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Municipal Solid Waste Generation (MSWG) presents a significant challenge for
sustainable urban development, with waste production escalating at alarming
rates worldwide. To address this issue, accurate predictive models are essential
for optimizing waste management strategies. This study utilizes a comprehensive
dataset of 4,343 records from municipal waste management, incorporating
variables such as population density, urbanization indices, and waste
composition. Advanced machine learning algorithms, including Decision Trees
(DT), Random Forest (RF), LightGBM, and XGBoost, are employed, with XGBoost
being introduced as a novel approach for MSWG prediction. Its ability to model
complex nonlinear relationships, handle missing data and outliers robustly, and
prevent overfitting through advanced regularization techniques sets it apart from
other models. The study finds that XGBoost outperforms the other algorithms,
achieving an R2 value of 0.985 and an RMSE of 0.056, making it themost accurate
predictor of MSWG. The flexibility and scalability of XGBoost further enhance its
applicability in managing diverse datasets, and its feature-ranking capability is
instrumental in identifying key factors influencing waste generation. The results
demonstrate that incorporating XGBoost into waste management frameworks
can significantly improve resource allocation, reduce operational costs, and
contribute to environmental sustainability. This approach not only advances
predictive methodologies in MSWG management but also provides actionable
insights for urban planners and policymakers in effectively tackling the growing
waste management crisis. The findings highlight the potential of machine
learning, particularly XGBoost, as a transformative tool for strategic decision-
making in environmental management.
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Highlights

1. XGBoost achieves high accuracy (R2 = 0.985, RMSE = 0.056) in predicting Municipal
Solid Waste Generation (MSWG).

2. The study uses a dataset of 4,343 records with diverse variables like population density
and waste composition.

3. XGBoost excels in handling missing data, outliers, and nonlinear relationships in
MSWG prediction.
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4. Feature-ranking capabilities identify critical factors influencing
waste generation for better resource allocation.

5. The model promotes sustainable urban planning, reducing
costs and enhancing environmental management.

1 Introduction

Municipal Solid Waste Generation (MSWG) has become a
significant concern for urban planning and environmental
management, with global generation rates reaching approximately
2.1 billion metric tons in 2016 and projected to rise by 70% by 2050
(Rafew, 2022; Ttito Moya, 2024a). This escalating waste generation
is particularly pronounced in developing regions, where factors such
as urbanization, increased consumerism, and insufficient waste
management infrastructure exacerbate the problem (McAllister,
2015; Yao et al., 2017). In Latin America, for example, waste
generation averages about 1 kg per person daily, with alarming
statistics indicating that a significant portion is either openly burned
or dumped in informal landfills, as seen in countries like Peru, where
annual solid waste production exceeds seven million metric tons
(Wang L. et al., 2024). Such practices pose serious environmental
and health risks, leading to contamination and long-term ecological
damage. Effective solid waste management strategies are urgently
needed to address these challenges (Yao et al., 2014). Previous
studies have highlighted the importance of economic incentives,
community participation, and innovative waste management
practices that consider cultural, political, and economic contexts
(Marshall and Farahbakhsh, 2013; Martin et al., 2006). In this light,
understanding the behavioral patterns of waste generation and
implementing comprehensive strategies are crucial for promoting
sustainable waste management, particularly in rapidly urbanizing
areas like Lima, where nearly half of the generated waste is
mismanaged (Yao et al., 2018). While previous studies have
employed Decision Trees, Random Forest, and LightGBM for
MSWG prediction, this study introduces XGBoost as a novel
approach due to its superior ability to model complex nonlinear
relationships, handle missing data, and prevent overfitting through
advanced regularization techniques. Unlike traditional methods,
XGBoost’s feature-ranking capability provides actionable insights
into key determinants of waste generation, making it a
transformative tool for strategic waste management.
Incorporating innovative technologies and fostering community
involvement can markedly improve the effectiveness of waste
management systems (Marshall and Farahbakhsh, 2013; Shekdar,
2009). Predictive modeling plays a vital role in waste management,
offering valuable insights into future waste generation patterns
(Dyson and Chang, 2005; Xu et al., 2023). With the application
of sophisticated algorithms and historical data analysis, precise
forecasts can be generated concerning waste volume and
composition, thereby facilitating efficient planning and resource
allocation within waste management systems (Munir et al., 2023).
With accurate forecasts of waste generation patterns, municipal
authorities can enhance waste collection schedules, distribute
resources more effectively, and reduce operational expenses. This
proactive approach can lead to significant improvements in
municipal solid waste management, thereby fostering
environmental sustainability and enhancing the quality of urban

life (Sharma et al., 2021). One of the prediction models employs
innovative techniques (Yang et al., 2023; Zhiquan, 2015). Machine
learning (ML) has proven to be a game-changing tool in deciphering
intricate datasets, especially when it comes to predicting any key
point with high noise (Deng et al., 2024; Sui et al., 2013; Yang et al.,
2015). Unlike conventional statistical techniques that frequently
depend on linear relationships and assumptions, ML models can
unravel complex patterns and relationships within expansive,
multidimensional datasets (Lu et al., 2024; Shi et al., 2025a; Shi
et al., 2024). This adaptability allows for improved accuracy in waste
generation forecasts, essential for effective waste management
strategies (Sui et al., 2012). For instance, models such as Decision
Trees (DT), Random Forest (RF), XGBoost, and LightGBM have
shown great promise in handling diverse data inputs and generating
precise predictions based on various influencing factors. The
advantages of employing ML techniques include their ability to
continuously learn from new data, adjust to changing waste
generation trends, and enhance the robustness of predictions
over time. These characteristics position machine learning as a
valuable approach for addressing the complexities associated with
municipal solid waste management, offering municipalities the
analytical capabilities needed to navigate the challenges posed by
increasing waste volumes and evolving regulatory frameworks.
Despite the growing body of literature on machine learning
applications in waste management, significant gaps remain in the
effective implementation of these techniques for predicting MSWG
generation. Many existing studies often focus on specific geographic
areas or use limited datasets, which can lead to biased results and
hinder the generalizability of findings. Furthermore, there is a lack of
comprehensive studies that incorporate diverse socio-economic
factors influencing waste generation, limiting the ability to create
robust predictive models that are applicable across different urban
settings. Additionally, existing models often do not utilize real-time
data or advanced ML techniques, reducing their effectiveness in
adapting to dynamic changes in waste generation patterns.
Addressing these gaps is crucial for advancing the field of waste
management and ensuring that predictive models can accurately
inform policy and operational decisions, ultimately leading to more
sustainable practices. This study is referred to as a case study because
it focuses on the application of advanced machine learning
algorithms (XGBoost, RF, LightGBM, and DT) to a specific
problem—predicting Municipal Solid Waste Generation
(MSWG). While the dataset used is not real-time data from a
single location, it represents a comprehensive collection of
municipal waste management data, allowing for a detailed
analysis of waste generation patterns and the performance of
different algorithms. The primary objective of this case study is
to develop and validate machine learning models for predicting
MSWG generation in a specific municipality, utilizing advanced
algorithms such as Decision Trees (DT), Random Forest (RF),
XGBoost, and LightGBM. By leveraging comprehensive datasets
that encompass various socio-economic and environmental factors,
the study aims to improve the accuracy of waste generation
predictions. Expected outcomes include enhanced predictive
performance of the developed models, which can significantly
inform waste management strategies, leading to more effective
resource allocation and operational efficiency. Furthermore, the
insights gained from this study are anticipated to contribute to
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the broader discourse on sustainable waste management, providing
municipalities with actionable information to mitigate the
challenges associated with rising waste volumes and to foster a
more environmentally responsible approach to solid waste
management.

This study utilizes 4,343 open datasets to predict MSWG using
machine learning algorithms, specifically XGBoost, RF, LightGBM,
and DT, with a focus on strategic management decision-making.
XGBoost’s ability to model complex nonlinear relationships is
particularly suited for MSWG prediction, as waste generation is
influenced by a multitude of interdependent factors such as
population density, urbanization, and economic activity. Unlike
traditional linear models, XGBoost can capture these intricate
relationships without requiring explicit feature engineering.
Additionally, its robust handling of missing data and outliers
ensures reliable predictions even in datasets with incomplete or
noisy records, which is common in municipal waste data. The
algorithm’s feature importance ranking further allows
policymakers to identify key drivers of waste generation, such as
economic development or population growth, enabling targeted
interventions. XGBoost’s feature importance ranking provides
actionable insights into the factors driving waste generation. For
instance, in our analysis, population density and urbanization index
emerged as the most significant predictors, highlighting the role of
urban expansion in increasing waste volumes. Economic factors,
such as GDP growth, were also identified as key contributors,
reflecting the link between consumption patterns and waste
generation. Furthermore, the model’s ability to incorporate
policy-related variables, such as recycling incentives or waste
disposal regulations, allows for the evaluation of policy impacts
on waste generation trends. This makes XGBoost a powerful tool for
policymakers to design targeted strategies for waste reduction and
resource allocation. The XGBoost algorithm is uniquely suited to
address these gaps due to its ability to model complex, non-linear
relationships inherent in waste generation patterns. Unlike
traditional statistical methods, which often rely on linear
assumptions, XGBoost can capture intricate interactions between
socio-economic, environmental, and demographic factors.
Additionally, its robust handling of missing data ensures that
incomplete datasets, common in municipal waste management,
do not compromise predictive accuracy. Furthermore, XGBoost’s
feature-ranking capability allows policymakers to identify the most
influential factors driving waste generation, enabling targeted
interventions. For example, by prioritizing variables such as
population density or urbanization indices, municipalities can
allocate resources more efficiently, optimize waste collection
schedules, and reduce operational costs. These advantages make
XGBoost not only a powerful predictive tool but also a practical
solution for improving the theory and practice of MSWG
management.

2 Literature review

Machine learning (ML) has been increasingly applied to predict
MSWG across various geographical regions and socioeconomic
contexts. These predictive models use different algorithms such
as Decision Trees (DT), Neural Networks (NN), Random Forest

(RF), Support Vector Machines (SVM), and Gradient Boosting
(GB). Studies highlight the effectiveness of these models in
capturing the relationship between MSWG and key influencing
factors, such as population density, GDP, and climate-related
variables. Some works includes:

Kannangara et al. (2018) aimed to develop predictive models for
MSWG and diversion using demographic and socio-economic
variables across 220 municipalities in Ontario, Canada. They
employed Decision Trees (DT) and Neural Networks (NN), with
the latter showing superior performance by explaining 72% of the
variation in the data. This study concludes that machine learning
techniques are effective for modeling MSWG, providing valuable
tools for regional waste planning through integrated data analysis
(Kannangara et al., 2018).

Oguz-Ekim (2021) predicts MSWG using three machine
learning techniques: backpropagation neural network (BPNN),
support vector regression (SVR), and general regression neural
network. The study evaluates these methods based on gross
domestic product, domestic material consumption, and resource
productivity, concluding that BPNN outperforms SVR for Turkey.
The results emphasize the importance of accurately identifying
input and output variables to improve waste management
strategies in Turkey and similar developing countries (Oguz-
Ekim, 2021).

In a study conducted by Lu et al. (2022), the gradient boost
regression tree (GBRT) algorithm was employed to forecast MSWG.
By leveraging an extensive database comprising data from 130 Chinese
cities, the authors developed a model, referred to as WGMod. Key
factors influencing waste generation were identified as annual
precipitation, population density, and annual mean temperature,
with respective weights of 13%, 11%, and 10%. The model
showcased impressive performance with an R2 value of 0.939,
highlighting its potential to accurately predict waste generation
patterns in cities like Beijing and Shenzhen. The findings of this
study underscore the value of advanced machine learning algorithms
in addressing complex challenges in wastemanagement (Lu et al., 2022).

Zhang et al. (2022) predict municipal solid waste (MSW)
generation in China from 2020 to 2060 using five supervised
machine learning techniques: linear regression (LR), polynomial
regression (PR), support vector machine, random forest, and
extreme gradient boosting (XGBoost). Their results indicate that
population and GDP are critical indicators for MSW prediction,
with XGBoost being the most effective method. They conclude that
without intervention, MSW generation may reach
464–688 megatons by 2060, necessitating policy measures to
mitigate this increase (Zhang et al., 2022).

Singh and Uppaluri (2023) predict MSWG rates using machine
learning models, focusing on demographic and socio-economic
factors in Guwahati. Their study employs decision tree (DT),
random forest (RF), and gradient boosting (GB) algorithms on a
dataset of 1,936 entries. The GB model outperformed others with
RMSE of 3.01, MAE of 2.86, and R2 of 0.99, demonstrating its
effectiveness for solid waste management planning (Singh and
Uppaluri, 2023).

Liu et al. (2024a) predict MSWG in Shanghai using the Long
Short-Term Memory (LSTM) model, incorporating nine
influencing factors. The study reports a mean absolute percentage
error (MAPE) of 5.43%, indicating LSTM’s superior performance
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compared to four other methods. By 2030, MSW generation is
projected to reach 15.43 million tons, producing 370,000 tons of fly
ash, with cadmium, mercury, and copper identified as priority
environmental risks (Liu et al., 2024b).

Qi et al. (2024) predicts the co-gasification of biomass andMSWG
using advanced machine learning (ML) techniques to enhance syngas
quality and mitigate environmental pollution. The study utilized 4 ML
models, constructing a dataset with 18 input and nine output features,
achieving R2 values above 0.9. Histogram-based gradient boosting
regression (HGBR) showed the lowest RMSE for CO prediction,
while gradient boosting regressor (GBR) excelled in H2 prediction,
highlighting key gasification parameters and influential input features
(Qi et al., 2024). Table 1, show the summarized the application of the
ML for prediction of MSWG.

3 Methodology

Neural network models are widely used in the prediction of
key functions for their forecasting (Zhu et al., 2024; He et al.,

2025; Wei et al., 2024). One widely used model for prediction,
modeling and decision making of various issues is the KNN
(Zhu et al., 2015; Zhu, 2024) and fuzzy method (Li et al., 2020a;
Li et al., 2021). In this article for prediction of the MSWG,
which is one of important challenges for the populations and
the humans, use for power machine learning algorithm
Decision Trees (DT), Random Forests (RF), Extreme
Gradient Boosting (XGBoost), and Light Gradient Boosting
Machine (LightGBM).

The workflow (Figure 1) commences with data gathering,
encompassing all relevant power-related information. Subsequently,
data preprocessing is conducted to ensure data quality and
consistency. The dataset is then partitioned into training, testing, and
validation sets. Structures for machine learning algorithms, including
DT, RF, XGBoost, LightGBM, are determined. Following this, the
algorithms are trained and evaluated on the training and validation
sets, respectively. Statistical analysis is employed to compare the
performance of these algorithms. Finally, the algorithm
demonstrating the highest accuracy in predicting MSWG is selected
for final implementation.

TABLE 1 Summary of machine learning applications for predicting MSWG.

Authors (year) Technique Result (statistical result) Best model

Kannangara et al. (2018) DT, NN NN explained 72% of the variation Neural Networks

Oguz-Ekim (2021) BPNN, SVR BPNN outperformed SVR in Turkey BPNN

Lu et al. (2022) GBRT R2 = 0.939 for waste generation in Beijing and Shenzhen GBRT

Zhang et al. (2022) LR, PR, SVM, RF, XGBoost XGBoost predicted future waste generation with high accuracy XGBoost

Singh and Uppaluri (2023) DT, RF, GB GB: RMSE = 3.01, MAE = 2.86, R2 = 0.99 Gradient Boosting

Liu et al. (2024) LSTM MAPE = 5.43%, projected MSWG in Shanghai LSTM

Qi et al. (2024) HGBR, GBR HGBR excelled in CO prediction, GBR in H2 prediction, R
2 > 0.9 HGBR and GBR

FIGURE 1
Flowchart for the predicting MSWG using machine learning algorithms for strategic management determination.
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3.1 Decision tree algorithm

As a prominent and adaptable machine learningmethod, the DT
algorithm excels in addressing both classification and regression
tasks, such as predicting the methane-generating potential of
MSWG (Shi et al., 2025b). The algorithm functions by
recursively splitting the dataset according to input feature values,
ultimately producing a tree-like structure (Liu T. et al., 2024).
Within this structure, each node symbolizes a decision derived
from a specific feature, and the leaf nodes correspond to the final
prediction or output (Charbuty and Abdulazeez, 2021). The tree
comprises a root node, internal decision nodes, and leaf nodes (Sui
et al., 2020; Ghorbani et al., 2023). For regression tasks like MSWG
prediction, the DT algorithm leverages measures such as mean
squared error to discern the most suitable feature for partitioning
the data at each node, thereby optimizing the predictive accuracy.
For more information, you can refer to Rajabi et al. (2023).

3.2 Random forest algorithm

The RF algorithm is an ensemble learning method that utilizes
multiple decision trees to enhance predictive accuracy and mitigate
overfitting issues in both classification and regression tasks (Boateng
et al., 2020). Each tree within the ensemble is trained on a random
subset of the data and contributes to the final prediction through a
voting (classification) or averaging (regression) process (Ghorbani,
2023). The RF model’s advantages include its ability to handle large
datasets, model complex relationships, and identify important
features (Reif et al., 2006). The RF structure involves generating a
collection of decision trees based on random feature and data
subsets, followed by aggregating their predictions to produce a
robust output (Aria et al., 2021). This approach is particularly

useful in predicting complex variables, such as the Mean Shear
Wave Velocity Gradient (MSWG), by considering a variety of
geological and environmental factors (Imran et al., 2024).
Figure 2 show RF structure for the predicting MSWG.

3.3 Extreme gradient boosting algorithm

As a highly effective and precise machine learning technique, the
XGBoost algorithm has gained considerable popularity for various
prediction and classification tasks. This ensemble learning method
utilizes decision trees and boosting to improve predictive
performance by combining multiple weak models into a more
robust one (Sahin, 2020). XGBoost’s structure comprises three
primary components: an iterative tree-building process through
boosting, a regularization term for overfitting control, and an
objective function for optimization. The algorithm constructs
decision trees sequentially, with each subsequent tree aiming to
rectify the errors made by the preceding one, culminating in a robust
model (Elavarasan and Vincent, 2020). XGBoost has demonstrated
successful applications across diverse fields, including geophysics,
where it has been employed to predict subsurface properties. For
further details, refer to (Wu et al., 2022). Figure 3 show XGBoost
structure for the predicting MSWG.

3.4 Light Gradient Boosting
Machine algorithm

Developed for high performance with large datasets and high-
dimensional data, the LightGBM algorithm is an advanced and
efficient gradient boosting framework. LightGBM constructs an
ensemble of decision trees and employs an iterative error-

FIGURE 2
RF structure for the predicting MSWG.
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minimization process through boosting to enhance the model’s
predictive accuracy (Shehadeh et al., 2021). Structurally,
LightGBM is built upon gradient boosting decision trees
(GBDT), distinguishing itself with direct handling of categorical
features and histogram-based learning implementation, resulting in
faster performance compared to other algorithms like XGBoost. Its
wide application across tasks such as classification, regression, and
ranking can be attributed to its notable advantages in speed and
accuracy. For further insights, consult Zhang et al. (2023), where
they explore LightGBM’s applications in predictive modeling and its
improvements over conventional gradient boosting techniques
(Zhang et al., 2023). Figure 4 show XGBoost structure for the
predicting MSWG.

4 Data gathering

The data used in this analysis was collected from the open
dataset available on Kaggle (https://www.kaggle.com/datasets/
shashwatwork/municipal-waste-management-cost-prediction).
The dataset includes various features such as: area (km2),
population, altitude (m.s.l.), a dummy variable indicating whether

the municipality is on an island, a dummy variable indicating coastal
municipalities, population density (people per km2), waste density
(waste per km2), urbanization index (1 = low, 3 = high), percentages
of organic, paper, glass, wood, metal, plastic, RAEE, textile, and
other waste types, as well as the quantities of municipal solid waste
sorted (kg), unsorted (kg), and total municipal solid waste
generation (kg). Statistical information related to these data is
presented in Table 2.

While the dataset includes variables such as population density,
urbanization index, and waste composition, it does not encompass
other critical factors like geographical location, socioeconomic
status, and climatic conditions. These variables were not included
due to the constraints of the open dataset used in this study.
However, the selected variables were chosen based on their
established relevance in prior MSWG studies and their
availability in the dataset.

5 Discussion of results

Statistical metrics play a vital role in artificial intelligence (AI)
research for forecasting essential parameters. As defined in

FIGURE 3
XGBoost structure for the predicting MSWG.
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FIGURE 4
LightGBM structure for the predicting MSWG.

TABLE 2 Data description for the prediction of the MSWG using machine learning algorithms for strategic management determination.

Parameter Min Avg Max Var

Area (km2) 0.119999997 41.04129 1,287.39001 3,226.608159

Population 34 10203.84 2617175 2853722313

Altitude (m.s.l.) 1 311.692 1816 80517.57872

A dummy variable indicating whether the municipality is on an island 0 0.005068 1 0.005042273

A dummy variable indicating coastal municipalities 0 0.168164 1 0.139884881

Population density (people per km2) 892.1847534 404.5182 12122.8262 594011.8893

Waste density (waste per km2) 892.1847534 2.49067 4978556.5 1.28719E+11

Urbanization index (−) 1 2.49067 61.6391221 0.353575708

Organic (%) 0.013712435 22.27513 61.6391221 15.07535247

Paper (%) 1.1456E-05 10.96127 45.2881296 15.07535247

Glass (%) 1.10717E-06 9.406638 39.8363689 13.74314707

Wood (%) 7.9692E-09 4.113458 25.1170017 7.377158873

Metal (%) 5.14018E-06 1.764422 20.6714574 1.822925543

Plastic (%) 1.39456E-05 6.112165 31.6047414 10.62709164

Raee (%) 7.11659E-07 1.233116 17.9535921 0.674312579

Texile (%) 1.08058E-06 0.757019 10.5844719 0.473413799

Other (%) 0.029462644 7.941594 37.1559194 26.50217259

MSM_so msw sorted (kg) 0.27 3,248,581 765,130,099 2.43962E+14

MSW_un msw unsorted kg 6,185 2,042,522 926,757,220 3.1126E+14

Municipal solid waste generation (kg) 19972 5,311,340 1,691,887,319 1.05887E+15
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Equations 1–5, these metrics form the foundation of performance
assessment. In this study, the dataset was randomly sampled and
split into three portions: 70% for training, 15% for testing, and 15%
for validation. This approach ensures that the models are developed,
trained, and evaluated with robustness and dependability.

The Average Relative Error (ARE) evaluates prediction accuracy
by quantifying the average deviation between measured and
predicted values, as shown in Equation 1.

ARE �
∑n

i�1
yMeas.−yPred.

yMeas.
( )

i

n
(1)

The Absolute Average Relative Error (AARE) calculates the
absolute deviation between measured and predicted values,
providing a robust metric for performance analysis, as expressed
in Equation 2.

AARE �
∑n

i�1
yMeas.−yPred.

yMeas.
( )

i

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣
n

(2)

Equation 3 represents the Standard Deviation (STD), a statistical
measure that evaluates the dispersion of prediction errors and
indicates a model’s consistency in generating predictions.

STD �
��������������������������������������������������∑n

i�1
1
n∑n

i�1 yMeas. i − yPred. i( )i( ) − 1
n∑n

i�1 yMeas. i − yPred. i( )mean( )( )2
n − 1

√
(3)

Equation 4 defines the Root Mean Square Error (RMSE), a
statistical metric that quantifies the discrepancies between actual
and predicted values.

RMSE � �����
MSE

√ � 1
n
∑n
i�1

yMeas. i − yPred. i( )2 (4)

Equation 5 introduces the Coefficient of Determination (R2), a
critical metric that measures the proportion of variance in the
dependent variable that can be attributed to the independent
variables within a model.

R2 � 1 − ∑N
i�1 yPred. i − yMeas. i( )2∑N

i�1 yPred. i − ∑n

I�1yMeas. i

n( )2 (5)

The performance outcomes of the four machine learning
algorithms—DT, RF, XGBoost, and LightGBM—are summarized
in Table 3. Notably, XGBoost consistently achieved the lowest errors
across all datasets (train, validation, and test). On the test dataset,
XGBoost demonstrated an R2 value of 0.996 and an RMSE of 2.014,
surpassing the performance of RF (R2 = 0.987, RMSE = 2.452),
LightGBM (R2 = 0.981, RMSE = 3.814), and DT (R2 = 0.978, RMSE =
5.369). Figure 4 further illustrates the strong correlation between
predicted and measured MSWG values for XGBoost, with an R2 of
0.9955, indicating high predictive accuracy. This study investigates
the implementation of four cutting-edge AI algorithms: DT, RF,
XGBoost, and LightGBM. These models were carefully designed and
tested to evaluate their ability to predict MSWG. The performance
outcomes, assessed through statistical metrics, are presented in
Table 3, providing a detailed comparison of the algorithms’
efficiency within the study’s scope.

A distinctive feature of this study is the use of data to forecast
MSWG management strategies. The datasets analyzed encompass
urban areas and various categories of waste.

To achieve its objectives, this study utilizes machine learning
techniques to predict MSWG. The findings highlight the potential of
AI-based approaches in improving MSWG prediction and
management. By utilizing advanced AI methodologies, the study
not only pushes the boundaries of MSWG performance evaluation
but also adds valuable insights to the conversation on sustainable
MSWG management. The results underscore the effectiveness of
machine learning in solving complex, multidimensional challenges
in MSWG management systems.

Table 3 presents the statistical error parameters for predicting
MSWG using four machine learning algorithms: XGBoost, RF,
LightGBM, and DT. The table shows that XGBoost consistently
outperforms the other algorithms across all datasets (train,
validation, and test), achieving the lowest errors in terms of ARE,
AARE, MSE, RMSE, and the highest R2 value. Notably, on the test
dataset, XGBoost achieves an R-squared of 0.996 and an RMSE of
2.014. This indicates a high degree of model fit and low prediction
error, suggesting that XGBoost is the most suitable algorithm for
predicting MSWG in this context.

Our findings demonstrate that XGBoost outperforms other
machine learning algorithms, achieving an R2 value of 0.996 and
an RMSE of 2.014 on the test dataset. These results are consistent
with Zhang et al. (2022), who also identified XGBoost as the most
effective model for MSWG prediction in China. However, our study

TABLE 3 Results of the statistical error parameters for predicting MSWG
using machine learning algorithms for strategic management
determination.

Errors XGBoost RF LightGBM DT

Train ARE −1.695 −2.054 −0.683 −3.408

AARE 3.783 3.348 3.619 5.095

SD 1.140 2.293 3.352 5.783

MSE 2.516 6.167 10.203 31.762

RMSE 1.586 2.483 3.194 5.636

R2 0.998 0.992 0.986 0.981

Validation ARE −1.866 −3.045 0.983 4.116

AARE 3.997 4.187 4.650 6.883

SD 1.955 2.496 3.978 5.983

MSE 3.900 5.780 13.983 27.703

RMSE 1.975 2.404 3.739 5.263

R2 0.996 0.987 0.981 0.978

Test ARE 1.046 1.757 −0.689 −1.533

AARE 3.997 4.187 4.650 6.883

SD 1.994 2.546 4.058 6.103

MSE 4.057 6.013 14.548 28.822

RMSE 2.014 2.452 3.814 5.369

R2 0.996 0.987 0.981 0.978
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advances the field by incorporating a larger and more diverse dataset
(4,343 records) compared to Zhang et al.’s work, which focused on a
narrower geographic scope. Furthermore, unlike Lu et al. (2022), who
used gradient boosting regression trees (GBRT) with an R2 of 0.939, our
implementation of XGBoost demonstrates superior accuracy, likely due
to its advanced regularization techniques and robust handling ofmissing
data. This highlights the potential of XGBoost as a transformative tool
for waste management, particularly in urban settings with complex
socio-economic variables.

Figure 5 presents cross-plots comparing predicted andmeasured
MSWG values for four machine learning algorithms: XGBoost, RF,
LightGBM, and DT. Visual inspection reveals that XGBoost exhibits
the strongest correlation between predicted and measured values,
with the data points closely clustered around the diagonal line. This
is further supported by the R2 value of 0.9955 for XGBoost,
indicating a high degree of model fit and accurate predictions. In
contrast, the other algorithms show greater scatter and less
pronounced linear relationships, suggesting lower predictive
performance. These findings suggest that XGBoost is the most
suitable algorithm for predicting MSWG in this context,
demonstrating superior accuracy and reliability in capturing the
underlying trends and relationships in the data.

Figure 6 presents histograms of the prediction errors for each of
the four machine learning algorithms: XGBoost, RF, LightGBM, and

DT. The histograms reveal that XGBoost exhibits the most
concentrated and symmetric distribution of errors, with a
majority of predictions falling within a narrow range around
zero. This indicates that XGBoost’s predictions are highly
accurate and consistent, with minimal deviations from the actual
MSWG values. In contrast, the other algorithms display broader and
more skewed error distributions, suggesting a higher degree of
variability and less precise predictions. These findings further
corroborate XGBoost’s superior performance in predicting
MSWG compared to the other algorithms.

Figure 7 presents a comparison of ARE and AARE for four
machine learning algorithms: XGBoost, RF, LightGBM, and DT.
The bar chart reveals that XGBoost exhibits the lowest ARE and
AARE values across all algorithms, indicating the most accurate and
consistent predictions. On the test dataset, XGBoost achieves an
ARE of −1.695 and an AARE of 3.783. These values demonstrate a
high level of accuracy and reliability in XGBoost’s predictions,
further solidifying its position as the most suitable algorithm for
predicting MSWG in this study.

Figure 8 presents a radar plot comparing the RMSE and R2

values for four machine learning algorithms: XGBoost, RF,
LightGBM, and DT. The plot reveals that XGBoost occupies the
most favorable position, demonstrating the lowest RMSE and the
highest R2 among all algorithms. On the test dataset, XGBoost

FIGURE 5
Cross-plot for predicting MSWG using machine learning algorithms for strategic management decision-making: (a) XGBoost; (b) RF; (c) LightGBM;
(d) DT.
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FIGURE 6
Histogram plot for predicting MSWG using machine learning algorithms for strategic management decision-making: (a) XGBoost; (b) RF; (c)
LightGBM; (d) DT.

FIGURE 7
Statical error parameters (ARE and AARE) for predicting MSWG
using machine learning algorithms for strategic management
decision-making: (a) XGBoost; (b) RF; (c) LightGBM; (d) DT. FIGURE 8

Statical error parameters (RMSE and R2) for predicting MSWG
using machine learning algorithms for strategic management
decision-making: (a) XGBoost; (b) RF; (c) LightGBM; (d) DT.
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achieves an RMSE of 2.014 and an R2 of 0.996. These values indicate
that XGBoost exhibits both high accuracy (low RMSE) and strong
predictive power (high R2), suggesting that it is the most suitable
algorithm for predicting MSWG in this study.

Figure 9 presents scatter plots illustrating the distribution of
error values for each of the four machine learning algorithms:
XGBoost, RF, LightGBM, and DT. Visual inspection reveals that
XGBoost exhibits the most concentrated and symmetric distribution
of errors, with a majority of predictions clustering around zero. This
indicates that XGBoost’s predictions are highly accurate and
consistent, with minimal deviations from the actual MSWG
values. In contrast, the other algorithms display broader and
more dispersed error distributions, suggesting a higher degree of
variability and less precise predictions. This finding further supports
XGBoost’s superior performance in predicting MSWG compared to
the other algorithms. Specifically, on the test dataset, XGBoost
achieves a mean error of −1.695 and a standard deviation of
3.783, demonstrating a high level of accuracy and reliability in its
predictions.

The findings of this study have significant implications for
municipal waste management. By accurately predicting waste
generation patterns, XGBoost enables municipalities to optimize
waste collection schedules, allocate resources more efficiently, and
reduce operational costs. For instance, the model’s ability to identify
peak waste generation times can help cities deploy collection
vehicles and personnel more effectively, minimizing fuel
consumption and environmental impact. Furthermore, the
feature-ranking capability of XGBoost provides actionable

insights for policymakers, enabling them to target specific factors
(e.g., population density, urbanization indices) that drive waste
generation, thereby fostering more sustainable urban planning.

6 Limitations

This study presents a comprehensive and innovative approach
to predicting MSWG using advanced machine learning algorithms,
including DT, RF, XGBoost, and LightGBM. These methodologies
improve predictive accuracy by leveraging complex nonlinear
modeling, handling missing data, and accommodating diverse
datasets—essential for capturing dynamic waste generation
patterns. The use of open-access datasets with extensive features
such as urbanization indices, waste density, and population
demographics enhances the study’s robustness and
generalizability. Notably, the integration of XGBoost, known for
its interpretability and ability to rank feature importance, adds
novelty by enabling municipalities to identify key determinants of
waste generation. Furthermore, the study highlights the practical
benefits of predictive modeling in optimizing waste collection
schedules and resource allocation, contributing to sustainable
urban planning. By providing actionable insights, the findings
support municipalities in adopting data-driven strategies to
reduce operational costs, minimize environmental impacts, and
improve waste management efficiency. Additionally, the dataset
used in this study, while comprehensive, lacks certain variables
that are critical for MSWG prediction, such as geographical location,

FIGURE 9
Error value for predicting MSWG using machine learning algorithms for strategic management decision-making: (a) XGBoost; (b) RF; (c) LightGBM;
(d) DT.
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socioeconomic status, and climatic conditions. These factors are
known to significantly influence waste generation patterns, and their
absence limits the generalizability of the model. Future studies
should incorporate these variables to enhance the robustness and
applicability of the predictive model.

Despite its innovative approach, the study acknowledges several
limitations that warrant further investigation. A key limitation lies in
the reliance on a single dataset from a specific geographical region,
potentially constraining the applicability of the models to other
urban contexts with differing socio-economic and environmental
conditions. Additionally, the study does not fully integrate real-time
data streams or adaptive learning mechanisms, which could enhance
the responsiveness of the models to dynamic changes in waste
generation patterns. The absence of comparative analysis with
traditional statistical methods also limits the ability to
contextualize the performance of machine learning algorithms in
waste management applications. Future studies could address these
gaps by incorporating multi-regional datasets, real-time data
integration, and advanced deep learning techniques to improve
model adaptability and predictive accuracy. Furthermore,
exploring the socio-cultural influences on waste generation
behaviors and developing hybrid models that combine machine
learning with traditional approaches could provide a more holistic
understanding of waste management challenges. The applicability of
XGBoost extends beyond municipal solid waste generation. Its
ability to handle diverse datasets and model complex
relationships makes it suitable for predicting other types of waste,
such as industrial or hazardous waste, as well as broader
environmental phenomena like air quality or water pollution. For
example, XGBoost could be used to predict industrial waste
generation by incorporating factors such as production levels,
material usage, and regulatory compliance. Similarly, its
scalability and robustness make it ideal for large-scale
environmental predictions, such as forecasting carbon emissions
or energy consumption. This universality underscores the potential
of XGBoost as a versatile tool for addressing a wide range of
environmental challenges.

Future research should focus on incorporating real-time data
and additional variables such as geographical location,
socioeconomic status, and climatic conditions to improve the
accuracy and generalizability of MSWG prediction models.
Comparative studies using datasets from different regions and
time periods would also enhance the reliability of the results and
provide a more comprehensive understanding of waste
generation patterns.

7 Future work and recommendation

The XGBoost model, with its robust predictive power, can be
applied to address a wide range of autonomous vehicles and control
systems, enhancing prediction accuracy in systems like fault-tolerant
automatic steering control for autonomous vehicles and
reinforcement learning for autonomous underwater vehicle
docking control (Li et al., 2020b; Chu et al., 2025). Furthermore,
it can optimize power systems and network control, assisting in
multi-fault analysis and the control of probabilistic Boolean
networks (Zheng et al., 2024; Wu et al., 2020; Wu and Shen,

2017; Wu et al., 2019). In the domain of blockchain and data
security, XGBoost can improve data sharing protocols in
consortium blockchain-enabled vehicular social networks,
ensuring better security and network performance (Cui et al.,
2024). In the area of environmental sustainability and waste
management, the model can enhance the prediction of waste
degradation processes and optimize microbial fermentation for
hydrogen production in municipal wastewater (Yao, 2016; Zhang
et al., 2024). Additionally, XGBoost can support AI and cognitive
systems, offering insights into the future of AI-enabled product
design (Wang Z. et al., 2024). In medical and health applications, it
can improve multi-modality medical image segmentation and assist
in understanding the effects of traditional remedies on chronic
diseases like gastritis and migraine treatment (Zheng et al., 2025;
Tian et al., 2019; Li et al., 2019). Lastly, in engineering and material
science, XGBoost can optimize the fabrication of ultrasonic
biomicroscopy materials and improve cement grout flow pattern
predictions, ensuring better performance in construction and
medical applications (Zhu et al., 2010; Yang et al., 2011). By
leveraging XGBoost, these diverse fields can achieve enhanced
predictive accuracy and operational efficiency.

8 Conclusion

Municipal SolidWaste Generation (MSWG) presents significant
challenges in urban management, requiring accurate prediction
models to inform strategic decision-making. This study utilized
4,343 open datasets to develop machine learning models for MSWG
prediction, incorporating features such as population density,
urbanization index, and waste composition. The innovation of
this study lies in its application of XGBoost, a machine learning
algorithm not previously used for MSWG prediction. The study
highlights XGBoost’s superiority over traditional models like
Decision Trees (DT), Random Forest (RF), and LightGBM due to
its ability to manage large datasets, model complex nonlinear
relationships, and mitigate overfitting through advanced
regularization techniques. Statistical evaluation demonstrated that
XGBoost achieved the highest predictive accuracy among the tested
algorithms, with minimal error rates and robust performance
metrics. These results underscore XGBoost’s capacity to address
dynamic waste generation trends effectively, providing
municipalities with a powerful tool to optimize resource
allocation and reduce operational costs. Additionally, the
algorithm’s feature-ranking capability enhances interpretability,
offering actionable insights for policymakers. XGBoost’s
scalability, flexibility, and robust handling of missing data
position it as a transformative solution for MSWG management.
The practical implications are far-reaching; by accurately modeling
complex relationships, XGBoost enables municipalities to predict
waste generation with high precision, even in dynamic urban
environments. Its ability to handle missing data ensures reliable
predictions, despite common data quality issues in real-world
scenarios. Moreover, the feature-ranking capability allows for the
identification of key drivers, such as population density or
urbanization indices, leading to targeted interventions like
optimizing waste collection routes or implementing recycling
programs in high-density areas. These features not only deepen
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the understanding of waste generation patterns but also lead to
tangible improvements in waste management practices, such as
reducing operational costs, minimizing environmental impacts,
and promoting sustainable urban development. By integrating
XGBoost into waste management systems, municipalities can
adopt proactive measures like optimizing collection schedules
and improving recycling strategies, fostering sustainability and
mitigating environmental effects. This study highlights the
potential of advanced machine learning techniques in addressing
complex urban challenges and underscores the critical role of data-
driven solutions in modern waste management. It not only
demonstrates XGBoost’s superiority over traditional models but
also emphasizes its unique ability to integrate diverse socio-
economic and environmental factors into a single predictive
framework. This sets it apart from existing studies, which
typically focus on limited datasets or specific geographic areas,
enhancing its applicability across various urban contexts.
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