning methods, including XGBoost, Random Forest, LSTM,
and others, covering tree models, neural networks, and
traditional regression methods.

Unlike previous studies that typically compare only two to three
models, this study analyzes prediction accuracy, computational
efficiency, model robustness, and other aspects, and further
explores the variation in prediction accuracy of each model for
forecasting the next 24 h. Through multi-model comparative
experiments, we propose an optimal lag feature selection scheme
for urban ozone pollution prediction and validate it using real-world
pollution data from Beijing to improve the model’s generalization
ability and practical application value.
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The results of this study not only provide theoretical support for
the optimization of machine learning models in ozone prediction
but also offer empirical evidence for optimizing feature engineering
and decision-making in air quality early warning systems, thereby
enhancing the interpretability and practical value of the models.

2 Materials and methods

2.1 Study data and experimental procedures

This study aims to achieve two objectives: (1) systematically
compare the performance differences of nine machine learning
models (including XGBoost, Random Forest, LSTM, etc.) in
predicting hourly ozone concentrations, with a focus on
evaluating their prediction accuracy (R2, RMSE, MAE) and
computational efficiency (training time, single prediction time);
(2) based on this, construct a lag feature prediction model
(LFPM) that integrates various historical pollution observation
data, optimizing the feature space by introducing time-lagged
variables (such as pollutant concentrations from the previous
1–3 h), and explore the impact of feature engineering on model
performance, while further comparing and observing the prediction
accuracy of each model at different prediction time scales (the
next 24 h).

Specifically, the experimental design uses a set of standard
pollutant and meteorological data to build ozone prediction
models with nine machine learning methods, aiming to predict
the ozone concentration at the next time step, i.e., the next hour.
Feature selection is performed to reduce the training dataset and
improve model efficiency, ultimately selecting the six most
important pollutant variables and five meteorological variables.
To optimize the performance of each method, we use the
GridSearchCV function from the Python Sklearn library for
hyperparameter tuning. Additionally, in the hyperparameter
tuning process, to prevent data leakage and ensure model
consistency with time series data, we adopt the TimeSeriesSplit
(5-fold cross-validation) method. This approach progressively
expands the training window while maintaining the time order,
using subsequent data as a validation set to simulate the data usage
in real-world prediction tasks.

This study utilizes high-temporal-resolution pollutant
monitoring data and meteorological reanalysis datasets spanning
January 1 to 31 December 2023. The hourly ground-level air quality
observations were obtained from Station 1006A (41°32′35″N,
116°35′32″E) of the China National Environmental Monitoring
Center (CNEMC) network (https://www.cnemc.cn/), representing
a typical urban background monitoring site. Meteorological inputs
were derived from the ERA5-Land reanalysis product (ECMWF)
with 0.25 ° × 0.25 ° spatial resolution and hourly temporal resolution.
Site-specific meteorological parameters were extracted through
bilinear interpolation centered on the station coordinates
(41°32′35″N, 116°35′32″E), ensuring spatiotemporal alignment
with pollutant measurements.

Missing values and outliers in the pollutant and meteorological
data may be caused by factors such as sensor malfunctions.
Therefore, data cleaning is required before building machine
learning models. To handle missing values in the pollutant

observation data and meteorological data, a unified interpolation
method was used. To better accommodate the characteristics of time
series data, the rolling mean interpolation method was applied for
missing values, which more accurately reflects the temporal and
continuity nature of the data. For handling outliers, the median
substitution method was chosen. The median effectively suppresses
the impact of outliers on the data distribution, avoiding bias that
could be caused by extreme values. It is important to note that,
during interpolation, some missing values are not just missing data
but may result from missing data points at corresponding times,
which could lead to errors in interpolation. Therefore, before
interpolation, missing time points were first supplemented to
ensure that the interpolation process could generate continuous
time series data. To simplify the expression, the variable names used
in the model were abbreviated (Table 1). All data processing steps
were ultimately consolidated into a single CSV file and processed
using Python’s Pandas library (Figure 1). The model’s performance
was evaluated by calculating the error metrics between the predicted
ozone concentration and the actual observed concentration
1 hour later.

For predicting ozone concentration changes, this study selects
three types of machine learning methods: 1. Traditional methods:
KNN (based on distance similarity) and SVM (kernel space
mapping); 2. Ensemble tree models: Random Forest, Decision
Tree, XGBoost (feature splitting and gradient boosting); 3. Neural
networks: MLP (fully connected networks), LSTM, and its variants
(modeling temporal dependencies). These machine learning
methods have multiple hyperparameters that can be adjusted to
improve performance. The GridSearchCV function from the Python
Sklearn library was used. This function employs the TimeSeriesSplit
cross-validation method to evaluate each set of parameter

TABLE 1 List of parameters for meteorological and pollutant variables used
in this study.

Variable Abbv Unit

Carbon monoxide CO μg/m3

Nitrogen dioxide NO2 μg/m3

Sulfur dioxide SO2 μg/m3

Ozone (current) O3 μg/m3

Particulate matter (<2.5 microns) PM2.5 μg/m3

Particulate matter (<10 microns) PM10 μg/m3

2m Dew point temperature d2m °C

2m temperature t2m °C

Surface net solar radiation ssr W/m2

Eastward component of the 10m wind u10 m/s

Northward component of the 10m wind v10 m/s

Surface pressure sp hPa

Total cloud cover tcc %

Total precipitation tp m

Downward UV radiation at the surface uvb J/m2

Total column water vapor tcwv kg/m2
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combinations. Some hyperparameters were also manually adjusted
and tested to verify whether they returned the highest accuracy
score. Each machine learning model tested with hyperparameter
tuning was trained using hourly data from 1 year (2023). We created
an algorithm to try different parameter combinations and return the
best parameters, fine-tuning sensitive model parameters (such as the
hidden layer dimension of LSTM and the subtree depth of XGBoost)
based on validation set performance to ensure the globally optimal
parameter combination. To obtain the best parameter combination
for each machine learning model during both experimental stages,
different hyperparameter adjustments were made in each
experiment process (see Tables 2, 3). The experimental
parameters for adding lag features followed those used in the
meteorological variables and pollutant variables experiments.

Figure 2 shows the distribution of the collected data. It is evident
that these data do not conform to a Gaussian distribution but instead
exhibit some skewness or multimodal characteristics. This non-
Gaussian distribution may be caused by various complex factors,
such as fluctuations in meteorological conditions, uneven spatial

distribution of pollution sources, and intermittent changes in
industrial activities (Li, 2020a; Zhang et al., 2023). Understanding
these distribution characteristics is helpful for model selection and
performance optimization.

2.2 Methodology

This section introduces the machine learning methods used in
this study for ozone concentration prediction and the model
evaluation metrics. The machine learning methods compared in
this study include SVM, XGBoost, RF, MLP, KNN, Decision Tree, as
well as Long Short-Term Memory (LSTM) and its variants, which
are suitable for handling nonlinear problems. The evaluationmetrics
used include the coefficient of determination (R2), Root Mean
Square Error (RMSE), and Mean Absolute Error (MAE).

The MLP (Multilayer Perceptron) (Wang and Lu, 2006), also
known as Artificial Neural Network, consists of an input layer, an
output layer, and several hidden layers. The input layer receives

FIGURE 1
Data preprocessing and modeling process.
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external inputs, while the hidden and output layers process the
signals using activation functions, with the output layer providing
the final results. By using the GridSearchCV function from the
Python Sklearn library to tune the MLP, it was found that the relu
function yielded the best results. Therefore, relu is used as the
activation function in this study. The computation process for
MLP is as follows:

hj � ∑N
i�0
Wijxij

In the formula, hj represents the weighted sum of all inputs to the
neuron node in the hidden layer, Wij denotes the weight from the
input layer neuron to the hidden layer neuron, and xij represents the
input value.

aj � g hj( ) � g ∑N
i�0
Wijxij

⎛⎝ ⎞⎠
In the formula, aj represents the output value of the neuron in the
hidden layer, g(x) is the activation function, and aj � xij, meaning
the output value of the neuron in the current layer is equal to the
input value of the neuron in the next layer.

y � g hk( ) � g ∑N
i�0
Wjkxjk

⎛⎝ ⎞⎠
In the formula, y represents the value of the output layer, i.e., the

predicted value. hk is the weighted sum of all inputs to the neuron
node in the output layer, and Wjk denotes the weight from the
hidden layer neuron to the output layer neuron.

Support Vector Regression (SVR) (Ortiz-García et al., 2010)
maps the original low-dimensional input x into a high-dimensional
feature space φ(x) using a nonlinear function φ. In the high-
dimensional space, it seeks a linear regression hyperplane to
address nonlinear problems in the low-dimensional space. SVR is
known for its resistance to overfitting and strong generalization
capabilities. The linear function in the high-dimensional feature
space can be expressed as:

y � 〈Wφ x( )〉 + b

In the formula, y represents the output, 〈Wφ(x)〉 denotes the inner
product in the feature space, where W is the weight vector, and b is
the bias constant. These parameters W and b can be determined by
minimizing the risk function as follows:

TABLE 2 Machine learning algorithm parameters for Python Scikit-Learn and Keras (meteorological variables prediction).

Variable Parameters Unit

K-Nearest Neighbors (KNN) ‘algorithm’: ‘auto’, ‘n_neighbors’: 3, ‘p’: 1, ‘weights’: ‘distance’ μg/m3

Support Vector Machine (SVM) ‘C’: 100, ‘epsilon’: 0.2, ‘gamma’: ‘scale’, ‘kernel’: ‘rbf’ μg/m3

Decision Tree ‘criterion’: ‘friedman_mse’, ‘max_depth’: 10, ‘max_features’: ‘sqrt’, ‘min_samples_leaf’: 4,
‘min_samples_split’: 10

μg/m3

XGBoost ‘objective’: ‘reg:squarederror’,’colsample_bytree’: 0.9, ‘learning_rate’: 0.1, ‘max_depth’: 8,
‘n_estimators’: 200, ‘subsample’: 0.8

μg/m3

Random Forest ‘bootstrap’: True, ‘max_depth’: 10, ‘min_samples_leaf’: 1, ‘min_samples_split’: 5,
‘n_estimators’: 200

μg/m3

Multilayer Perceptron (MLP) ‘activation’: ‘relu’, ‘alpha’: 0.0001, ‘hidden_layer_sizes’: (200), ‘max_iter’: 1,500, ‘solver’: ‘sgd’ μg/m3

LSTM-Baseline
BD-LSTM
ED-LSTM

‘LSTM_units’: 50, ‘activation’: ‘relu’, ‘optimizer’: ‘adam’, ‘epochs’: 50, ‘batch_size’: 32 μg/m3

TABLE 3 Machine learning algorithm parameters for Python Scikit-Learn and Keras (meteorological and pollutant variables prediction).

Variable Parameters Unit

K-Nearest Neighbors (KNN) ‘algorithm’: ‘auto’, ‘n_neighbors’: 3, ‘p’: 1, ‘weights’: ‘distance’ μg/m3

Support Vector Machine (SVM) ‘C’: 100, ‘epsilon’: 0.2, ‘gamma’: ‘auto’, ‘kernel’: ‘rbf’ μg/m3

Decision Tree ‘criterion’: ‘friedman_mse’, ‘max_depth’: 15, ‘max_features’: ‘sqrt’, ‘min_samples_leaf’: 4, ‘min_samples_split’: 2 μg/m3

XGBoost ‘objective’: ‘reg:squarederror’, ‘colsample_bytree’: 1.0, ‘gamma’: 0.1, ‘learning_rate’: 0.1, ‘max_depth’: 8, ‘n_estimators’: 200,
‘subsample’: 0.8

μg/m3

Random Forest ‘bootstrap’: True, ‘max_depth’: None, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2, ‘n_estimators’: 200 μg/m3

Multilayer Perceptron (MLP) ‘activation’: ‘relu’, ‘alpha’: 0.0001, ‘hidden_layer_sizes’: (200), ‘max_iter’: 1,000, ‘solver’: ‘sgd’ μg/m3

LSTM-Baseline
BD-LSTM
ED-LSTM

‘LSTM_units’: 50, ‘activation’: ‘relu’, ‘optimizer’: ‘adam’, ‘epochs’: 50, ‘batch_size’: 32 μg/m3
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Q � w‖ ‖2
2

+ C∑N
i�1
Lg xi, yi, f( )

Where:

Lg xi, yi, f( ) � yi − f xi( )∣∣∣∣ ∣∣∣∣ − ε, yi − f xi( )∣∣∣∣ ∣∣∣∣Sε,
0, else

{
In the formula: C: A pre-defined penalty coefficient that

penalizes errors greater than ε epsilon. ε epsilon: The margin of
tolerance, representing the deviation allowed between the predicted
values and the actual observations in the training set. Errors within ε

epsilon are not penalized.
The choice of the kernel function can significantly affect the

model’s performance. Therefore, this study selected the radial basis
function (rbf) kernel, which is well-suited for learning and effectively
handles nonlinear data.

Compared to the SVR algorithm, the Random Forest (RF) model
(Stafoggia et al., 2020) is an ensemble learning algorithm known for
its simplicity, high accuracy, and strong generalization ability. It is
also more robust to noise and outliers. The algorithm generates
multiple sampling sets using random sampling techniques, trains
multiple weak learners on these sets, and then combines their
outputs through an aggregation strategy to produce the final

model output. For regression tasks, a simple averaging method is
typically used, where the regression results from all weak learners are
averaged arithmetically to yield the final model output. The
calculation process is as follows:

mni � yi − fn−1 xi( )
In the formula, mni represents the residual, yi is the observed value
of the i sample, fn−1(xi) is the predicted value from the previous
learner, the residual is fitted to obtain a residual model gn(x), and
the regression tree is updated accordingly:

fn x( ) � fn−1 x( ) − gn x( )
Decision Tree (Gao et al., 2021) is a tree-structured supervised

learning method used for solving classification and regression
problems. It recursively divides the data into subsets to construct
a decision tree that maximizes information gain, ultimately
achieving the prediction objective. Its core idea is to build
branches based on features and use leaf nodes to represent the
prediction results.

At each split, the decision tree attempts to find the optimal
feature and split point within the given feature space to maximize
the objective function (e.g., the increment of information gain or
Gini index). Each resulting subset continues to recursively execute

FIGURE 2
Distribution of pollutant and meteorological data.
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the same process until the stopping criteria are met (e.g., the node
purity is sufficiently high or the number of samples falls below a
predefined threshold). The prediction function in a decision tree can
be expressed as:

y � f x( ) � ∑M
i�1
ci · I x ∈ Ri( )

Where: y is the output value. M is the number of leaf nodes. ci is the
predicted value in leaf node Ri (category label for classification tasks

or mean/median for regression tasks). I(x ∈ Ri) is an indicator
function that signifies whether the sample x falls within the region Ri.

The K-Nearest Neighbors Regression model (KNN Regression)
(Zhang et al., 2022a) is an instance-based non-parametric supervised
learning method that makes predictions by measuring the similarity
(usually distance) between data points. In KNN regression, for a
given input sample x, the model’s predicted output y is the weighted
average of the target values of its k-nearest neighbors:

ŷ � 1
k

∑
i∈Nk x( )

yi

Where:Nk(x) represents the index set of the k-nearest neighbors of
sample x. yi is the target value of the i neighbor.

The core idea of Extreme Gradient Boosting (XGBoost) is to
iteratively combine multiple weak learners (base models) into a
strong learner using the gradient boosting algorithm (Zhang et al.,
2022b) In each iteration, XGBoost constructs a new weak learner
based on the gradient of the prediction error from the previous
model and optimizes the loss function to improve
prediction accuracy.

For a given dataset (xi, yi), the model’s prediction output can be
expressed as:

ŷi � ∑K
k�1

fk xi( )

FIGURE 3
Feature importance in the XGBoost prediction model.

FIGURE 4
Feature selection based on SHAP importance.
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Where: K is the total number of trees. fk represents the k weak
learner, where fk ∈ F. F denotes the set of all regression trees.
XGBoost trains the model by minimizing the objective function:

L � ∑n
i�1
l yi, ŷi( ) +∑K

k�1
Ω fk( )

Where: l(yi, ŷi) is the loss function (e.g., squared error or log loss).
Ω(fk) � ϒT + 1

2 λ‖ω‖2 represents the complexity of the model. ϒ
and λ are regularization parameters.

LSTMs (Long Short-Term Memory Networks) fundamentally
diverge from traditional machine learning algorithms in their
temporal processing capabilities, demonstrating superior
performance in time series modeling. We systematically evaluated
three LSTM variants: Standard LSTM, Bidirectional LSTM (BD-
LSTM), and Encoder-Decoder LSTM (ED-LSTM). As specialized
recurrent neural networks (RNNs), these architectures overcome the
gradient vanishing problem inherent in conventional RNNs through
innovative memory cell designs with forget gates (Zhang et al., 2021).
This mechanism enables selective retention or discarding of historical
information from preceding timesteps, thereby effectively capturing
long-range temporal dependencies critical for ozone prediction.

Notably, LSTMs have demonstrated strong empirical validity in
air quality forecasting research, particularly in one-step-ahead
prediction scenarios (Xayasouk et al., 2020). successfully
implemented an LSTM integrated with deep autoencoders to
predict particulate matter levels using historical weather variables
(humidity, wind speed/direction, temperature) (Tiwari et al., 2021).
further advanced multi-step forecasting through multivariate BD-
LSTM configurations, establishing their predictive superiority. In
our experimental framework, all three LSTM variants underwent
rigorous performance benchmarking against six conventional
machine learning algorithms across three experimental phases.

The metrics used in our evaluation are as follows: for evaluating
the performance of the prediction models, this study uses the
coefficient of determination (R2), root mean square error (RMSE)
and mean absolute error (MAE). Each evaluation metric measures
the model accuracy from different perspectives and effectively
compares the prediction accuracy of different models. For RMSE
and MAE, smaller values indicate better performance, while for R2,
larger values indicate better performance.

R2 � 1 − ∑n−1
i�0 ŷi − �yi( )2∑n−1
i�0 yi − �yi( )2

RMSE y, ŷ( ) � ������������
1
n
∑n−1
i�0

yi − ŷi( )2√√
MAE y, ŷ( ) � 1

n
∑n−1
i�0

yi − ŷi

���� ����1
2.3 Feature variable selection

XGBoost is an ensemble learning algorithm based on Gradient
Boosting Decision Trees (GBDT), capable of effectively handling
large-scale data and providing built-in feature importance
evaluation (Li, 2022). Feature importance is measured by

calculating the gain (Gain) of each feature at the splitting
nodes, reflecting the contribution of each feature to the
improvement of model performance. SHAP is a game-theory-
based model explanation method that quantifies the marginal
contribution of each feature to the prediction outcome, offering
both global and local model interpretability. The advantage of
SHAP lies in its consistency and fairness, providing reliable
explanations in complex models with multiple feature
interactions (Wang et al., 2024). By combining XGBoost and
SHAP, this section aims to identify the most influential feature
variables for ozone concentration prediction, thereby improving
the computational efficiency of the model.

We first evaluated the performance of XGBoost. XGBoost
achieved an R2 of 0.767, RMSE of 11.35, and MAE of 8.82 on the
test set, indicating its good predictive capability. This provides a
reliable basis for the subsequent feature variable importance analysis.
The built-in feature importance evaluation of XGBoost showed that
NO2, SSR, UVB, and TCWV are key features influencing ozone
concentration prediction (Figure 3). To further validate the reliability
of the feature variable importance analysis, we used SHAP analysis to
interpret XGBoost. The SHAP analysis results (Figure 4) were highly
consistent with the XGBoost results, indicating that NO2, SSR, UVB,
and TCWV have a significant impact on predicting ozone
concentration.

Based on the feature variable importance analysis, we selected
the top 11 important features to train the model. These variables
represent a combination of pollutant and meteorological factors,
which can balance prediction accuracy and computational
complexity to some extent, providing a solid foundation for
subsequent model optimization. After simplifying the input
model parameters, the model’s performance was similar to that
of the full model (RMSE decreased from 11.35 to 11.39, R2

decreased from 0.767 to 0.766), but the computation time was
reduced by 30%. This result indicates that feature variable selection
helps improve computational efficiency and model interpretability
while maintaining prediction performance.

3 Results

3.1 Ozone concentration prediction using
meteorological variables

We used the hourly training dataset from 2023 to capture the
variability and dynamics within the data. Since the data includes
two main types of features: meteorological variables and
pollutant variables, we designed a three-phase experimental
process. In the first phase, only meteorological variables, such
as UVB, SSR, D2M, and TCWV, were used to analyze the impact
of these meteorological factors on ozone concentration. The
second phase added the remaining pollutant variables, such as
NO2, PM10, CO, and SO2, based on the first phase. The third
phase further introduced lag features for O3 and NO2 (lag-n) to
capture dynamic characteristics within the time series.

After determining the best hyperparameters for each machine
learning model using meteorological variables to create ozone
prediction models via GridSearchCV in the Python Sklearn library,
the data was split chronologically to avoid data leakage. The first 90%
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of the data was used as the training set, and the remaining 10% was used
as the validation set for model evaluation. This approach ensures that the
model predicts on entirely unseen data, allowing for a fair comparison
and providing the final performance results.

In the first experiment, we only considered meteorological
variables to predict ozone concentration, specifically: 2m dew
point temperature, 2m temperature, surface net solar radiation,

surface pressure, downward UV radiation at the surface, and
total column water vapor. Importantly, this experiment aimed to
assess the capability of machine learning in predicting ozone
concentration based solely on meteorological variables. Table 4
presents the average performance of different machine learning
methods in predicting ozone concentration using hourly
meteorological data from the entire year of 2023. The metrics

TABLE 4 Ozone prediction performance of each machine learning Model using meteorological variables.

Model name R2↑ RMSE↓
μ/m3

MAE↓
μ/m3

Time s

XGBoost 0.341 19.09 14.86 1.13

KNN 0.215 20.83 16.05 0.01

SVM 0.399 18.24 14.61 3.43

Decision Tree 0.192 21.14 16.04 0.02

MLP 0.390 18.38 15.17 24.55

Random Forest 0.292 19.79 15.64 9.74

LSTM-Baseline 0.456 17.35 14.35 14.74

ED-LSTM 0.479 16.98 13.77 19.99

BD-LSTM 0.452 17.41 14.45 13.46

In addition, ↑indicates that a larger value is better for the model, while↑indicates that a smaller value is better for the model.

FIGURE 5
Comparison between observed O3 concentration and predicted O3 concentration when using meteorological variables for prediction.
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include R2, root mean square error (RMSE), mean absolute error
(MAE), and training time. The results show that for ozone
concentration prediction using meteorological variables, LSTM
models performed excellently in terms of accuracy and error
control, especially ED-LSTM, which had the highest R2 (0.479)
across all models, along with the lowest RMSE (16.98 μg/m3) and
MAE (13.77 μg/m3). This indicates that LSTM effectively captures
complex dynamic features within the time series data and
outperforms traditional machine learning models in prediction
accuracy. In contrast, KNN and Decision Trees, despite having
very short training times (0.01 and 0.02 s, respectively), performed
poorly, with R2 values of 0.215 and 0.192. XGBoost showed

moderate performance (R2 = 0.341) but did not reach the
accuracy level of LSTM-based models. Overall, while LSTM
models required longer training times, especially LSTM-Baseline
and BD-LSTM (14.74 and 13.46 s, respectively), their accuracy
advantages made them more stable for long-term predictions,
capable of providing more precise ozone concentration
predictions at higher time resolutions. Figure 5 compares the
predicted and observed ozone concentrations from different
models, clearly demonstrating the limitations of relying solely on
meteorological variables for ozone prediction. Additionally, Figures
6, 7, showing R2, RMSE, and MAE, further highlight the
performance differences and emphasize the superior accuracy of

FIGURE 6
Fitting scores of predictions made by each model trained with meteorological variables: LSTM and its variants perform the best.

FIGURE 7
Similar to Figure 6, but showing the annual model error scores for MAE and RMSE. Both are in units of μg/m3.
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LSTM-based models in predicting ozone concentration using
meteorological variables.

In conclusion, when predicting ozone concentration using only
meteorological variables, LSTM models, particularly ED-LSTM,
perform the best. Although training times are longer, their
accuracy advantage makes them the optimal choice. For scenarios
requiring real-time, rapid predictions, traditional models like
XGBoost may offer efficiency benefits, but their lower prediction
accuracy limits their practical application. The next phase of
experiments will integrate pollutant variables to improve model
performance in more complex scenarios.

3.2 Ozone concentration prediction using
meteorological and pollutant variables

In the first experiment, we used only meteorological variables as
inputs and employed various machine learning models to predict
ozone pollution. The main purpose of this phase was to evaluate the
independent contribution of meteorological conditions to ozone
concentration prediction. In the second experiment, to further
improve prediction performance, we added pollutant variables
(including CO, PM10, PM2.5, NO2, and SO2) to the
meteorological variables. These pollutant variables, being major
precursors or indirect influencers of ozone, significantly impact
the generation and consumption processes of ozone (Wang et al.,
2017). The best hyperparameters for each machine learning model
using both meteorological and pollutant variables to create ozone
prediction models were determined using the GridSearchCV
function in the Python Sklearn library. By combining both
meteorological and pollutant variables, we can capture the factors
affecting ozone variations more comprehensively.

As can be seen from Table 5, it is clear that introducing pollutant
variables significantly improved the performance of all models,
especially XGBoost. When only meteorological variables were used,
XGBoost had an R2 of 0.341, which was quite modest. However, after
introducing pollutant variables, XGBoost’s R2 increased significantly
to 0.767, RMSE decreased from 19.09 μg/m3 to 11.35 μg/m3, andMAE

decreased from 14.86 μg/m3 to 8.82 μg/m3, demonstrating its
strong prediction performance after incorporating pollutant
variables. In addition, KNN, which performed excellently in
terms of training time with only meteorological variables
(training time of 0.01 s), had a low R2 of 0.215 and poor
prediction accuracy. After introducing pollutant variables,
KNN’s performance improved, with an R2 of 0.661, but it still
lagged behind XGBoost. SVM and MLP performed weakly in the
meteorological-only ozone prediction experiment, especially
MLP, which had an R2 of only 0.390, but the training time
was as high as 24.55 s, revealing its efficiency bottleneck when
handling large-scale data. After adding pollutant variables, both
SVM and MLP saw improvements in their R2 values, reaching
0.661 and 0.627, respectively, but their computational efficiency
remained low, especially with MLP, where the training time
increased to 29.18 s after including pollutant variables.
Decision Trees performed poorly when predicting ozone using
both meteorological and pollutant variables, with an R2 of 0.685.
Although the training time was the shortest (0.04 s), its
prediction accuracy was lower than that of models like
XGBoost. Random Forest showed stable performance in both
experiments. After incorporating pollutant variables, its R2 was
0.749, RMSE was 11.79 μg/m3, MAE was 9.25 μg/m3, and the
training time was 3.13 s. While it did not outperform XGBoost, it
still performed quite well. LSTM-based models also showed
stable performance, but due to their longer training times,
their computational efficiency was lower, and their R2 values
were not as high as those of XGBoost and Random Forest.
Figure 8 compares the predicted and observed ozone
concentrations of different machine learning models using
both meteorological and pollutant variables. It clearly shows
that predicting ozone concentration using both meteorological
and pollutant variables is far more accurate than using
meteorological variables alone.

Overall, after incorporating pollutant variables, XGBoost is
undoubtedly the best choice, as it achieves optimal accuracy and
efficiency. KNN is suitable for scenarios requiring efficient
predictions but has lower prediction accuracy. Other models,

TABLE 5 Ozone prediction performance of each machine learning Model using meteorological and pollutant variables.

Model name R2↑ RMSE↓
μ/m3

MAE↓
μ/m3

Time s

XGBoost 0.767 11.35 8.82 1.30

KNN 0.661 13.70 10.15 0.01

SVM 0.661 13.69 10.86 4.76

Decision Tree 0.685 13.21 10.30 0.04

MLP 0.627 14.37 11.30 29.18

Random Forest 0.749 11.79 9.25 3.13

LSTM-Baseline 0.728 12.26 9.38 14.10

ED-LSTM 0.715 12.57 9.56 19.92

BD-LSTM 0.694 13.02 10.20 13.53

In addition, ↑indicates that a larger value is better for the model, while↑indicates that a smaller value is better for the model.
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such as SVM, MLP, and LSTM, still have room for improvement in
both computational efficiency and prediction accuracy.

3.3 Ozone prediction using lagged
feature variables

In the previous two experiments, machine learning did not
consider the information from lagged feature variables, which
made it difficult to effectively capture the dynamics in the data.

As slight bias still existed in the previous experiment, we attempted
to reduce algorithmic bias by introducing lagged feature variables for
O3 and NO2(O3 and NO2 concentrations at previous time points) to
create a Lagged Feature PredictionModel (LFPM). O3 and NO2 time
series data exhibit significant dynamic characteristics, as shown in
the Autocorrelation Function (ACF) plot (Figure 9). The
autocorrelation analysis reveals that O3 exhibits significant time
lag effects, with its autocorrelation remaining high over a longer lag
range, indicating that past ozone concentrations have a significant
impact on future concentration changes. Meanwhile, as a major

FIGURE 8
Comparison between observed O3 concentration and predicted O3 concentration when using meteorological and pollutant variables.

FIGURE 9
Autocorrelation of lagged feature time series data: Strong periodicity in the dataset.
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precursor to O3, changes in NO2 concentration directly influence the
generation and consumption processes of ozone.

The chemical formation process of O3 involves key precursors
such as NO2 and generates O3 through a series of complex
photochemical reactions (Figure 10). In this process, NO2 is
decomposed by short-wave ultraviolet radiation into nitric oxide
(NO) and atomic oxygen (O (3P)), and then the atomic oxygen
reacts with oxygen molecules (O2) and a third body (M) to form
ozone (O3) (Jian et al., 2022). Additionally, O3 reacts with NO to
form NO2 and O2, creating a dynamic equilibrium. Therefore, in
order to better capture the interaction between O3 and NO2 in the
time series and their contribution to the prediction, setting lagged
feature variables for O3 and NO2 is crucial. These lagged feature
variables can reflect the potential impact of ozone and nitrogen
dioxide concentrations at previous time points on current and future
concentration changes, thereby improving the model’s accuracy in
predicting ozone concentrations.

Therefore, when predicting ozone concentration, simultaneously
introducing lagged feature variables for O3 andNO2 to create the LFPM
helps better capture the temporal information and dynamic
relationships between the pollution variables, thus improving
prediction accuracy. In this experiment, we considered lagged
feature variables for O3 and NO2 in ozone concentration prediction.
In brief, this section aims to investigate the impact of introducing lagged
feature variables on the accuracy of ozone prediction.

FIGURE 10
Key chemical equations for Ground-Level Ozone formation and
depletion (Highlighting substances relevant to this study) model.

TABLE 6 Lagged feature variables for O3 and NO2.

Variable Description

O3lag1 1 h lagged ozone value

O3lag2 2 h lagged ozone value

O3lag3 3 h lagged ozone value

NO2lag1 1 h lagged NO2 value

NO2lag2 2 h lagged ozone value

NO2lag3 3 h lagged NO2 value

FIGURE 11
Comparison between observed O3 concentration and predicted O3 concentration, including lagged features of O3 (lag 1) and NO2 (lag 1).
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To this end, we introduced lag features in predicting ozone
concentration to account for the influence of historical O3 and
NO2 data. In the first scenario (Lag 1), the input data includes
12 variables, including pollutants (CO, SO2, PM2.5, PM10),
meteorological factors (d2m, t2m, ssr, sp, uvb, tcwv), as well as
the lagged O3 and NO2 data from the previous hour (O3.Lag1,
NO2.Lag1). In the second scenario (Lag 3), the input variables are

expanded to 16, adding the lagged O3 and NO2 data from the
second and third hours (O3.Lag1, O3.Lag2, O3.Lag3, NO2.Lag1,
NO2.Lag2, NO2.Lag3). Additionally, to enhance the rigor of the
experiment and effectively avoid data leakage caused by lag
features, we set reasonable buffers for different lag lengths. In
the Lag one scenario, a 1-h buffer was applied, while in the Lag
three scenario, a 3-h buffer was used. This ensures complete

FIGURE 12
Comparison between observed O3 concentration and predicted O3 concentration, including lagged features of O3 (lag 3) and NO2 (lag 3).

TABLE 7 Ozone prediction performance of each machine learning Model with Lag 1 O3 and NO2 lagged feature variables.

Model name R2↑ RMSE↓
μ/m3

MAE↓
μ/m3

Time s

XGBoost 0.877 8.26 6.15 1.53

KNN 0.746 11.85 9.15 0.01

SVM 0.815 10.13 7.26 5.67

Decision Tree 0.782 10.98 8.58 0.05

MLP 0.823 9.90 7.19 28.96

Random Forest 0.815 10.12 7.97 3.35

LSTM-Baseline 0.863 8.71 6.07 17.18

ED-LSTM 0.850 9.12 6.71 21.45

BD-LSTM 0.862 8.73 6.12 17.92

In addition, ↑indicates that a larger value is better for the model, while↑indicates that a smaller value is better for the model.
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independence between the training and testing data, thus
enhancing the reliability and scientific integrity of the
experimental results.

Table 6 defines the lagged feature variables for O3 and NO2 that
were considered. Figures 11, 12 show the comparison between the
observed values and predicted ozone values, while Tables 7 and 8
present the prediction accuracy. From the figures, we can visually
observe that, as expected, considering the lagged feature variables for
O3 and NO2 helps improve the prediction of the machine learning
models (Figures 11, 12).

Tables 7 and 8 provide the prediction results and error levels
using lagged feature variables for O3 and NO2 with lag one and lag 3,
respectively. The results in Table 7 show that the XGBoost model
achieved the best performance across all metrics, and importantly,
the training time was only 1.37 s. In this case study, XGBoost is the
optimal model, offering both high accuracy and efficiency. The
XGBoost model achieved the highest R2 value (0.879) and the lowest
RMSE (8.17 μg/m3). Among the trained models, all models with the
inclusion of lagged feature variables for O3 and NO2 were able to
capture the ozone trend well, with reasonable prediction errors.
Therefore, this result confirms that the lagged feature variables for
O3 and NO2 (O3.Lag1, O3.Lag2, and O3.Lag3; NO2.Lag1, NO2.Lag2,
and NO2.Lag3) are sufficient to enhance the prediction quality of the
machine learning models studied.

The results in Table 8 indicate that when considering the
inclusion of lagged feature variables for O3 and NO2 over three
periods in the input for ozone prediction, the conclusions are
consistent with those in Table 7. Specifically, XGBoost still
outperforms other models in terms of both accuracy and
efficiency. Additionally, by incorporating lagged feature variables
for O3 and NO2 over three periods, the performance of most models
becomes more stable. More precisely, all metrics show slight
improvements, and the prediction error range in Figure 12
becomes noticeably narrower and more concentrated. Therefore,
we can conclude that XGBoost is the best model in terms of accuracy
and efficiency, and further confirm that introducing lagged feature
variables for O3 and NO2 helps the model better capture the
temporal information and dynamic relationships between
pollutants, thereby improving prediction accuracy.

However, in long-term forecasting tasks, the prediction
ability of each model shows a declining trend, with accuracy
gradually decreasing as the forecast horizon increases (as shown
in Figure 13). This may be related to the highly dynamic nature of
ozone concentration and the attenuation effect of lag features in
long-term forecasting. When the prediction window extends to
6 h or longer, the complex nonlinear relationships between
pollutants and meteorological variables may lead to
cumulative errors, making it difficult for the models to
maintain high-accuracy predictions. Furthermore, as the
prediction horizon increases, the influence of lag features,
which are further from the current time, on future ozone
concentration gradually weakens, further exacerbating
prediction uncertainty. However, in short-term forecasting
(e.g., predicting the next hour), after adding lag features, all
models achieve relatively high prediction accuracy, indicating
that lag information significantly improves short-term ozone
concentration prediction.

Ensuring that the selected best prediction model is
statistically superior to other models is very important. One
common method is to compare the performance of models
through statistical tests, such as the Chow test and the
Breusch-Pagan test (Demšar, 2006). In this study, we used the
Diebold-Mariano test (Diebold and Mariano, 2002) to compare
the prediction accuracy of each model. The Diebold-Mariano test
is commonly used in economics and finance to evaluate the
performance of different prediction models. The advantage of
this test is that it does not require prediction errors to follow a
specific distribution, making it a reliable statistical test for
comparing the predictive capabilities of different models
under the assumption of no bias. Additionally, the Diebold-
Mariano test is easy to implement and its results are
straightforward to interpret, making it a widely used tool for
comparing prediction model performance.

The core idea of the Diebold-Mariano test is to evaluate the
prediction accuracy by comparing the mean squared errors of the
two models’ predictions. Specifically, the p-value generated by the
test reflects whether there is a significant difference in the mean
squared errors of the prediction errors between the two models. The

TABLE 8 Ozone prediction performance of each machine learning Model with Lag 3 O3 and NO2 lagged feature variables.

Model name R2↑ RMSE↓
μ/m3

MAE↓
μ/m3

Time s

XGBoost 0.879 8.17 6.10 1.68

KNN 0.737 12.07 9.26 0.01

SVM 0.815 10.13 7.19 6.23

Decision Tree 0.781 11.02 8.64 0.06

MLP 0.829 9.73 6.78 22.99

Random Forest 0.815 10.12 7.94 3.77

LSTM-Baseline 0.854 9.00 6.44 13.87

ED-LSTM 0.875 8.30 5.83 20.34

BD-LSTM 0.870 8.49 6.12 17.84

In addition, ↑indicates that a larger value is better for the model, while↑indicates that a smaller value is better for the model.
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null hypothesis assumes that there is no significant difference in
prediction accuracy between the two models, while the alternative
hypothesis suggests that one model outperforms the other in terms
of prediction performance. To conduct this test, we first calculate the
differences between the prediction errors of the two models, then
assess the statistical significance of this difference using a t-test. If the
p-value is less than the significance level, it indicates that one model
is significantly superior to the other in terms of prediction
performance.

Figure 14 shows the p-value matrix heatmap generated by the
Diebold-Mariano test. The p-values range from 0 to 1, with values
closer to 0 providing stronger evidence against the null hypothesis,
indicating a significant difference in prediction performance
between the two models. If the p-value is less than 0.05, it
suggests that the null hypothesis can be rejected, and the

conclusion can be made that there is a significant difference in
prediction performance between the two models. The results in
Figure 14 show that most p-values are close to 0, providing strong
evidence to reject the null hypothesis, indicating that there is a
significant difference in prediction performance between most of the
model comparisons. However, there are some exceptions, such as
combinations involving (SVM), (KNN), and (XGBoost), which have
relatively higher p-values (0.05 or above), suggesting that the
prediction performance differences between these models may
not be significant.

Overall, this indicates that the XGBoost model performs the
best among all tested models, as both the Diebold-Mariano test
and evaluation metrics (such as R2, RMSE, and MAE) show it
has the strongest prediction accuracy. The model’s R2 value is
0.879, indicating a strong correlation between the predicted and

FIGURE 13
Variation trends of R2 and RMSE for Each Model in 24-Hour Forecasting.
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actual ozone concentrations. Furthermore, the RMSE value is
8.17 μg/m3 and the MAE value is 6.10 μg/m3, suggesting that the
average difference between the predicted and actual values is
very small.

4 Discussion

This study systematically evaluates machine learning models for
ground-level ozone prediction in Beijing, demonstrating the critical
role of temporally-embedded feature engineering in enhancing
forecasting accuracy. Our proposed Lagged Feature Prediction
Model (LFPM), incorporating historical O3 and NO2

concentrations (t-1 to t-3 h), achieved superior performance
across all evaluated algorithms. XGBoost emerged as the optimal
predictor with LFPM integration (R2 = 0.879, RMSE = 8.17 μg/m3,
MAE = 6.10 μg/m3), outperforming conventional static models by
30% in R2 improvement–a testament to its capability in resolving
ozone’s spatiotemporal dynamics through gradient-boosted
tree ensembles.

The temporal dependency analysis revealed significant predictive
gains from lagged features, particularly highlighting the photochemical
memory effect: historical NO2 levels (as precursor) and O3 auto-
correlation collectively explain >40% of feature importance through
SHAP decomposition. This aligns with ozone formation mechanisms
requiring cumulative solar radiation exposure and precursor
accumulation (Bais et al., 2015), suggesting LFPM effectively encodes

critical photochemical timescales (typically 2–5 h in urban
environments (Sadanaga et al., 2003)).

Comparative benchmarking against prior studies contextualizes
our advancements:

• Nonlinear methods: Our XGBoost-LFPM (R2 = 0.873)
substantially exceeds reported neural network performances
(R2 = 0.49 (Sinha and Singh, 2021)) and RF benchmarks (R2 =
0.72 (Shukla et al., 2021)).

• Model universality: The absence of a consistent “best algorithm”

across studies (Capilla, 2016; Shukla et al., 2021; Sinha and Singh,
2021) underscores the necessity for case-specific model selection,
particularly when adapting to regional emission profiles and
monitoring network architectures.

While XGBoost demonstrated superior efficiency-accuracy
tradeoffs, alternative models showed context-dependent merits.

• MLP captured complex meteorological-O3 nonlinearities
more effectively in reduced feature spaces, albeit with 3×
longer training times.

• SVM exhibited greater stability under sparse data conditions,
suggesting potential utility in sensor-limited deployments.

Notably, feature space optimization through SHAP-guided
selection identified NO2, surface solar radiation (ssr), uvb, and
total column water vapor (tcwv) as photochemically critical

FIGURE 14
DM test of the models.
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variables. Retraining with the top 11 features maintained predictive
fidelity (ΔR2<0.01) while reducing computational overhead by
30% – a crucial advancement for real-time air quality
management systems requiring operational efficiency.

5 Conclusion

The detrimental impacts of elevated ground-level ozone (O3)
on urban atmospheric systems and public health underscore the
critical need for precise ozone forecasting to inform environmental
governance. As a canonical secondary pollutant, tropospheric O3

production exhibits intricate dependence on synergistic
interactions between meteorological drivers (temperature,
atmospheric stability, solar irradiance) and precursor emissions
(NO2, CO, VOCs). While stratospheric ozone serves vital UV-
protective functions, elevated tropospheric ozone concentrations
demonstrate nonlinear coupling with photochemical regimes–where
precursor reactivity modulates diurnal patterns and spatial
heterogeneity under varying meteorological conditions. Current
predictive frameworks struggle to resolve these spatiotemporally
dynamic interactions, particularly in balancing model fidelity with
operational efficiency across urban pollution hotspots.

This investigation systematically benchmarks nine machine
learning architectures (XGBoost, LSTM variants, RF, etc.) for
Beijing’s ozone prediction, establishing XGBoost-integrated
LFPM (Lagged Feature Prediction Model) as the superior
paradigm (R2 = 0.879, RMSE = 8.17 μg/m3). Our methodology
reveals two critical advancements:

1. Dual-input optimization combining real-time meteorology
and multi-hour pollutant lag terms (t-1 to t-3) enhances
predictive skill by 30% compared to single-modality inputs;

2. SHAP-guided feature selection identifies NO2 and solar
radiation parameters as photochemical linchpins, enabling
30% computational acceleration without accuracy loss.

These findings position machine learning–particularly
gradient-boosted ensembles–as transformative tools for urban
ozone management. Future work must address real-world
deployment challenges: hybrid architectures integrating
chemical transport models with adaptive ML, edge-computing
optimizations for sensor networks, and explainable AI
frameworks for policy translation. The ultimate objective
remains developing city-specific digital twins that bridge
predictive accuracy, operational efficiency, and regulatory
actionability in combating ozone pollution.
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