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Dairy effluents instead of mineral fertilizer can realize nutrients recycling while
urease inhibitors have been proposed as fertilizer amendments to maximize
nutrients utilization and reduce negative environmental effects. However, studies
on the impacts of dairy effluent combined with urease inhibitors on nitrous oxide
(N2O) and nitric oxide (NO) emissions remain limited. Here, a 2-year field trail with
maize was conducted in a sandy soil with four treatments: no nitrogen (N)
fertilizer (Control), mineral N fertilizer urea (NPK), fermented dairy effluent as
liquid fertilizer (LF), and LF plus urease inhibitor hydroquinone (LFHQ). Cumulative
N2O emission in the NPK treatment was 0.44 kg N ha‒1 during the 2021 maize
season while drastically increased to 5.21 kg N ha‒1 during the 2022maize season
with extreme precipitation occurred, while NO emission reduced from 0.65 to
0.17 kg N ha‒1. Compared with the NPK treatment, N2O and NO emissions in the
LF treatment decreased by 38.6% and 29.2%, and by 38.8% and 6.4% during the
2021 and 2022maize seasons, respectively. Compared with the LF treatment, the
LFHQ treatment increased N2O emissions by 40.7% and 21.7% during the
2021 and 2022 maize seasons, respectively. The N2O emission factors (EF-
N2O) of applied N was 0.90–1.71% during the 2022 maize season, which was
ten times greater than the 2021 maize season. We further evaluated correlation
between EF-N2O of mineral N fertilizer and annual precipitation in temperate
sandy soils by compiling published literature, suggesting that there was a
quadratic relationship between EF-N2O and precipitation, with the highest EF-
N2O occurring at ~690 mm of precipitation. Accordingly, extreme precipitation
would induce explosive N2O emissions at optimal scenario. Overall, our results
suggest that replacingmineral fertilizers with dairy effluentmitigatedN2O andNO
emissions while heavy rainfall could cause N2O paroxysmal emission. Thus,
rational water management in temperate farms is particularly required to
avoid N2O surge emission after heavy rainfall events, and urease inhibitors co-
application with nitrification inhibitors are recommended under dairy effluent
application.
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1 Introduction

Nitrous oxide (N2O) is a greenhouse gas (GHG) with a long
atmospheric lifespan and a heat-trapping ability 273 times stronger
than CO2 (IPCC, 2021). It has been regarded as the primary factor
contributing to the depletion of stratospheric ozone (Bouwman
et al., 2002; Ravishankara et al., 2009). Nitric oxide (NO) plays
an important role in regulating of the tropospheric oxidant balance
(Williams et al., 1992) and contributed to the acidification of
ecosystems after being oxidized to nitrate and nitric acid
(Nakahara et al., 2003). Cropland soil is a major source of
N-containing gases, releasing 3.8–4.1 Tg of N2O-N and 1.6 Tg of
NO-N into the atmosphere annually, accounting for about 60% and
40% of anthropogenic N2O and NO emissions, respectively (IPCC,
2013; Lassaletta et al., 2014; Tian et al., 2020). Hence, there is a
growing need to develop strategies that can mitigate N2O and NO
emissions and enhance N fertilizer utilization efficiency in
agricultural landscapes.

Such strategies include replacing mineral fertilizer with organic
fertilizer (Vallejo et al., 2005; Hu et al., 2013), co-application with
urease inhibitors or other N transformation regulators (Zaman et al.,
2008) and altering the application rate and stage of N fertilizer
according to the crop’s nutrient uptake curve (Dalal et al., 2003;
Sanz-Cobena et al., 2011; Wang et al., 2024). Applying organic
fertilizer instead of mineral N fertilizer has a beneficial influence on
both crop development and N retention (Reay et al., 2012; Pardo
et al., 2015) by optimizing soil structure and properties (Wang et al.,
2017; Well et al., 2024), adjusting the rate of nutrient release to keep
long-term N availability (Cheng et al., 2017). However, most of the
reported organic fertilizers were applied in the form of manure with
high solids content and their effects on N2O and NO emissions were
inconsistent (Vallejo et al., 2005; Ding et al., 2013). As noted by
Bouwman et al. (2010), the reintegration of N from livestock waste
into agricultural land has been shown to reduce soil N2O emissions.
Conversely, Hayakawa et al. (2009) reported that the use of poultry
manure on an Andisol led to a substantial increase in N2O emissions
by 2 and 7 times greater, while concurrently decreasing NO
emissions by 49–56% when compared to mineral fertilizers. In
addition, no significant difference in N2O (Meng et al., 2005) as
well as NO (Nartey et al., 2021) emissions was reported between the
application of organic manure and mineral fertilizers. Dairy effluent
as liquid organic fertilizer has been paid more attention because of
its huge quantity as a consequence of the geographical concentration
and specialization of dairy farms, and the pollution risk of improper
treatment to neighboring environment (Sarkar et al., 2006; Karadag
et al., 2015). According to Bristow et al. (1992) and Zaman et al.
(2007), a significant portion (60–90%) of cow urine is composed of
urea-N, while the remaining portion consists of a mixture of easily
mineralizable amino acids and NH4

+-N (Bolan et al., 2004).
Nevertheless, few studies have reported influence of dairy effluent
on N2O and NO emission in sandy soils.

Urease inhibitors can delay urea hydrolysis to avoid great
increase of soil NH4

+-N in a short time and are generally used in
conjunction with mineral N fertilizer to mitigate NH3 loss
(Manunza et al., 1999; Silva et al., 2017; Matse et al., 2024), while
the results of their effects on N2O and NO emission were not
uniform. Compared with single urea application, the addition of
urease inhibitors significantly reduced N2O emissions by 23.5% in a

soil with 52% sand (Krol et al., 2020) and by 75% in a soil with 55%
sand (Abalos et al., 2012). However, Martins et al. (2017) reported
that urease inhibitors upsurged N2O losses by 16.7% in a soil with
70% sand due to the prolongation of the nitrification process by the
delayed urea hydrolysis. Oppositely, organic fertilizers in
combination with urease inhibitors have been studied less
frequently (Pereira et al., 2013; Park et al., 2021) and their
synergistic effects on soil N2O and NO emissions warrant
further. Among several common urease inhibitors, hydroquinone
(HQ) lasts longer in soils for inhibiting urease activity and requires
fewer amounts to achieve the same inhibitory effect (Wang et al.,
1990). In addition, the effectiveness of urease inhibitors is not only
related to inhibitor species and application ratio, the source and
amount of N fertilizer, and soil texture, but more likely to vary with
climatic factors such as precipitation (Abalos et al., 2017; Mira et al.,
2017). A synthesis analysis of 182 research articles indicated that
inhibitors could lead to a 70% decrease in N2O emissions when
annual precipitation stayed below 400 mm, whereas the reduction
effect was minimal when annual precipitation exceeded 800 mm
(Fan et al., 2022).

As climate change ongoing, the severity and frequency of
extreme precipitation events will be intensified around the world
(Zhang and Zhou, 2019; Tan et al., 2021). Soil microbial processes
that transform N in terrestrial ecosystems are substantially affected
by precipitation and the consequent dynamics of soil water (Corre
et al., 2002; Aranibar et al., 2004). The response of N2O emissions to
rainfall variability has a tendency to increase (Zhang et al., 2022),
remain stable (Shi et al., 2021) or decrease (Li et al., 2023). Few
investigations have considered the large interannual variations in
precipitation associated with the temperate sandy regions. Extreme
precipitation was encountered during the maize season in the
second year according to the definition of extreme precipitation
events by Gimeno et al. (2022). The objectives of our research were
to: 1) evaluate the influence of annual precipitation on the N2O
emissions from sandy soils; 2) compare the impacts of dairy effluent
and traditional mineral fertilizer on the emissions of N2O and NO;
and 3) evaluate the effects of dairy effluent in combination with HQ
on N2O and NO emissions.

2 Materials and methods

2.1 Experimental site

An in situ trial was carried out in 2021 and 2022 on a silage
planting farmland at the Youran dairy farm, Zhangwu County,
Liaoning Province, China (122°32′24″E, 42°23′24″N), which was
situated at the southern boundary of the Horqin Sandy Land. The
area experiences a temperate continental monsoon climate,
characterized by an average annual air temperature of 7.4°C and
annual precipitation of 480 mm concentrated from June to
September. The soil was categorized as sand based on the
taxonomy of the United States Department of Agriculture
(USDA). Before the experiment commenced, the top layer of soil
(0–20 cm) exhibited a bulk density of 1.63 g cm-3 (intact core
method (Ding et al., 2015)), pH of 6.7 (determination of leachate
with a water:soil volume of 2.5:1 by glass electrode pH meter), soil
organic C content of 2.86 g C kg‒1 (potassium dichromate oxidation
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by external heating), total N content of 0.29 g N kg‒1 (concentrated
sulfuric acid digestion and Kjeldahl determination), and sand
content of 90% (laser particle size analyzer LS13320 (ZX_2012)).

2.2 Experimental design

Four treatments were included: no N fertilizer (Control),
conventional mineral N fertilizer urea (NPK), dairy effluent from
open-air fermentation in oxidation ponds (LF), and dairy effluent
plus HQ at the rate of 0.3% (He et al., 2018) of the total N application
(LFHQ). The mortality rate of Ascaris lumbricoides eggs in the
fermented dairy effluent is higher than 96%, and the value of fecal
coliform bacteria is lower than 2.5 ×103 MPN/L, which meet the
standard of returning to the field. The properties of the dairy effluent
are shown in Table 1. Four replicate plots per treatment in a
randomized block design. Each plot had dimensions of 3 m ×
7 m and the crop planted was maize (Zhengdan 958), with a
spacing of 70 cm between rows and 25 cm between plants. The
N application rate was 250 kg N ha‒1 in all fertilized treatments.
Phosphate (75 kg P2O5 ha

−1) and potassium (60 kg K2O ha−1) were
used as primary fertilizers in the NPK treatment, and they were also
used as supplements when insufficient amounts were introduced by
the liquid dairy effluent. The urea and dairy effluent were split as
basal fertilizer, first topdressing and second topdressing according to
the N ratio of 40%:20%:40%. In 2021, the date of sowing and basal
fertilization was July 5, and the two topdressing events were on
August 6 and 24. In 2022, the sowing date was May 23, 3 days later
basal fertilizer applied, and the two topdressing events occurred on
June 17 and July 17. Detailed fertilization information is presented in
Supplementary Figure S1. The application of mineral fertilizers was
done manually, and the dairy effluent was sprayed on the soil surface
through pipes. Considering the high sand content of the soil at the
test site resulting in high soil permeability, dairy effluent with high
water content was not tilled into the soil after application.

2.3 Measurement of N2O and NO fluxes

The closed static chamber method was employed to measure the
soil N2O fluxes (Ding et al., 2007). Prior to planting, the stainless
base (60 cm × 20 cm × 10 cm) was pre-buried in soil, and a groove,
measuring 5 cm depth, was specifically designed into the upper
boundary of the base to facilitate water storage and sealing. A pair of
special stainless chambers (30 cm × 20 cm × 15 cm) were buckled on
the base, leaving space in the middle for maize growth. The chamber
was set with two ports on its top surface. One port consisted of a
silicone-sealed rubber hose connected to a plastic three-way valve,
which allowed for sampling. The other port was designed to equalize
air pressure within the chamber. In addition, there was also a small

round hole for thermometer insertion to record the chamber
temperature. Ding et al. (2007) have provided a detailed
description of the chamber’s structure.

Gas collection throughout the maize growing season,
i.e., about 110 days, on the first, second, fourth, and sixth days
of the first week after each fertilization, and then the frequency
was twice a week until the next fertilization. Three additional
collections were taken at the end of the growing season to ensure
that there were no differences in gas emissions between the
fertilized and control treatments. On the day of sampling,
placing the chambers inside the base groove and sealing using
water, 40 mL of gas samples were extracted from the chamber with
a syringe at 0, 10, 20 and 30 min since sealing and instantly
injected into pre-evacuated vials fitted with butyl rubber stoppers.
The gases in the vials were analyzed for N2O concentration by a
gas chromatograph (Agilent 7890D, Agilent Technologies, Santa
Clara, CA, United States) equipped with a63Ni electron capture
detector (ECD) and operated at 250°C.

The static chamber method was also utilized to quantify NO
fluxes. A 500 mL glass syringe is connected to a three-way valve
through a rubber tube. When collecting gasses, the three-way valve
at the end of the rubber tube is connected to the three-way valve used
for gas collection on the chamber. Chamber air samples were
collected at two time points: immediately after sealing and
30 min after sealing. The glass syringe first twitches back and
forth two times to evenly mix the gasses in the chamber, and
then draws about 1.5 L gas. These gas samples were then
carefully stored in Teflon gas bags (Delin Gas Packing Co., LTD.,
Dalian, China), and determined using a NOx analyzer (Model 42i,
Thermo Fisher Scientific Inc., Franklin, MA, United States).

The N2O and NO fluxes were determined by employing the
subsequent equation:

F � ρ × h ×
Δc
Δt

×
273

T + 273( ) × 60

where F is the gas (N2O or NO) flux (µg N m‒2 h‒1); ρ is the density
of N2O or NO in the standard state, which is 1.25 kg m-3 or
1.339 kg m-3, respectively; h represents the height of chamber
(m); Δc/Δt denotes the rate of change in gases concentration over
time (R2 > 0.9); T is the temperature (°C) in the chamber; and 60 is
used for unit conversion. Cumulative N2O and NO emissions were
calculated using integration:

E � ∑
n

i�1

Fi + Fi+1
2

× ti+1 − ti( ) × 24 × 10‒5

where E is the cumulative emission of N2O or NO; i is the ith
measurement; ti+1-ti represents the period between the ith and (i+1)
th measurement (d); and n is the total number of measurements
taken during the observation period.

TABLE 1 Properties of dairy effluent.

Year pH TOC (g C kg‒1) TP (g P kg‒1) TK (g K kg‒1) TN (g N kg‒1) NH4
+-N (mg N kg‒1) NO3

−-N (mg N kg‒1)

2021 7.96 5.77 0.06 1.68 1.07 501.84 85.06

2022 7.78 4.62 0.08 1.71 0.74 463.00 57.04

TOC, total organic carbon; TP, total phosphorus; TK, total potassium; TN, total nitrogen.
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The N2O and NO emission factors (EF-N2O, EF-NO, %) of
fertilizer N were calculated as follows:

EF � EN−EControl

N-applied
× 100

where EN and EControl are the cumulative emissions of the N gases (kg
N ha‒1) in the N-fertilized and no N application plots, respectively;
and N-applied is the total amount of N application (kg N ha‒1).

2.4 Analysis of soil samples

The digital thermometers were utilized to measure the soil
temperatures at depths of 5 cm (T5) during each gas sampling
period. The soil moisture content was assessed using a time domain
reflectometer (TDR, MP406B, Haian huating instrument co., Itd.,
China) and subsequently converted to soil water filled pore space
(WFPS, %) via soil bulk density and soil porosity (Ding et al., 2013).
A total of five soil samples were collected from each plot at the
topsoil using a stainless steel sampler with height of 20 cm and inner
diameter of 5 cm. After mixing evenly, a representative sample was
used to measure the soil inorganic N (NH4

+-N and NO3
−-N) and

dissolved organic C (DOC). Soil inorganic N was extracted with 2 M
KCl (soil/KCl ratio of 1:5), agitated at a frequency of 220 rpm under
25°C for 60 min, stood for 10 min and then filtered through
qualitative filter paper. The filtrate was stored in 30 mL plastic
bottles and determined by a flow analyzer (Skalar, Netherlands).
DOC was extracted with pure water (soil/water ratio of 1:5), agitated
at a frequency of 220 rpm under 25°C for 30 min, then subjected to
centrifugation at a speed of 8,000 rpm for 10 min. The supernatant
after centrifugation was passed through 0.45 μm filter membrane
with the aid of a pressure filter and the filtrate was analyzed with a
TOC analyzer (Vario TOC Cube, Elementar, Hanau, Germany).

2.5 Data extraction and compilation

To further explore the response of N2O emissions to annual
precipitation variability, this study collected relevant peer-reviewed
publications spanning from 1995 to 2020 via the Web of Science,
Google Scholar and China National Knowledge Infrastructure
database using search terms of “sandy soil” and “N2O emission”
or “nitrous oxide emission”, and only reports of field trials were
considered. The screening criteria also included: 1) the trial site was
in the temperate zone (23.5°–66.5° north or south of the equator); 2)
the soil texture was sandy (higher than 50% sand and less than 15%
clay (Hengl et al., 2017)); 3) the trial treatments covered the control
without N fertilizer and the application of mineral N fertilizer; and
4) the test period included at least one complete growing season.
Additionally, studies were also restricted to those with at least three
replications per treatment. After verification of the retrieved
literature, a total of 13 reports that met all of the above criteria
were included (Supplementary Table S1). Information on annual
precipitation and N2O emissions was obtained directly from the text
and tables or extracted using the offline tool WebPlotDigitizer
(version 4.2, Ankit Gupta), integrating the average daily N2O
fluxes and accumulating the daily rainfall over the
measurement period.

2.6 Statistical analysis

Statistical analyses and graphing were performed using the
software of SPSS 26.0 (SPSS Inc., Chicago, IL, United States),
Origin 2024 (Origin Lab, United States) and R 4.4.1 (Foundation
for Statistical Computing, Vienna, Austria). A one-way analysis of
variance (ANOVA) was conducted to analyze the gaseous
nitrogen emissions, emission factors, average soil inorganic N
fractions (NH4

+-N, NO3
−-N, TIN = NH4

+-N + NO3
−-N), and

DOC after checking for variance homogeneity under different
treatments. The Tukey test was performed at a significance level of
5%. To assess the normality of all dependent variables, we
conducted the Kolmogorov-Smirnov test. Log transformations
were conducted as necessary to fulfill the assumptions of
normality. Pearson correlation was employed to access the
correlation between the fluxes of N2O, NO and the soil
substrate variables (NH4

+-N, NO3
−-N, TIN, DOC), and

environment variables (soil WFPS and temperature). Random
forest and partial least squares path models were constructed
using the “randomForest” and “piecewiseSEM” packages in R
software, respectively, to clarify the importance of substrate
variables and soil WFPS on N2O emissions, as well as the exact
relationship between them.

3 Results

3.1 Environmental parameters

The average air temperatures were 23.0°C and 23.2°C during the
2021 and 2022 maize seasons, respectively (Figure 1A). The soil
temperature at 5 cm depth in the 2021 and 2022 maize seasons
varied from 9.9 to 33.0°C and 10.9–30.9°C, respectively (Figure 1B).
The cumulative precipitation during the 2021 maize season was
408mmwhile reached 712.2 mmduring the 2022maize season, with
25 days precipitation exceeding 10 mm. Soil WFPS increased
following fertilization and precipitation, and averaged at 36% and
71% during the 2021 and 2022 maize seasons, respectively
(Figure 1C). Due to continuous precipitation since sowing, soil
WFPS in all the treatments exceeded 60% on the 32nd day and
exceeded 90% on the 40th day after sowing during the 2022 maize
season. At about 100th day after sowing, the continuous rainfall
ended and soil WFPS began to decline.

3.2 Soil inorganic N and DOC

Following basal fertilization and the first topdressing in the
2021 maize season, the NPK treatment exhibited significantly higher
concentrations of soil NH4

+-N and NO3
−-N compared to the LF and

LFHQ treatments (Figures 2A, B). After the second topdressing, soil
NH4

+-N and NO3
−-N levels in the LF treatment showed a significant

increase, surpassing those in the LFHQ treatment. The average
concentration of NH4

+-N, NO3
−-N and TIN in the NPK treatment

was 36.52, 11.63 and 48.15 mg N kg‒1, respectively, which was
46.90%, 4.88% and 33.94% higher than the correspondent values in
the LF treatment (Figure 3). The average levels of NH4

+-N, NO3
−-N

and TIN in the LFHQ treatment were 14.11, 9.41 and 23.52 mg N kg‒1,
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FIGURE 1
Temporal variation in air temperature and precipitation (A), soil temperature (B), and soil WFPS (C) during the 2021 and 2022 maize season. The
vertical bars denote the standard error of the mean (n = 4). Control, no N fertilizer; NPK, N fertilizer urea; LF, dairy effluent; LFHQ, dairy effluent plus
urease inhibitor.

FIGURE 2
Variation of soil NH4

+-N (A), NO3
–-N (B) and soil DOC (C) concentration during the 2021 and 2022 maize season. Arrows indicate the application

time of fertilizers. DOC, dissolved organic carbon (DOC). The vertical bars denote the standard error of the mean (n = 4). Control, no N fertilizer; NPK, N
fertilizer urea; LF, dairy effluent; LFHQ, dairy effluent plus urease inhibitor hydroquinone.
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which decreased by 43.24%, 15.15% and 34.58%, respectively compared
with the LF treatment.

During the 2022 maize season, the soil NH4
+-N and NO3

−-N
levels in all the treatments within 30 days after sowing were
significantly lower than those during the 2021 maize season
(Figures 2A, B). After the second topdressing, soil NH4

+-N in the
NPK treatment reached the highest level of 126.02 mg N kg‒1 on day
3. The dairy effluent application reduced the average levels of soil
NH4

+-N, NO3
−-N and TIN from 35.61, 3.80, and 39.41 mg N kg‒1 in

the NPK treatment to 16.14, 2.29, and 18.43 mg N kg‒1 in the LF
treatment, respectively (Figure 3).

Soil DOC concentration in the LF and LFHQ treatment was
higher than in the NPK treatment on all measurement of the 2-year
trial, and the significant increase in DOC occurred within a week of
fertilizer application (Figure 2C). The average soil DOC in the LF
treatment during the 2021 and 2022 maize seasons were 24.95 and
35.82 mg C kg‒1, respectively, demonstrating increases of 32.6% and
14.29% compared to the NPK treatment, respectively (Figure 3).
Compared with the LF treatment, the average DOC concentration of
LFHQ treatment increased by 8.54% during the 2021 maize season.

3.3 N2O and NO fluxes

Soil N2O fluxes in all the treatments were less than 100 μg N m‒2

h‒1 in the 2021 maize season, which was close to the values measured
within 60 days after sowing during the 2022 maize season

(Figure 4A). In 2022, in response to the continuous heavy
precipitation and the end of the rainfall, soil moisture increased
from 20% WFPS to more than 100% WFPS and then decreased,
resulting in an abrupt change in N2O fluxes from a steady lower level
to a peak, followed by a rapid decrease. The highest fluxes were
observed at soil moisture levels down to 80–90% WFPS. The N2O
peak fluxes in the N fertilized treatments appeared on day 50 after
sowing during the 2021 maize season while on day 100 after sowing
when continuous precipitation ended during the 2022 maize
seasons. The NPK treatment had the highest N2O peak flux of
637 μg N m‒2 h‒1, which was significantly greater than in the LF
(477 μg N m‒2 h‒1) and LFHQ (305 μg N m‒2 h‒1) treatments in the
2022 maize season.

The NO fluxes in the 2021 maize season were markedly higher
than in the 2022 maize season (Figure 4B). After basal fertilization,
the highest NO peak fluxes appeared in the LFHQ treatment, which
were 244 and 129 μg N m‒2 h‒1 in the 2021 and 2022 maize season,
respectively. After the first topdressing, the highest NO peak fluxes
appeared in the NPK treatment, which were 259 and 68 μg Nm‒2 h‒1

during the 2021 and 2022 maize season, respectively. In both maize
seasons, the average ratio of NO flux to N2O flux (NO/N2O) was
basically less than 1, except for 1 week after fertilization (Figure 4C).
Additionally, the natural logarithm of the ratio between NO flux and
N2O flux (ln (NO/N2O)) exhibited a negative correlation with soil
WFPS during the 2021 maize season (Figure 5A). During the
2022 maize season, the ln (NO/N2O) showed a negative
correlation with WFPS when soil WFPS was below 90%, while it

FIGURE 3
Average concentration of soil NH4

+-N, NO3
−-N, inorganic N (TIN, NH4

+-N + NO3
−-N) and dissolved organic carbon (DOC) during the 2021 and

2022maize season. The vertical bars denote the standard error of themean (n = 4). Control, no N fertilizer; NPK, N fertilizer urea; LF, dairy effluent; LFHQ,
dairy effluent plus urease inhibitor hydroquinone. The different letters indicate significant differences among treatments at P < 0.05.
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showed a positive correlation withWFPS when soilWFPS was above
90% (Figure 5B).

3.4 Cumulative N2O and NO emissions

In the 2022 maize season, N2O emission in the same treatment
exhibited an approximate tenfold increase compared to the
emission of N2O in the 2021 maize season (Table 2). During
the 2021 and 2022 maize seasons, the NPK treatment
demonstrated the highest N2O emissions, with values of

0.44 and 5.21 kg N ha‒1, respectively. Compared to the NPK
treatment, the sole application of dairy effluent (LF) resulted in
a reduction of N2O emissions by 38.64% and 38.77% during the
2021 and 2022 maize seasons, respectively. Conversely, adding HQ
to dairy effluent (LFHQ) significantly increased N2O emissions by
40.74% in 2021 and by 31.66% in 2022 compared with the
LF treatment.

During the 2022 maize season, the levels of NO emissions were
lower compared to those observed in 2021 (Table 2). The NO
emission in the NPK treatment was highest with 0.65 and
0.17 kg N ha‒1 in the 2021 and 2022 maize season, respectively.

FIGURE 4
Temporal variation in N2O (A) and NO (B) fluxes, and the ratio of NO/N2O (C) during the 2021 and 2022 maize season. The vertical bars denote the
standard error of the mean (n = 4). Control, no N fertilizer; NPK, N fertilizer urea; LF, dairy effluent; LFHQ: dairy effluent plus urease inhibitor
hydroquinone. Arrows represent the application time of fertilizers.

FIGURE 5
Relationship between soil moisture (WFPS) and the ratio of NO flux to N2O flux during the 2021 (A) and 2022 (B) maize season. The shadow
represents the 95% confidence interval.
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In the 2021 maize season, the LF treatment resulted in a 29.23%
reduction in NO emissions compared to the NPK treatment.
However, this reduction was not observed in the 2022 maize season.

For emission factors, the EF-N2O associated with the NPK
treatment was 0.11% during the 2021 maize season, obviously
greater than that in the LF treatment, and sharply increased to
1.71% in the 2022 maize season, significantly exceeding the value of
0.90% for the LF treatment and 0.99% for the LFHQ treatment. The
EF-NO in the NPK treatment was highest at 0.24% during the
2021 maize season, 41.18% higher than those in the LF and LFHQ
treatments.

3.5 Relationship between N2O, NO fluxes
and variables

Pearson correlation showed that N2O flux in the LF treatment
was positively correlated with NH4

+-N, TIN, DOC and WFPS in
2021 (Table 3). Throughout the monitoring period in 2022, no
statistically significant linear relationship was found between N2O
flux and substrate variables (NH4

+-N, NO3
−-N, TIN, DOC) or

environmental factors (WFPS, T5) in all N fertilization
treatments. In the 2021 maize season, there was a positive
relationship between the NO flux in LFHQ treatment and soil

TABLE 2 Cumulative emissions and emission factors of N2O and NO.

Year Treatment Cumulative emissions (kg N ha‒1) NO/N2O Emissions factors (%)

N2O NO N2O NO

2021 Control 0.15 ± 0.004 g 0.05 ± 0.01 d 0.32 ± 0.057 d — —

NPK 0.44 ± 0.033 e 0.65 ± 0.05 a 1.51 ± 0.140 b 0.11 ± 0.013 c 0.24 ± 0.023 a

LF 0.27 ± 0.009 f 0.46 ± 0.03 b 1.74 ± 0.154 a 0.05 ± 0.003 d 0.17 ± 0.013 b

LFHQ 0.38 ± 0.021 e 0.46 ± 0.01 b 1.23 ± 0.067 c 0.09 ± 0.009 c 0.17 ± 0.002 b

2022 Control 1.34 ± 0.20 d 0.02 ± 0.00 d 0.01 ± 0.00 f — —

NPK 5.21 ± 0.19 a 0.17 ± 0.02 c 0.03 ± 0.00 ef 1.71 ± 0.076 a 0.06 ± 0.004 c

LF 3.19 ± 0.08 c 0.16 ± 0.01 c 0.05 ± 0.01 e 0.90 ± 0.019 b 0.06 ± 0.003 c

LFHQ 4.20 ± 0.21 b 0.17 ± 0.01 c 0.04 ± 0.00 e 0.99 ± 0.093 b 0.06 ± 0.001 c

Values are means ± standard errors (n = 4). Different letters in the column denote significant differences in treatments and observed years at P < 0.05.

TABLE 3 Correlation between gaseous N fluxes (N2O, NO) and soil WFPS, dissolved organic carbon (DOC), temperature at 5 cm depth (T5), and ammonium
(NH4

+-N), nitrate (NO3
−-N) or total inorganic nitrogen (TIN, NH4

+-N + NO3
−-N).

Year Gas Treatment NH4
+-N NO3

−-N TIN DOC T5 WFPS

2021 N2O Control ‒0.096 0.670** 0.323 ‒0.023 0.180 0.159

NPK 0.101 0.337 0.186 ‒0.050 0.219 0.344

LF 0.554* 0.124 0.557* 0.530* 0.206 0.502*

LFHQ 0.627** 0.398 0.569** 0.433 0.249 0.334

NO Control 0.251 0.507 0.593** 0.566* 0.610** ‒0.119

NPK 0.234 0.626** 0.366 0.074 0.364 ‒0.080

LF 0.097 0.051 0.104 0.322 0.240 0.274

LFHQ 0.564** 0.258 0.499* 0.398 0.211 0.274

2022 N2O Control ‒0.305 ‒0.054 ‒0.332 ‒0.292 ‒0.397* 0.092

NPK 0.170 0.076 0.186 ‒0.111 ‒0.375 0.284

LF ‒0.133 ‒0.153 ‒0.172 ‒0.184 ‒0.289 0.267

LFHQ ‒0.165 ‒0.027 ‒0.180 ‒0.132 ‒0.376* 0.190

NO Control ‒0.285 0.447* ‒0.190 ‒0.292 0.148 ‒0.765**

NPK ‒0.369 0.466* ‒0.315 ‒0.238 ‒0.004 ‒0.671**

LF ‒0.183 0.775** ‒0.048 0.244 ‒0.016 ‒0.556**

LFHQ ‒0.106 0.600** ‒0.004 ‒0.066 0.071 ‒0.621**

*P < 0.05, **P < 0.01, ***P < 0.001.
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NH4
+-N and TIN. During the 2022 maize season, the NO flux

showed a positive correlation with NO3
− and a negative association

with WFPS across all treatments.
The random forest showed that, in order of importance, the top

three factors that play an important role in affecting soil N2O
emissions were TIN, NO3

−, and WFPS in 2021 when rainfall was
normal, and changed toWFPS, DOC, and TIN in 2022 when rainfall
was abnormally high (Figures 6A, B). Accordingly, pathway analysis
noted that the path coefficient of substrate to N2O emission was the
largest (0.44, p < 0.001) in 2021, and soil WFPS to N2O was the
largest (0.32, p < 0.01) in 2022 (Figures 6C, D).

3.6 Relationship between N2O emission and
precipitation

Fitting of the data collected from previous studies indicated that
there was a quadratic function relationship between N2O emission
and annual precipitation in temperate light texture sandy soils
(Figure 7A). When annual precipitation levels were below
690 mm, the EF-N2O exhibited an upward trend in response to
increasing precipitation. However, when annual precipitation levels

exceeded 690 mm, the EF-N2O demonstrated a decrease in response
to further increases in precipitation. The meta-analysis revealed a
consistent and direct relationship between the N2O peak fluxes and
the soil WFPS measured at the time of N2O peak fluxes, indicating a
positive linear correlation (Figure 7B).

4 Discussion

4.1 Extreme precipitation induced N2O
surge emission

Extreme precipitation is expected to increase with ongoing
climate change (IPCC, 2013; Zhang and Zhou, 2019; Tan et al.,
2021). In our study, extreme precipitation in the 2022 maize season
increased N2O emissions by more than 10 times compared with
conventional year 2021, regardless of the treatment (Table 2). The
key driving factors affecting soil N2O production were the substrate
inorganic N concentration during the 2021 maize season while soil
WFPS during the 2022 season (Figures 6A, B). This inferred that
changes in soil WFPS due to rainfall in 2022 may be the primary
reason for the huge increase in N2O emissions. Granli and Bockman

FIGURE 6
Random Forest analysis identifying themain drivers of N2O fluxes during the 2021 (A) and 2022 (B)maize season. Partial least squares pathmodeling
(PLS-PM) showed the effect of soil NH4

+-N, NO3
–-N, DOC and WFPS on N2O fluxes during the 2021 (C) and 2022 (D)maize season. “Substrate” is latent

variables indicated by NH4
+-N, NO3

–-N and DOC. “Treatment” is ordered by control, NPK, LF and LFHQ. Values adjoining the arrows represent the
standardized path coefficients, and arrow widths are scaled proportionally to the path coefficients. *P < 0.05, **P < 0.01 , ***P < 0.001. Orange
arrows refer to positive relationships. Gray lines denote insignificant paths (P > 0.05). R2 values indicate the variance of variables accounted for by
the model.
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(1994) pointed out that N2O emissions from cultivated soils mainly
resulted from nitrification when the soil WFPS ranges from 30% to
70%, and from denitrification when the soil WFPS is 70%–90%. An
incubation experiment conducted by Liu et al. (2017) showed that
nitrification was the main source of N2O production from soils
WFPS at 50%–70%, while denitrification was the main source of
N2O production from soils under 85% WFPS. When the soil WFPS
is greater than 90%, soil N2O tends to be completely denitrified and
reduced to N2. This is consistent with the negative correlation
between ln(NO/N2O) and WFPS when WFPS is below 90%, and
the positive correlation between ln(NO/N2O) and WFPS when
WFPS is above 90% (Figure 5). In our study, the continuous
precipitation since sowing during the 2022 maize season
increased soil moisture over 70% WFPS, which was more
inclined to denitrification for increased N2O emissions (Well
et al., 2006). This was consistent with the results of a model
simulated through 200 soil samples, where N2O fluxes increasing
when the soil WFPS increased from 62% to 95% (Rabot et al., 2015).
Chen et al. (2016) illustrated that extreme precipitation reduced
N2O emissions during precipitation period since flooding
suppressed soil nitrification and subsequent production of NO3

−

for denitrification in a clayey Mollisols. However, they observed that
when soil moisture started to decrease during drying, a surge
emission of N2O occurred. This is consistent with our finding
that a spike in N2O flux appeared during drying process with
soil moisture decreasing from over 100% WFPS to 80–90%
WFPS after precipitation ended (Figure 1A; Figure 4A). This is
partly due to the gradual recovery of oxygen supply during soil
desiccation and the increased activity of microorganisms involved in
nitrification in the soil microdomain (Lan et al., 2013), which
increased the N2O production in the nitrification process. On the
other hand, the N2O already produced by the denitrification process
was not further converted to N2, and the lesser water resistance also
made it easier for N2O to overflow the soil (Shang et al., 2016).

To gain a deeper understanding of the correlation between annual
precipitation and N2O emissions, we compiled N2O emissions
measured in temperate sandy soils with higher than 50% sand and
less than 15% clay (Supplementary Table S1). The data showed that,
the N2O peak fluxes increased with soil WFPS (Figure 7B), and the
highest N2O peak flux reached 950 μgNm‒2 h‒1 at approximately 100%

WFPS. For the purpose of excluding the potential influence of N
application rate in different studies, fertilizer N-induced N2O emission
factor was used. A quadratic relationship was found between EF-N2O
of N fertilizer and annual precipitation in temperate sandy soils, with
the maximum of N2O emission occurring at about 690 mm
(Figure 7A). Keller and Reiners (1994) reported a similar
exponential increase of N2O emission with soil WFPS from 60% to
80%WFPS in sandy loam. A 3-year trial conducted by Halvorson et al.
(2016) showed that EF-N2O was 0.42% when rainfall plus irrigation
was 650 mm during the 2012 maize season, whereas was reduced to
only 0.16% when the rainfall plus irrigation increased to 730–750 mm
during the 2013 and 2014 maize seasons. Our experiments and
extracted data from previous studies have jointly expounded a
phenomenon that the maximum N2O emission from temperate
sandy soil may occur when the annual rainfall was nearly 690 mm,
and the process of soil drying after flooding induced a large amount of
N2O emission in a short time. Thus, rational water management
system is required to avoid waterlogging and then a surge of N2O
emission in temperate agricultural field.

4.2 Dairy effluent mitigated N2O and
NO emissions

Previous studies have indicated that the application of dairy
effluent led to a 2–3 times increase in N2O emissions when
compared to the use of mineral N fertilizer (Barton and Schipper,
2001; Li et al., 2015; Aita et al., 2019). On the contrary, we found that
dairy effluent reducedN2O andNO emissions, and EF-N2O decreased
from 1.71% under NPK treatment to 0.9% under LF treatment during
the 2022maize season (Table 3). The lower N2O andNO emissions in
the LF treatment are attributed to three reasons. Firstly, it was found
that approximately 90% of urea was generally hydrolyzed within
2 days after fertilization (Hojito et al., 2010; Dawar et al., 2011), which
in turn led to a rapid increase in soil NH4

+-N levels for nitrifiers and
then NO3

−-N for denitrifying bacteria (Tilsner et al., 2003; Asgedom
et al., 2014). Conversely, the LF treatment demonstrated lower levels
of free NH4

+-N and NO3
−-N (Figures 2A, B), consequently reducing

N2O production, as a result of the slower mineralization of organic N
from the dairy effluent (Bristow et al., 1992). Secondly, on the one

FIGURE 7
Correlation between fertilizer N induced N2O emission factor and annual precipitation (A) and between N2O peak fluxes and soil WFPS (B). The EF-
N2O (y) and precipitation (x) satisfied: y = 0.04 + 0.59exp[‒ 0.5((x ‒ 681.1)/171.06)2], R2 = 0.39, P < 0.001; the N2O peak fluxes (y) and corresponding WFPS
(x) satisfied: y = ‒ 315.91 + 10.65x, R2 = 0.75, P < 0.001.
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hand, the high-water content of the dairy effluent might contribute to
carry more N into the deeper soil layers than NPK treatment, thus
reduced the risk of its loss as N-containing gases, such as N2O in the
surface layer. On the other hand, the high-water content of the dairy
effluent also increased the resistance of N2O to escape into the air and
the probability of its further reduction to N2 (Shang et al., 2016).
Thirdly, volatile fatty acids (VFA) were produced during 2-month
open-air fermentation of dairy effluents in oxidation ponds (Cooper
and Cornforth, 1978). The VFA as an easily decomposable C source
caused soil-available inorganic N fixation during decomposition by
microorganisms (Velthof et al., 2003), and there was a significant
correlation between the concentration of initial fatty acids in slurry
and the amount of fixed N (Kirchmann and Lundvall, 1993). While,
the degradation products of VFA like acetic acid and propanoic acid
exhibited an inhibitory effect on the oxidation of ammonium and
nitrite (Jensen, 1950; Eilersen et al., 1994), thereby affecting the
production of N2O and NO. Hooper and Terry (1973) reported
that the rate of ammonia oxidation driven by Nitrosomonas europaea
was inhibited by 30% and 9% under addition of 100 mM formate and
acetate, respectively.

4.3 Urease inhibitor exacerbated
N2O emission

Urease inhibitors are expected to retard the process of urea
hydrolysis by obstructing the active site of the urease enzyme and
changing the redox conditions of soil microenvironment (Mobley and
Hausinger, 1989), and have been widely used as amendments to
alleviate NH3 loss after fertilization (Zaman et al., 2009; Silva et al.,
2017). They also affected soil N2O emissions (Abalos et al., 2012). Xu
et al. (2002) reported a 11.4% reduction in N2O emissions when urea
was applied with HQ during a culture trial. A field experiment by
Boeckx et al. (2005) found an analogous 11.0% reduction in N2O
emissions in the presence of HQ. However, there are some field
studies have showed that urease inhibitors mixed with urea do not
have a significant effect on N2O emissions (Akiyama et al., 2010). Out
of expectation, combination application of dairy effluent with HQ
increased N2O emissions by 31.7%–40.7% compared with the LF
treatment in this study (Table 3). There are three possible
explanations for this unexpected phenomenon. Firstly, the HQ can
avoid the large volatilization of NH3 caused by a sudden increase in
NH4

+-N concentrations and pH on topsoil (Sanz-Cobena et al., 2011;
Silva et al., 2017). The NH4

+-N produced gradually has more
opportunities to be utilized by plants (Zaman et al., 2009; Silva
et al., 2017), and also be converted into NO2

−-N and NO3
−-N (Xu

et al., 2002;Martins et al., 2017), which in turn increased the substrates
for N2O production through nitrification and denitrification
(Bremner et al., 1981). It was verified that the maize yield and N
uptake increased by 17% and 20% in the LFHQ treatment compared
to LF treatment during the 2021 maize season, respectively
(Supplementary Table S2). In our study, the lower ratio of NO
flux to N2O flux in the LFHQ treatment than in the LF and no
difference in NO emission between the two treatments (Table 2)
indicated that higher N2O emissions in the LFHQ treatment was
primarily attributed to denitrification (Ding et al., 2015). Secondly, the
utilization of urease inhibitormerely postponed the hydrolysis of urea,
and all urea-N ultimately underwent hydrolysis to form NH4

+-N

(Akiyama et al., 2010). The initial less supply of NH4
+-N for cropsmay

induce the mineralization of soil organic N (Parkin and Hatfield,
2014). This fraction of mineralized N may also be involved in the
microbial production of N2O, and together with theN2O converted by
the NH4

+-N from the gradual hydrolysis of urea, the total N2O
emissions were higher than that of the treatment without urease
inhibitor. Thirdly, the initial N deficiency in the presence of urease
inhibitors probably induced plants to deliver more photosynthates
into underground for absorption of nutrients (Balachandran et al.,
1997; Glynn et al., 2003), resulting in higher DOC levels in the LFHQ
treatment in comparison to the LF treatment (Figure 3). Therefore,
initial plant growth was not affected immediately and the subsequent
gradual release of effluent N ensured the N availability to plant for a
longer period. In turn, the higher DOC in the LFHQ treatment than
the LF treatment may favor denitrification and N2O production
(Chen et al., 2016). Overall, our study highlighted that under the
conditions of our study, the application of a urease inhibitor (HQ)
alone and dairy effluent has the risk of increasing N2O losses, and the
concurrent application of nitrification inhibitors is recommended to
reduce N2O emissions.

5 Conclusion

The N2O emission during the 2022 maize season was over
10 times higher than that during the 2021 maize season, whereas
the emission of NO displayed an opposite pattern. The main driving
factor related to N2O fluxes was soil inorganic N during the
2021 maize season while soil WFPS during the 2022 maize season
with extreme precipitation. There is a quadratic function relationship
between EF-N2O of N fertilizer and precipitation in temperate sandy
soils, with the highest N2O emission occurring at ~690 mm. The
application of dairy effluent reduced N2O and NO emissions
regardless of precipitation due to the reduction of soil available N,
compared with the NPK treatment. Unexpectedly, combination
application of dairy effluent with urease inhibitors stimulated N2O
emission but not NO emission primarily due to stimulated soil
intrinsic N mineralization and increased denitrification with
enhanced DOC. Our findings suggested that drainage system could
be effective in avoiding the surge of N2O emission under heavy rainfall
in temperate sandy regions. Furthermore, urease inhibitors in
combination with nitrification inhibitors is recommended toward
co-benefits of agricultural productivity and greenhouse gas mitigation
under dairy effluent application.
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