
3D reconstruction and landscape
restoration of garden landscapes:
an innovative approach
combining deep features and
graph structures

Jialin Chen, Qingwei Cui and Yu Ye*

School of Landscape Architecture, Beijing Forestry University, Beijing, China

With the continuous development of landscape restoration technology, how to
use modern technology to efficiently reconstruct degraded and damaged
historical gardens to help them restore and protect has become an important
topic. Traditional 3D reconstruction methods often face challenges in accuracy
and efficiency when facing complex garden geometry and ecological
environment. To this end, this paper proposes a hybrid model DGA-Net that
combines deep convolutional network (DCN), graph convolutional network
(GCN) and attention mechanism to improve the 3D reconstruction accuracy
and detail recovery in historical garden landscape restoration. DGA-Net extracts
spatial features through DCN, uses GCN to model the topological relationship of
point clouds, and optimizes the recovery of key geometric details by combining
attention mechanism. Compared with traditional methods, this hybrid method
shows better performance in the reconstruction of complex structures and
ecological characteristics of historical gardens, especially in the accuracy of
point cloud generation and detail recovery. Experimental results show that
DGA-Net can reconstruct the structure and ecological characteristics of
historical gardens more finely, providing higher reconstruction accuracy and
efficiency. This study provides innovative technical support for digital modeling
and monitoring in landscape restoration, especially in the fields of ecological
environment restoration and cultural heritage protection.
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1 Introduction

As an important part of cultural heritage, garden landscape carries rich historical,
artistic and ecological values. With the increasingly serious problem of global ecological
degradation, landscape restoration has become a key issue in the field of global
environmental protection as an important means to restore ecological functions and
promote ecological sustainable development (Jia et al., 2022a). The landscape elements
in historical gardens not only include the interweaving of humanities and nature, but also
reflect the ecological concepts and social development of a specific period (Jia et al., 2022b;
Ping and Yue, 2024; Yang et al., 2023). In order to achieve the effective restoration of these
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garden landscapes, digital technology, especially three-dimensional
reconstruction technology, provides a new solution.

Traditional landscape restoration methods mainly rely on
manual mapping and two-dimensional drawings. This method is
difficult to fully and accurately present the spatial characteristics and
details of complex garden landscapes (Peng et al., 2024; Dong et al.,
2020). With the continuous development of digital technology,
three-dimensional reconstruction technology has become an
indispensable tool in garden landscape restoration (Guo et al.,
2024). It can not only accurately record the current status of the
landscape, but also simulate the effect after restoration to a certain
extent, thereby providing data support for the design and evaluation
of ecological restoration plans.

However, in the face of the complexity of historical garden
landscapes and the diversity of ecosystems, existing three-
dimensional reconstruction methods usually face challenges in
accuracy and efficiency. A single technology is often difficult to
meet the needs of high precision, detail capture and large-scale
processing in landscape restoration (Martorana et al., 2024).
Therefore, how to combine multiple technologies and fully
consider the ecological structure and spatial relationship of
garden landscape has become a research hotspot in the current
field of landscape restoration.

This paper proposes an innovative 3D reconstruction method
that combines deep features with graph structure to achieve fine
restoration of garden landscape. This method effectively solves
the limitations of existing methods in dealing with complex
landscape scenes by extracting the spatial characteristics and
topological structure of the landscape. Especially in terms of
ecosystem services, species diversity restoration, and
reconstruction of landscape structure, this method can provide
more accurate digital support for landscape restoration. In
addition, with the help of the attention mechanism, the model
can focus on key areas, improve reconstruction accuracy, and
emphasize important ecological features during the
restoration process.

The main contributions of this paper are reflected in the
following aspects.

• A hybrid 3D reconstruction method combining deep features
and graph structure is proposed, which provides a new
technical path for garden landscape restoration.

• The attention mechanism is introduced to optimize the
selection of important features and improve the accuracy
and efficiency of 3D reconstruction.

• This method provides strong technical support for digital
modeling and ecosystem restoration in landscape
restoration, and has important ecological and cultural
heritage protection significance.

The structure of this paper is arranged as follows: The related
work section reviews the current advancements in 3D
reconstruction and deep learning within the context of cultural
heritage preservation. Subsequently, the methodology section
presents a detailed description of the proposed model
architecture and the implementation of its various modules. The
experimental section validates the model’s effectiveness through
comparisons with multiple datasets and ablation experiments.

Finally, the conclusion summarizes the research contributions
and outlines future research directions.

2 Related work

2.1 3D reconstruction technology

In recent years, 3D reconstruction technology has made
significant progress across various fields, particularly in
applications such as computer vision, virtual reality, and cultural
heritage preservation. The primary objective of 3D reconstruction is
to create a three-dimensional model of a scene or object from two-
dimensional images or point cloud data (Li J. et al., 2022; Lin et al.,
2024; Wang et al., 2025a; Griwodz et al., 2021). Current methods for
3D reconstruction can be broadly categorized into traditional
geometric-based approaches, modern data-driven methods based
on deep learning, and hybrid methods that combine both.
Traditional geometric-based methods, such as structured light
and stereo vision, generate 3D models by calculating the
geometric relationships between the camera positions and the
scene (Griwodz et al., 2021; Wang et al., 2025b). These methods
achieve high accuracy in reconstructing regular scenes by capturing
images from multiple angles and applying principles of light
projection. However, they are sensitive to scene complexity and
lighting conditions and face computational bottlenecks when
processing large-scale data (Fahim et al., 2021).

With the advancement of deep learning, data-driven methods
for 3D reconstruction have emerged. Convolutional Neural
Networks (CNN) have significantly improved performance in
irregular scenes by learning the mapping relationship between
images and 3D structures from extensive training datasets (Li
et al., 2023). These methods possess the capability for automated
feature extraction, enabling them to handle complex scenarios such
as lighting variations and occlusions. However, they still face
challenges, including high data requirements and limited
generalization ability. Increasingly, research is exploring the
combination of geometric methods with deep learning
technologies to form hybrid approaches (Ma et al., 2024). By
ensuring the physical validity of the model through geometric
algorithms while leveraging deep learning to enhance adaptability
to complex environments, these hybrid methods have demonstrated
promising results in applications like cultural heritage preservation
and autonomous driving. Such approaches not only enhance the
accuracy of 3D reconstruction but also expand the range of
technological applications, providing new insights for the efficient
reconstruction of complex scenes.

2.2 Applications of deep learning in image
processing

In recent years, the application of deep learning in the field of
image processing has made significant progress, particularly in
feature extraction and relationship modeling. Convolutional
Neural Networks (CNN), as one of the representative models of
deep learning, have been widely utilized in image processing due to
their exceptional feature extraction capabilities (Salvi et al., 2021;
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Ning et al., 2024). Through convolutional operations, CNNs can
automatically extract features from images, ranging from low-level
to high-level. This hierarchical feature representation enables them
to excel in tasks such as image classification, object detection, and
semantic segmentation (Monga et al., 2021; Hao et al., 2024; Pham
et al., 2023). Classic deep learning models like AlexNet, VGG, and
ResNet have progressively improved the accuracy and robustness of
feature extraction by deepening the network structure layer by layer.
The introduction of residual connections in ResNet effectively
mitigates the vanishing gradient problem in deep networks,
further promoting the application of even deeper architectures
(Xu et al., 2023; Phan et al., 2023).

However, CNNs exhibit limited performance when dealing with
complex relationships and non-Euclidean data, such as 3D point
clouds and graph-structured data. For these tasks, traditional
convolutional operations struggle to capture the topological
relationships within the data, hindering the effective utilization of
information in irregular structures (Srivastava et al., 2021;
Sannidhan et al., 2023). To address this issue, Graph
Convolutional Networks (GCN) have emerged, capable of
handling data with irregular and complex connectivity. GCNs
extract features in graph-structured data by defining adjacency
matrices for nodes and edges, allowing the network to model
relationships between objects through the propagation
mechanism inherent to graph structures. Classic GCNs and their
improved versions, such as GraphSAGE and GAT, have
demonstrated outstanding performance in processing graph data
and have found widespread applications in social network analysis,
recommendation systems, and 3D point cloud processing (Wang
et al., 2021).

Despite the considerable advancements made by deep learning
models in feature extraction and relationship modeling, numerous
challenges remain in practical applications. On one hand, deep
learning models typically require a large amount of labeled data for
training, which is often difficult to obtain in specific fields like
cultural heritage preservation. On the other hand, deep learning
models incur substantial computational overhead when handling
large-scale, complex scenes, especially in tasks involving the
reconstruction of intricate 3D structures (Yu D. et al., 2021;
Kodipalli et al., 2023). Furthermore, existing models primarily
focus on the extraction of local features and lack effective
modeling of global context. Therefore, it becomes particularly
essential to construct hybrid models that integrate various
techniques, such as CNNs and GCNs, to address these challenges
and enhance the effectiveness and efficiency of 3D reconstruction.

2.3 Computer vision technology in cultural
heritage preservation

The application of computer vision technology in the field of
cultural heritage preservation offers new possibilities for traditional
artifact restoration and representation. Through techniques such as
3D scanning, image processing, and virtual reality, the digital
reconstruction of cultural heritage can be achieved, allowing for
the preservation of physical forms while facilitating global virtual
display and research (Pietroni and Ferdani, 2021). These
technologies play a significant role in archaeology, architectural

conservation, and art restoration. 3D reconstruction techniques,
particularly those based on image and point cloud data, provide the
technical support necessary for accurately restoring the details of
historical buildings and artifacts (Soto-Martin et al., 2020). For
instance, by utilizing laser scanning and computer vision,
researchers can generate precise 3D models of artifacts without
direct contact, offering valuable references for restoration and
preservation efforts.

However, the current application of computer vision technology
in cultural heritage preservation also faces several limitations and
challenges. Cultural heritage scenes are often complex and diverse,
containing irregular structures, intricate textures, and traces of
historical damage, making it difficult for traditional 2D image
processing methods to capture these details comprehensively
(Boboc et al., 2022; Martínez-Carricondo et al., 2020). Moreover,
3D data in the field of cultural heritage preservation is often
challenging to obtain and voluminous, posing a significant
challenge for efficient data processing (Ferdani et al., 2020).
Additionally, existing 3D reconstruction methods largely depend
on highly accurate data sources, such as laser scanners or high-
resolution cameras; in situations where data is missing or
incomplete, the quality of reconstruction may significantly
decline (Yang et al., 2020). This paper combines deep learning
with a hybrid model architecture based on Graph Convolutional
Networks, enabling a more intelligent and efficient approach to
processing complex cultural heritage scenes. This approach not only
automates the extraction of spatial and topological features but also
provides relatively complete reconstruction results even when some
data is missing.

3 Methods

3.1 Overall architecture of the DGA-
Net Model

The proposed DGA-Net (Dilated Graph Attention Network) is a
multi-module deep learning model designed for the 3D
reconstruction of historical gardens. It combines Deep
Convolutional Networks (DCN), Graph Convolutional Networks
(GCN), and attention mechanisms to address the challenges of
feature extraction and structural modeling in complex 3D scenes.
The model consists of three core modules: DCN is used to extract
spatial features from the scene, GCN captures the topological
relationships between points in the point cloud data, and the
attention mechanism optimizes feature selection to generate
refined 3D point clouds.

Figure 1 shows the main architecture of the DGA-Net model. In
the initial feature extraction stage, the model receives point cloud or
image data from historical garden scenes, and the DCN module
plays a vital role. This data can be point cloud or image information.
The DCN module processes the input data through multi-layer
convolution operations to convert complex geometric information
into high-dimensional feature maps. These feature maps contain
local and global spatial information of the scene, providing a basis
for subsequent point cloud reconstruction and topological
relationship modeling. Especially in the three-dimensional
reconstruction of garden landscapes, the DCN module can
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effectively extract and retain complex garden geometric features,
allowing the model to capture detailed spatial layout and
texture features.

The GCN module focuses on capturing the topological
relationship between points in point cloud data. GCN regards
each point as a node of the graph, builds a graph structure based
on the spatial proximity of these nodes, and continuously updates
the feature representation of each node through a message passing
mechanism. Unlike traditional convolutional networks that only
rely on local features, GCN can capture long-range dependencies in
point clouds, which is crucial for modeling large-scale objects and
complex geometric structures in historical garden scenes. Through
this module, DGA-Net can not only maintain local geometric
accuracy, but also further reveal the global spatial relationship of
the scene, thereby improving the overall effect of point cloud
reconstruction.

Finally, the attention mechanism module further optimizes the
process of feature selection and point cloud generation. As shown in
Figure 1, the attention mechanism works closely with the DCN and
GCN modules to optimize the attention of key features through
weighted processing. After the high-dimensional features extracted
by the DCN and GCN modules, the attention mechanism can
automatically adjust the weights of the features according to the
importance of different areas in the scene, ensuring that key details
are restored more accurately during the 3D reconstruction process.
The resulting point cloud data is not only geometrically accurate, but
also maintains the consistency of the relationships and spatial
coherence between objects in the scene. This collaborative
workflow enables DGA-Net to provide more detailed and

accurate reconstruction results in the 3D reconstruction of
historical gardens.

Through the collaborative work of these three modules, DGA-
Net forms a complete process from spatial feature extraction to
global relationship modeling to point cloud generation. In the task
of 3D reconstruction of historical garden scenes, DGA-Net can
capture rich details and topological structures, which significantly
improves the visual effect and accuracy of the
reconstruction results.

3.2 Module 1: deep convolutional
network (DCN)

Historical garden scenes often exhibit complex geometric forms,
such as buildings, vegetation, and rivers, where the spatial
distribution and details of these elements are crucial for 3D
reconstruction (Lin et al., 2022; Wang et al., 2024). In the
architecture of DGA-Net, the Deep Convolutional Network
(DCN) is responsible for extracting spatial features from the
input historical garden scenes. Each convolutional layer of the
DCN is capable of recognizing geometric details in the scene,
ranging from low-level to high-level features, thereby providing
high-quality feature representations for subsequent topological
modeling and 3D point cloud generation (Wang and Gan, 2024).
Through multiple layers of convolutional operations, the DCN
captures both local and global geometric information from the
scene and encodes this information into high-dimensional feature
maps. Figure 2 illustrates the detailed architecture of the DCN, with

FIGURE 1
Overall architecture of the DGA-Net model: 3D reconstruction process combining deep convolutional network, graph convolutional network and
attention mechanism.
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each layer extracting increasingly rich features through various
operations.

As shown in Figure 2, the DCN consists of multiple
convolutional layers, pooling layers, and activation layers. The
input historical garden images or point cloud data undergoes
normalization before entering the convolutional layers for spatial
feature extraction. The fundamental operation of the convolutional
layers is described by the following formula:

yi,j,k � ∑
m,n

xi+m,j+n · wm,n,k + bk (1)

In this equation, xi,j represents the pixel value in the input image
or point cloud, wm,n,k is the convolution kernel, and bk is the bias
term. The convolution operation extracts local geometric
information through a sliding window, generating a new feature
map. Next, the pooling layer downsamples the output of the
convolutional layer, and the pooling operation is described by the
following formula:

zi,j � max x2i,2j, x2i+1,2j, x2i,2j+1, x2i+1,2j+1( ) (2)

The pooling layer reduces the size of the feature maps, retaining
key features while decreasing computational overhead. The
sequential application of these operations allows the DCN to
effectively extract geometric information from coarse to fine in
the scene.

To prevent the vanishing gradient problem in deep networks,
the DCN architecture employs residual connections. This design
allows the input to the convolutional layers to be directly bypassed to
subsequent layers, thereby preserving more low-level feature
information. The formula for residual connections is as follows:

y � F x( ) + x (3)
Where F(x) represents the output after convolution, and x is the
initial input. This skipping mechanism enables the model to retain
crucial information from each layer when processing deep data,
enhancing the stability of model training.

After each convolutional output, a ReLU activation function is
applied for nonlinear transformation. The nonlinear processing of

ReLU enhances the model’s expressive power, allowing the DCN to
handle complex 3D scene data:

σ x( ) � max 0, x( ) (4)
After multiple layers of convolution and pooling, the DCN

ultimately outputs a high-dimensional feature map, which
contains the geometric details and spatial information of the
historical landscape scene. This feature map can be represented as:

F � f1, f2, . . . , fn{ } (5)

Each feature vector f i contains rich spatial features extracted
from the scene. These feature vectors will serve as inputs to the
subsequent Graph Convolutional Network (GCN), helping to
further model the topological relationships between points in
the landscape.

FIGURE 2
DCN module structure diagram: Application of deep convolutional network in spatial feature extraction.

FIGURE 3
GCN module structure diagram: feature propagation process of
graph convolution operation and topological relationship modeling.
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3.3 Module 2: graph convolutional
network (GCN)

The Graph Convolutional Network (GCN) constructs a graph
structure by treating each point in the scene as a node and utilizing
the adjacency relationships between these nodes for feature updates.
In the DGA-Net model, the core function of the GCN module is to
model the spatial dependencies between objects in the historical
garden through these adjacency relationships. Each node (point) not
only transmits its own features but also continuously updates its
characteristics through interactions with neighboring nodes,
allowing each node’s representation to gain global topological
information during layer-wise updates (Fabijańska and Banasiak,
2021; Ashfaq and Jalal, 2023; Mikamo et al., 2021). For the complex
geometric forms present in historical garden scenes, modeling these
topological relationships is particularly important, as it captures
local geometric features while integrating global spatial
relationships, thus enhancing the accuracy and efficiency of 3D
reconstruction. Figure 3 illustrates the structure of the GCN module
and the information flow process, clarifying the feature propagation
from the input node features through multiple layers of convolution.

As shown in Figure 3, the node feature maps generated from the
DCN are input into the GCN. Each node represents a point in the
scene, while the edges between the nodes denote their adjacency
relationships. The GCN utilizes the adjacency matrix to describe
these relationships. It updates the feature representation of each
node through graph convolution. The operation of graph
convolution can be expressed by the following formula:

h l+1( )
i � σ ∑

j∈N i( )

1
cij
W l( )h l( )

j
⎛⎝ ⎞⎠ (6)

where h(l+1)i represents the features of node i in the l + 1 layer,N (i)
is the set of neighbors of node i, cij is the normalization coefficient,
W(l) is the weight matrix of the l-th layer, and σ is the activation
function (typically ReLU). This formula shows that the feature of
node i is updated by aggregating the features of its neighboring
nodes, ensuring that each node in every layer contains not only its
own information but also the information from its neighbors.

Furthermore, the GCN uses the adjacency matrix A and the
degree matrix D to regulate the adjacency relationships. The feature
propagation formula is:

H l+1( ) � σ D−1
2AD−1

2H l( )W l( )( ) (7)

where H(l) is the feature matrix of nodes in the l-th layer, the
adjacency matrix A defines the relationships between nodes, and the
degree matrix D normalizes the weight of nodes. This formula
ensures that the convolution at each layer can exchange and
aggregate information spatially through the propagation and
updating of features from adjacent nodes.

To enhance the stability of the model, GCN introduces residual
connections, allowing each node to retain the previous feature
information at every layer. The residual connection formula is:

h l+1( )
i � σ ∑

j∈N i( )

1
cij
W l( )h l( )

j
⎛⎝ ⎞⎠ + h l( )

i (8)

This structure ensures that the original node features are not lost
as the depth of the layers increases, thus improving the effectiveness
of feature propagation.

After multiple layers of convolution and message passing in the
GCN, the model outputs a feature representation with global
topological information. The final feature representation is:

H L( ) � h L( )
1 , h L( )

2 , . . . , h L( )
N{ } (9)

where h(L)i represents the features of node i after the L-th layer
convolution, and N is the total number of nodes. This high-
dimensional feature representation not only contains local
geometric information from the point cloud data but also
incorporates global spatial relationships through the convolution
operations of the GCN.

Through multi-layer convolution operations, the GCN
continually updates the node features, ensuring that the final
output reflects both the detailed information within the historical
garden scene and captures the spatial structure of the entire scene.
This provides crucial input data for subsequent 3D point cloud
generation and fine reconstruction. By leveraging the combined
strengths of the DCN and GCN, DGA-Net demonstrates robust
accuracy and adaptability in the 3D reconstruction of complex
historical scenes.

3.4 Module 3: attention mechanism and
point cloud generation

In the architecture of DGA-Net, the attention mechanism and
point cloud generation module are critical components for achieving
3D reconstruction. The spatial and topological features extracted from
the first two modules (DCN and GCN) contain rich geometric
information; however, not all features are equally important for 3D
reconstruction. Therefore, an attention mechanism is introduced to
optimize the selection of important features by applying weights to the
previously extracted spatial features (Yu A. et al., 2021; Zhang et al.,
2024). This ensures that the reconstruction process focuses on key

FIGURE 4
Attention mechanism module structure diagram: adaptive
weighted processing and 3D point cloud generation.
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areas while minimizing the impact of redundant features, allowing the
model to generate precise and detailed 3D point cloud data.
Traditional point cloud generation methods are usually unable to
effectively distinguish and prioritize geometric details that are critical
to reconstruction, often leading to the introduction of redundant
features and affecting reconstruction accuracy. DGA-Net introduces
an adaptive attention mechanism to automatically assign weights to
different features, ensuring that details and geometric relationships
that are critical to the structure of historical gardens are given priority
during point cloud generation. Especially when faced with complex
garden landscapes, the model can flexibly adapt to different geometric
forms and spatial relationships, accurately capture and reconstruct
structural information in key areas, and thus generate high-quality 3D
point cloud data. Figure 4 shows the workflow of this module, from
feature selection to point cloud generation.

As shown in Figure 4, the feature map output from the GCN is
fed into the attention mechanism, which applies a weight to
each feature.

αi � exp ei( )∑N
j�1 exp ej( ) (10)

where αi is the attention weight for feature i, ei is the relevance score
for feature i, and N is the total number of features. This formula
indicates that the model calculates the weight for each feature by
scoring its relevance, and the Softmax function is applied to ensure
that the weights are normalized.

The feature map with attention weights is further processed, and
the weighted feature processing can be expressed as:

hatti � αi · hi (11)
where hatti is the weighted feature, αi is the attention weight, and hi is
the feature value. Through this approach, the model emphasizes
important geometric and topological information, ensuring that
these critical features are prioritized during point cloud generation.

After the weighting process, the generation of the point cloud
depends on the mapping from feature space to physical space:

P � f Hatt( ) � p1, p2, . . . , pM{ } (12)
where P is the final generated 3D point cloud, M is the number of
points generated,Hatt is the feature matrix weighted by the attention
mechanism, and f is the function that maps features to the point
cloud. This process transforms the high-dimensional feature
representation into specific 3D point coordinates, achieving the
fine-grained 3D reconstruction of the historical landscape scene.

Finally, the features processed by the attention mechanism are
used to generate the 3D point cloud, with the point cloud data
represented as:

P � xi, yi, zi( )|i � 1, 2, . . . ,M{ } (13)
where (xi, yi, zi) represents the 3D coordinates of each point.
Through this module, the DGA-Net model can automatically
focus on key areas within a large set of features, and accurately
reflect the complex details and global relationships of the historical
landscape scene when generating the point cloud. The final output is
a high-quality 3D point cloud that accurately reproduces the
geometric structure of the historical garden, providing strong
support for cultural heritage preservation and reconstruction.

Through DCN for spatial feature extraction, GCN for
topological relationship modeling, and the attention mechanism
for weighted point cloud generation, DGA-Net achieves high-
precision, comprehensive 3D reconstruction in complex historical
landscape scenes. This innovation not only improves the
performance of the model in complex scenarios, but also
provides strong technical support for the application of 3D
reconstruction technology in cultural heritage protection and
historical garden restoration.

4 Experiment

4.1 Datasets

In this study, two significant 3D datasets were utilized to train
and validate the 3D reconstruction capabilities of the DGA-Net
model: the Stanford 3D Scanning Repository and the Heritage 3D
Data Set. These datasets encompass different types of 3D scenes and
geometric features, providing the model with rich training samples
and diverse testing environments.

The Stanford 3D Scanning Repository is a widely used high-
resolution 3D point cloud dataset that contains a large number of
complex physical objects, such as sculptures, architectural details,
etc., with rich geometric features and structural complexity (Kuang
et al., 2024). The high precision and complex geometry of these
samples make this dataset particularly suitable for training and
validating the model’s ability to handle complex 3D structures,
especially in terms of detail restoration and geometric
shape accuracy.

The Heritage 3D Data Set focuses on the 3D reconstruction of
cultural heritage scenes, covering buildings and natural landscapes
from multiple historical periods, including ancient buildings,
sculptures, and historical gardens. The geometric complexity of
this dataset ranges from medium to high, and detailed object
annotations and multi-view scanning data are provided to help
the model learn and reconstruct historical garden scenes with
cultural value (Pepe et al., 2022).

Table 1 summarizes the characteristics of these two datasets,
including sample count, data type, and their respective application
scenarios. These two datasets cover the diversity of historical
gardens and complex geometric structures, which can provide
rich training and validation samples for DGA-Net, especially for
the adaptability and accuracy of the model in handling different
garden landscapes and complex geometric forms. The diversity and
annotation information of these datasets provide strong support for
this study, especially helping to improve the generalization ability
and accuracy of the model in 3D reconstruction tasks.

4.2 Experimental setup and metrics

In the experiments, we rigorously trained and optimized the
DGA-Net model to ensure stable and efficient performance in the
3D reconstruction of historical gardens. Table 2 summarizes the
specific experimental parameters, including data processing,
network configurations, optimization strategies, and hardware
specifications. With these settings, the model can effectively learn
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the geometric and topological features within the data while
maintaining high reconstruction accuracy. Prior to inputting data
into the model, normalization processes such as denoising and
scaling adjustments are applied to ensure input consistency.
Standard deep learning optimization techniques are employed
during training, dynamically adjusting the learning rate and
incorporating regularization to prevent overfitting and enhance
the model’s generalization ability.

To comprehensively evaluate the performance of DGA-Net in
the 3D reconstruction of historical garden scenes, multiple
evaluation metrics were employed, assessing the model from
various dimensions such as accuracy, completeness, structural
similarity, and efficiency.

Acc. � 1 − 1
N

∑N
i�1

‖pi − p̂i‖2
‖pi‖2 (14)

where pi is the true point, the i-th point’s coordinates, p̂i is the
reconstructed point’s coordinates.

MSE � 1
N

∑N
i�1

pi − p̂i( )2 (15)

where pi is the true point, the i-th point’s coordinates, p̂i is the
reconstructed point’s coordinates.

Com. � Reconstructed Points
Ground Truth Points

(16)

SSIM � 2μxμy + C1( ) 2σxy + C2( )
μ2x + μ2y + C1( ) σ2x + σ2y + C2( ) (17)

where μx, μy are the mean values of image brightness, σx, σy are
the variances.

Processing Time evaluates the time cost of model execution;
shorter times indicate higher efficiency.

TABLE 1 Overview of the stanford 3D scanning repository and heritage 3D data set.

Dataset Sample
count

Data type Geometric
complexity

Data
annotation

Application scenarios

Stanford 3D Scanning
Repository

300+ High-resolution 3D point clouds High None Complex geometric structures
and scenes

Heritage 3D Data Set 500+ 3D point clouds and multi-view
scanning data

Medium to high Detailed object
annotations

Historical buildings and natural
landscapes

TABLE 2 Experimental environment and model parameter settings.

Category Parameter settings Description

Data Preprocessing Normalization, Denoising, Scaling Ensures uniformity of input data and eliminates differences between data sources

Training Set Ratio 70% Used for model training, ensuring adequate feature learning

Validation Set Ratio 15% Used for dynamically adjusting model hyperparameters and detecting overfitting

Testing Set Ratio 15% Used to evaluate the model’s generalization ability and reconstruction performance

Batch Size 32 Processes 32 samples per batch, balancing training speed and memory usage

Initial Learning Rate 0.001 Controls the learning step size, preventing rapid convergence or oscillation

Weight Decay 0.0001 Prevents overfitting, ensuring good generalization for complex data

Number of Epochs 100 Total training iterations, with performance monitored using the validation set.

Hardware Configuration GPU: NVIDIA Tesla V100; CPU: Intel Xeon High-performance computing resources ensure training efficiency for large-scale data

Loss Function Cross-Entropy Loss Computes the difference between predictions and actual labels

Regularization Dropout (0.5) Reduces overfitting in the neural network, maintaining training stability

FIGURE 5
Enhanced loss curves of DGA-Net on stanford 3D scanning
repository datasets and heritage 3D data set.
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4.3 Results

4.3.1 Loss curves
In this experiment, we performed a detailed analysis of the loss

curves of the DGA-Net model on two different datasets to evaluate
its performance in 3 D reconstruction of historical gardens. As
shown in Figure 5, the training loss of both Stanford 3D Scanning
Repository and Heritage 3D Data Set showed a significant
decreasing trend during the training process, indicating that the
model has made good progress in learning the data features. This
phenomenon shows that DGA-Net is effective in extracting and
representing complex geometries and spatial relations, thus
enhancing its reconstruction accuracy. By comparing training
loss with validation loss, we noticed that the fluctuation of
validation loss is relatively small and always remains at a low
level on Stanford 3D Scanning Repository, indicating that the
model not only learns rich feature information on this dataset,
but also has good generalization ability. While on Heritage 3D Data
Set, the validation loss is slightly more volatile, although the training
loss also decreases gradually, which may be related to the more
complex geometry and diverse scenarios in this dataset. This
situation suggests us that we may need further optimization and
tuning of the model when handling specific types of cultural heritage
data in order to improve its robustness under complex scenarios.

4.3.2 Comparative experiments
The comparative experiments in this study selected nine

mainstream 3D reconstruction models (COLMAP, OpenMVG +
OpenMVS, NeRF, MVS, DGSF, SNR, SurfaceNet, DeepVoxels, and
Fusion4D) as the control group to compare performance with DGA-
Net. These models are widely used in both academia and industry,
are representative, and have demonstrated good performance in
their respective studies, making them suitable for comparison with
DGA-Net.

As shown in the results of Table 3, the DGA-Net model
performs exceptionally well on the Stanford 3D Scanning
Repository dataset, achieving an accuracy of 83.5%, an MSE of
0.20, completeness of 87.5%, an SSIM value of 0.91, and a processing
time of only 2.3 s. These results indicate that DGA-Net possesses

high precision and efficiency in 3D reconstruction tasks. Compared
to other models, DGA-Net outperforms COLMAP (accuracy 81.0%,
MSE 0.22) and OpenMVG +OpenMVS (accuracy 79.5%, MSE 0.25)
in terms of completeness and SSIM, suggesting that DGA-Net can
better capture the geometric details of the scene and preserve spatial
relationships. The DGSF model has an accuracy of 83.0%, which is
close to that of DGA-Net, but its longer processing time highlights
DGA-Net’s advantage in efficiency.

In addition, on the Heritage 3D Data Set (Table 4), DGA-Net
continues to excel, with an accuracy of 87.0%, an MSE of 0.18,
completeness of 89.0%, an SSIM value of 0.92, and a processing time
of 2.1 s. This series of metrics indicates that DGA-Net can efficiently
and accurately reconstruct complex cultural heritage scenes while
maintaining spatial relationships between objects. In this dataset, the
NeRF model has an accuracy of 84.0%, but its MSE and
completeness fall short compared to DGA-Net, likely due to its
reliance on a large amount of data. The DGSF model also performs
well in terms of completeness and SSIM, at 87.0% and 0.90,
respectively, but does not reach DGA-Net’s level in accuracy and
processing time, demonstrating DGA-Net’s clear advantage in high-
precision scenarios.

The experimental results of DGA-Net on both datasets
demonstrate its outstanding performance and potential for
application in 3D reconstruction. The underlying reason for this
is that DGA-Net combines Deep Convolutional Networks (DCN)
and Graph Convolutional Networks (GCN), enabling the model to
capture both local geometric information and global topological
relationships simultaneously. DCN effectively identifies geometric
details from low-level to high-level through multi-layer convolution
operations when extracting spatial features from complex scenes,
ensuring accurate modeling of various object shapes in the scene.
This combination allows DGA-Net to maintain high precision in
geometric shape reconstruction while accurately reflecting the
interrelationships between objects in complex scenarios, such as
historical gardens. Furthermore, DGA-Net incorporates an
attention mechanism to optimize the feature selection process,
reducing interference from redundant information during
reconstruction, and effectively enhancing the model’s robustness
when handling noisy or complex background data.

TABLE 3 Comparison of performance of DGA-Net model and other mainstream 3 D reconstruction models on Stanford 3D Scanning Repository Datasets
(based on Accuracy, MSE, Completeness, SSIM and Processing Time metrics).

Model Accuracy MSE Completeness SSIM Processing time

COLMAP (Bai et al., 2024) 81.0 0.22 84.0 0.86 2.5

OpenMVG + OpenMVS (Li et al., 2022b) 79.5 0.25 83.0 0.85 3.1

NeRF (Remondino et al., 2023) 77.0 0.29 80.0 0.82 3.5

MVS (Wang and Gan, 2024) 80.0 0.23 82.0 0.84 2.8

DGSF (Zhang et al., 2024) 83.0 0.21 86.0 0.89 2.6

SNR (He et al., 2020) 78.0 0.30 80.0 0.81 3.0

SurfaceNet (Ji et al., 2020) 76.5 0.32 78.5 0.79 3.2

DeepVoxels (Hu et al., 2022) 82.0 0.29 81.0 0.83 3.1

Fusion4D (Salari et al., 2021) 75.0 0.35 79.0 0.80 3.3

DGA-Net 83.5 0.20 87.5 0.91 2.3
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4.3.3 Ablation experiments
The paper verified the contribution of each module to the model

performance on two datasets. On the Stanford 3D Scanning
Repository dataset (as Table 5), we gradually removed the DCN
module, GCN module, and attention mechanism, and observed the
impact of removing different modules on the model performance.
After removing the DCN module, the accuracy of the model
dropped slightly to 83.5, the MSE increased to 0.22, and the
completeness also dropped slightly (84.5). In contrast, removing
the GCN module had little impact on the performance, with an
accuracy of 84.0 and an MSE of 0.20, which was closer to the
complete model. When removing the attention mechanism, the
accuracy of the model improved (85.0) and the MSE dropped to
0.19, indicating that the attention mechanism plays a key role in
optimizing the selection of geometric features. In the end, the
complete model (DGA-Net) performed best in terms of accuracy

(83.5), MSE (0.20), and completeness (87.5), proving the importance
of the collaborative work of each module.

On the Heritage 3D Data Set (as Table 6), the ablation results
show similar trends. Removing the DCN module reduces the
model’s accuracy to 83.0, MSE to 0.22, and completeness to 84.0,
with a slight decrease in performance. After removing the GCN
module, the accuracy increases to 84.5, and the MSE decreases to
0.19, with the overall performance close to the complete model.
After removing the attention mechanism, the model’s performance
remains high, with an accuracy of 85.5 and an MSE of 0.19, but
slightly lower than the performance of the complete model. Finally,
the complete model (DGA-Net) achieves the highest accuracy
(87.0), the lowest MSE (0.18), and the best completeness (89.0)
on the Heritage 3D Data Set, indicating that the combination of
DCN, GCN, and attention mechanism has a significant effect on
improving model performance. These ablation results further verify

TABLE 4 Comparison of performance of DGA-Net model and other mainstream 3 D reconstruction models on Heritage 3D Data Set (based on Accuracy,
MSE, Completeness, SSIM and Processing Time metrics).

Model Accuracy MSE Completeness SSIM Processing time

COLMAP 80.5 0.25 82.5 0.84 2.6

OpenMVG + OpenMVS 77.0 0.29 80.0 0.82 3.2

NeRF 84.0 0.22 86.0 0.86 3.3

MVS 79.0 0.27 81.0 0.80 3.0

DGSF 85.0 0.19 87.0 0.90 2.5

SNR 76.0 0.31 79.0 0.79 3.2

SurfaceNet 75.0 0.34 77.0 0.77 3.4

DeepVoxels 83.0 0.26 82.0 0.85 3.1

Fusion4D 73.5 0.38 77.5 0.78 3.5

DGA-Net 87.0 0.18 89.0 0.92 2.1

TABLE 5 Ablation experiment results of the DGA-Net model on the Stanford 3D Scanning Repository dataset (by gradually removing different modules, the
contribution of each module to the model performance is verified based on accuracy, MSE, completeness, SSIM and processing time indicators).

Model Accuracy MSE Completeness SSIM Processing time

Without DCN Module 83.5 0.22 84.5 0.88 2.4

Without GCN Module 84.0 0.20 85.0 0.90 2.3

Without Attention Mechanism 85.0 0.19 86.5 0.91 2.2

DGA-Net (Full Model) 83.5 0.20 87.5 0.91 2.3

TABLE 6 Ablation experiment results of the DGA-Netmodel on the Heritage 3DData Set dataset (by gradually removing different modules, the contribution
of each module to the model performance is verified based on accuracy, MSE, completeness, SSIM and processing time indicators).

Model Accuracy MSE Completeness SSIM Processing time

Without DCN Module 83.0 0.22 84.0 0.88 2.4

Without GCN Module 84.5 0.19 85.5 0.90 2.3

Without Attention Mechanism 85.5 0.19 86.0 0.91 2.2

DGA-Net (Full Model) 87.0 0.18 89.0 0.92 2.1
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the key contribution of each module in the DGA-Net model,
indicating that the advantage of the model lies in the effective
collaboration between modules.

Figure 6 is a visualization of the ablation experiment results. The
results show that removing each module has little effect on accuracy
and completeness, while the mean square error (MSE) decreases.

The complete model (DGA-Net) performs best in all indicators,
verifying the contribution of each module to the model
performance.

Figure 7 presents the input data for the model (sourced from the
public atlas of the Gardens of Versailles), which includes scenes of
historical architecture, sculptures, and interior designs. These image

FIGURE 6
Ablation experiment results of the DGA-Net model on the Stanford 3D Scanning Repository and Heritage 3D Data Set datasets: comparison of
accuracy, mean square error, and completeness.

FIGURE 7
Public atlas of the gardens of versailles (input data).
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data come from real historical garden settings, featuring rich
geometric details and complex topological structures that
represent the visual characteristics of traditional historical
gardens. The input data types are diverse, encompassing external
buildings, internal decorations, and intricate garden landscapes.

Figure 8 showcases the reconstruction results after processing by
the DGA-Net model. From this figure, it is evident that the model
successfully captured the key geometric details of the input scene
and generated fine point clouds and model rendering results
through the three-dimensional reconstruction process. During the
reconstruction, DGA-Net extracted spatial features of the scene
using a Deep Convolutional Network (DCN) and modeled the
complex topological relationships between points in the scene
using a Graph Convolutional Network (GCN). The introduction
of the attention mechanism enabled the model to focus more
precisely on important feature areas, resulting in more accurate
and complete three-dimensional structures.

In the final reconstruction results, the details of historical
architecture, such as columns, wall structures, and complex
interior decorative elements, are highly restored. At the same
time, the model also successfully preserved the overall shape and
spatial layout of large-scale buildings, ensuring that the generated
three-dimensional scene exhibits high visual consistency and
geometric accuracy. These results demonstrate the outstanding
performance of DGA-Net in three-dimensional reconstruction of
complex historical scenes, providing reliable technical support for
the digital preservation and display of cultural heritage.

5 Conclusion

As the global ecological degradation problem intensifies,
landscape restoration has become one of the key strategies to
achieve ecologically sustainable development. Especially in the
landscape restoration process of cultural heritage such as
historical gardens, digital technology provides strong support for

traditional restoration methods. The three-dimensional
reconstruction method (DGA-Net) proposed in this article based
on the combination of depth features and graph structure provides a
new technical path for the accurate restoration of garden landscapes.
By combining deep convolutional networks (DCN), graph
convolutional networks (GCN) and attention mechanisms, DGA-
Net can effectively process complex garden landscape data and
capture its spatial characteristics and topological relationships,
thereby improving the performance of landscape restoration and
ecology. Play an important role in system reconstruction.
Experimental results show that DGA-Net performs well in the
three-dimensional reconstruction of historical gardens, especially
in terms of detail recovery and global structure consistency.
Compared with traditional methods, DGA-Net can more
accurately capture the complex geometric shapes and ecological
relationships of garden landscapes, demonstrating its potential in
landscape restoration and ecological monitoring. The ablation
experiment further proved the importance of each module of the
model, especially the attention mechanism, which can effectively
reduce redundant information and improve attention to key
features, thus improving the application effect of the model in
landscape restoration.

Although DGA-Net provides strong support for the digital
protection and display of cultural heritage in terms of accurate
3D reconstruction of complex scenes in historical gardens, the
model still has some limitations in practical applications. For
example, when dealing with high-noise data or ultra-large-scale
scenes, the accuracy and efficiency of the model may be affected to a
certain extent. Especially in these extreme cases, the quality
fluctuations of point cloud data may lead to instability in the
reconstruction results and affect the performance of the model.
In addition, the DGA-Net model has a large computational
overhead, which poses a challenge to its widespread deployment
in real-time applications. Therefore, how to optimize computational
efficiency without reducing the quality of reconstruction has become
an important direction for future research.

FIGURE 8
Processing process and reconstruction results of the DGA-Net model.
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In view of the above limitations, future research will focus on
improving the performance of the model on low-quality datasets
and exploring more efficient feature extraction and relationship
modeling methods to enhance the robustness of the model. At the
same time, in view of the computational efficiency problem, we plan
to try to use a lightweight network structure to reduce the
consumption of computing resources, so as to support a wider
range of real-time applications. In order to improve the adaptability
of DGA-Net in various historical gardens and cultural heritage
scenes, we will also actively explore ways to enhance the
adaptability of the model so that it can handle more diverse and
complex cultural heritage scenes and provide a wider range of
application value in the field of cultural heritage protection.
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