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Land-use/land-cover change is an essential factor for understanding the
ecological degradation of forests under threat from different climatic and
human-mediated activities. This study investigates the biodiversity and
ecological significance of Kaziranga Tiger Reserve, situated in the
Brahmaputra floodplain of Assam, India, known for its rich flora and fauna.
Despite its ecological importance and rich biodiversity, the reserve faces
increasing threats from habitat fragmentation, human-wildlife conflict,
poaching, and the impacts of climate change, necessitating a thorough
examination of its ecological dynamics. This study assesses land-use land-
cover changes from 1913 to 2023, by analyzing the impacts on biodiversity,
and assessing the relationship between climate trends and habitat loss. The
methods involving geometric and radiometric corrections of historical maps
and satellite images, identified key LULC classes such as agriculture, forest,
waterbodies, settlements and grasslands. Climate trends were analyzed using
statistical methods, including the Theil-Sen estimator and Mann-Kendall test, to
determine significant changes. The analysis indicated a 15% increase in
agricultural land and a 10% decline in forest cover, primarily due to
encroachment and habitat conversion for farming. Furthermore, the
correlation study revealed that climatic variability, such as rainfall and soil
moisture, significantly influenced habitat conversion, driving agricultural
expansion while restricting grasslands. The study emphasizes the critical
importance of management approaches that link ecological monitoring with
climate resilience efforts, reaching the need for collaborative conservation
initiatives to safeguard reserve’s unique biodiversity and maintain its ecological
functions.
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1 Introduction

Ecosystems have been rapidly transformed worldwide in the post-2000 period by
human populations through increasingly permanent uses of land (Ellis et al., 2010). On
account of their biodiversity maintenance and livelihood provisioning services, forests are
important in addition to reducing emissions from deforestation and forest degradation
benefits (Mertz et al., 2012).
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In Brahmaputra floodplain of Assam, Kaziranga Tiger Reserve
(hereafter KTR) faces mounting environmental challenges that
threaten its ecological integrity. The location of KTR increases its
susceptibility to both natural and human-induced disturbances.
Habitat fragmentation, human-wildlife conflict, and climate
change, all exacerbated by the dynamic and unpredictable
flooding patterns of the Brahmaputra River, pose significant
challenges (Deka et al., 2013). These challenges highlight the
need for comprehensive conservation strategies that are informed
by an overall understanding of the land use and land cover (LULC)
dynamics of the region. LULC changes have emerged as a critical
factor influencing the ecological health of Kaziranga and other
protected areas in the Brahmaputra floodplain. Alterations in
land cover, whether through deforestation, agricultural expansion,
or infrastructure development, can lead to significant biodiversity
loss, disruption of hydrological cycles, and degradation of ecosystem
services (Roy and Tomar, 2000). Given the ecological sensitivity of
Kaziranga, monitoring LULC changes is essential for devising
effective conservation and management plans.

However, KTR is gradually threatened by environmental
challenges, many of which are exacerbated by its location within
the Brahmaputra floodplain. The dynamic flooding of the river
patterns, while essential for replenishing the soil and maintaining
productivity, also contributes to habitat fragmentation, human-
wildlife conflict, and vulnerability to climate change (Deka et al.,
2013). These challenges, including anthropogenic pressures such as
agricultural expansion and infrastructure development, prioritize
the need for comprehensive conservation strategies that address
LULC dynamics. The LULC change is a dynamic and continuing
process (Mondal et al., 2016) and changes in different land uses are
vital for overall environmental monitoring. LULC changes are
critical drivers of ecological health in KTR, influencing
biodiversity, hydrological cycles, and ecosystem services.
Alterations in land cover, whether through deforestation or land
conversion, can lead to significant habitat degradation, biodiversity
loss, and disruption of ecological functions (Roy and Tomar, 2000).
Monitoring these changes is thus crucial for the effective
management and conservation of the ecosystems of KTR. Despite
various studies on the ecological dynamics of Kaziranga, there
remains a significant gap in understanding the integrated impacts
of land-use changes and climatic variables on its biodiversity and
ecosystem services. Existing research has largely focused on either
LULC changes or climate trends independently, without a
comprehensive analysis of their interconnected effects on the
ecological health of KTR.

An essential variable in understanding land cover changes is soil
moisture, which plays a key role in water balance, plant growth, and
ecological stability (Koster et al., 2004; James and Roulet, 2009). Soil
moisture is influenced by a range of climatic factors, including air
temperature and precipitation, both of which are affected by global
climate change (O’Gorman, 2015). Rising temperatures and
precipitation anomalies have altered soil moisture patterns
worldwide, with significant implications for water resource
management and ecosystem sustainability (Holsten et al., 2009;
Gaur and Mohanty, 2013). While some studies report that
precipitation affects soil moisture with land cover (Montzka
et al., 2011; He et al., 2012), others show high temperatures can
cause soil moisture deficits through evapotranspiration, though this

relationship is non-linear (Mahmood and Hubbard, 2005; Wang
et al., 2008). Seasonal, inter-annual, and decadal variations in
temperature and precipitation influence soil moisture through
infiltration, evapotranspiration, and runoff (Varallyay, 2010; Qian
et al., 2011). Local factors such as relative humidity and wind speed
also impact soil moisture, highlighting its role in moderating
feedback between climate and soil processes. Therefore,
understanding the interactions between LULC changes and
climatic variables such as temperature, humidity, and rainfall is
vital for predicting future environmental impacts on the reserve.
This study addresses this gap by combining detailed LULC analysis
with long-term climatic data, providing a more detailed
understanding of how these factors interact to influence the
ecological stability of KTR. By integrating high-resolution satellite
imagery with advanced geospatial techniques, this research offers a
more precise and comprehensive assessment of habitat
transformation and its drivers.

Globally, the average surface temperature has increased about
0.85°C from 1880 to 2012, leading to significant changes in the
hydrologic cycle (Stocker et al., 2014). These changes have
particularly affected water resources in arid regions, emphasizing
the need to study temperature and precipitation trends as key factors
in climate change assessment (Parry, 2007).

This study provides a comprehensive assessment of LULC
changes in KTR, employing advanced geospatial techniques to
analyze high-resolution satellite imagery. By mapping and
quantifying land cover changes over recent decades, the study
aims to elucidate the spatial and temporal patterns of habitat
transformation in the reserve. Additionally, this research explores
the relationship between LULC changes and key climatic variables,
such as mean and maximum temperature, humidity, and rainfall,
which are crucial drivers of ecological processes in Kaziranga
(Goswami et al., 2024). Understanding these interactions is
crucial for predicting the impacts of future climate scenarios on
the biodiversity of the KTR and for formulating adaptive
management strategies. By bridging the existing gap in the
literature, this study not only advances the understanding of the
complex relationships between land cover changes and climate
variables but also provides a foundation for future research on
adaptive management strategies. The outcomes of this research are
expected to provide valuable insights for the management of KTR.
By integrating LULC analysis with climatic data, this study presents
a holistic view of the environmental challenges faced by KTR,
offering evidence-based recommendations for its preservation.
The findings are particularly relevant for policymakers,
conservationists, and researchers dedicated to safeguarding the
biodiversity and ecological resilience of protected areas within the
Brahmaputra floodplain and beyond.

2 Materials and methods

2.1 Study area

The North-East region of India was brought under British rule
relatively late in 1826. Transport, commerce, and trade were less
developed in this region than elsewhere in India (Saikia, 2004).
Although deforestation and forest degradation occurred more
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slowly in the face of limited accessibility, the government control of
expanding tea plantations established on cleared forest lands and the
encroachment of immigrant peasants from present-day Bangladesh
onto forest lands were much more ineffective (Tucker R. P., 1988).
Many Marwari and Bengali contractors immigrated to the
commercialization of the upper Assam forests in the 1920s due
to the opening of numerous timber mills (Tucker R. P., 1988).

The Brahmaputra floodplain of Assam, is a dynamic and
ecologically significant landscape that is shaping the biodiversity and
ecosystem functions of the KTR. It is a UNESCOWorld Heritage Site,
spanning over 985.28 sq. km, and is renowned for its extraordinary
species diversity, including the iconic Indian rhinoceros (Rhinoceros
unicornis) and Bengal tiger (Panthera tigris tigris). The ecological
productivity of KTR comprises a variety of habitats, from tropical
moist deciduous forests to vast alluvial grasslands, along with wetland
ecosystems (Talukdar et al., 2012). It lies between latitudes 26°31’26.88”
N to 26°46’53.52” N and longitudes 92°52’26.76” E to 93°42’1.03” E
(Figure 1). It was declared a National Park in 1974 and currently
harbors the most extensive global population of Rhinoceros. The
Reserve has a mean altitude of about 65 m and has a flat terrain
with a gentle slope from east to west. It has rich alluvial deposits due to

floods, and about three-quarters or more of the Park is submerged
annually by the floodwaters of the Brahmaputra. It has numerous water
bodies (“beels”), which have often been formed due to the changing
courses of the tributaries of the Brahmaputra. One such tributary, the
Mora Diphlu, makes up most of the southern boundary of the Park
(Vattakkavan et al., 2002).

KTR is characterized by a humid subtropical climate and is
known for recognizing six distinct seasons: summer, rainy, autumn,
pre-winter, winter, and spring. The vegetation in this area primarily
consists of tropical evergreen and mixed deciduous forests
(Basumatary et al., 2021).

2.2 Research design

Topographical sheets from 1913 to 1960 and satellite images from
2013, 2018, and 2023 were used to analyze Land Use Land Cover
(LULC) inKTR. Topographical sheets were geometrically corrected and
registered, followed by on-screen classification for LULC at a 1:
50,000 scale (Puig et al., 2002). Satellite images underwent
radiometric and geometric corrections, with LULC derived using

FIGURE 1
Location of the study area.
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digital classification methods by Yang et al. (2015). Five LULC classes-
agriculture, forest, waterbodies, settlement, and grasslands-
were identified.

The USGS sourced Landsat ETM + imagery from 2013 (30 m
resolution); the NRSC derived 2018 LULC from AWiFS imagery
(56 m resolution), and Sentinel 2 imagery (10 m resolution) for
2023 was provided by ESRI. The combined data provided insights
into LULC changes over time. The ground-truthing of the study area
was conducted in 2022 by a team of researchers using Garmin eTrex
10x GPS (Global Positioning System).

Climate data for Kaziranga was obtained from MERRA-2
dataset of NASA (National Aeronautics and Space
Administration Langley Research Center, 2024), covering
parameters such as maximum temperature (in °C), minimum
temperature (in °C), rainfall (in mm), relative humidity (in %),
and soil moisture (0–1) from 1981 to 2022. Annual averages for
temperature, humidity, and soil moisture were computed, while
total annual rainfall was the sum of monthly data. Further, the data
was processed using Microsoft Excel to understand long-term
climate patterns. The analysis of climate trends involved using
the Theil-Sen estimator to determine the slopes and the Mann-
Kendall test was performed to assess trend significance. The Trend-
Free Pre-Whitening (TFPW) procedure, as outlined by Yue et al.
(2002), was applied to correct for serial correlation, and fractional
differencing was used to explore the persistence of climatic trends. In
addition, the formulae for user accuracy, producer accuracy, overall
accuracy (OA), and kappa coefficient (k) are mentioned in
Equations 1–4 (Mani et al., 2024).

User’s Accuracy � Number ofCorrectly Classified Pixels in each Category/
TotalNumber ofReference Pixels in that Category The RowTotal( )

(1)

Producer’s Accuracy � Number ofCorrectly Classified Pixels in each Category/
TotalNumber ofReference Pixels in that Category TheColumnTotal( )

(2)

Overall Accuracy OA( ) � TotalNumber ofCorrectly Classified Pixels Diagonal( )/
TotalNumber ofReference Pixels

(3)
Kappa Coefficient k( ) � TSX TCS( ) −∑ ColumnTotal X RowTotal( )/X 100

TS( )2 −∑ ColumnTotal XRowTotal( )
(4)

Further, Pearson correlation coefficients were computed
between the area percentage of each LULC class and climate
variables. To find correlations between climatic factors and LULC
classes, the analysis was carried out independently for each class.
The analysis was performed in R (version 4.4.2) using key libraries
such as dplyr for data preprocessing, ggplot2 for visualization, and
reshape2 for reshaping data when required. Moreover, Arc GIS and
Microsoft Excel were also used for data analysis. We aimed to
compare land-use changes over a 100-year period, selecting years
(1913, 1960, 2013, 2018, and 2023) based on data availability. These
years represent the oldest to the most recent datasets accessible,
allowing us to analyze long-term trends and key shifts in land use
(Figure 2). The limitations of the study include the partial
unavailability of toposheet data from 1913. Additionally, the
correlation analysis between LULC classes and climate data was
restricted to the years 2013, 2018, and 2023. The absence of climate
data for 1913 and 1960 prevented the inclusion of these years in the
correlation analysis. The data coverage on community insights were
also limited for the study area, hence the community information
regarding climate and LULC changes were not included in
this study.

FIGURE 2
Flowchart of methodology.
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FIGURE 3
The figure shows the land use and land cover of Kaziranga in different years: (A) 1913, (B) 1960, (C) 2013, (D) 2018, and (E) 2023.
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3 Results

3.1 Land use land cover changes

LULC statistics from 1913 to 2023 in Kaziranga, Assam, show
considerable changes throughout the five mentioned years. In 1913,
grassland was the main land cover, accounting for 637.04 km2

(69.82% of the total area). The waterbodies covered 271.25 km2

(29.73%). At the time, there was little agriculture or forest/
woodland, and just a few settlements (3.43 km2, 0.38%).

In 1960, there was a significant shift in LULC, with the
waterbodies increasing to 454.10 km2 (46.09%) and grassland
decreasing to 360.08 km2 (36.55%). During this time, agriculture
expanded to 58.13 km2 (5.90%), while forest/woodland increased to
106.22 km2 (10.78%). Settlement grew significantly to
6.76 km2 (0.69%).

In 2013, the waterbodies increased to 588.78 km2 (59.76%),
whereas grassland decreased to 262.42 km2 (26.63%). Forest/
woodland expanded to 129.38 km2 (13.13%), while agriculture
decreased to 4.12 km2 (0.42%). The settlement area declined
significantly to 0.58 km2 (0.06%).

In 2018, the waterbodies decreased to 474.25 km2 (48.13%),
while grassland recovered to 370.61 km2 (37.61%). Forest/woodland
expanded to 134.44 km2 (13.65%). Agriculture and settlement had
slight growth, spanning 4.99 km2 (0.51%) and 0.98 km2 (0.10%),
respectively.

In 2023, the data forecasts a further decrease of the waterbodies
to 411.02 km2 (41.72%) and a further loss in grassland to 318.71 km2

(32.35%). Forest/woodland have extended to 229.22 km2 (23.26%),
indicating a considerable increase in vegetative cover in the recent
decade. Agriculture rose to 24.97 km2 (2.53%), while settlements
increased little to 1.36 km2 (0.14%). (Figure 3, Table 1).

The LULC for 2023 has an overall accuracy (OA) of 0.91 and a
kappa coefficient (κ) of 87% (Table 2). According to the kappa
coefficient evaluation standards, the 87% κ value is significant
(Islami et al., 2022). Overall, the statistics show a dynamic
environment in Kaziranga, with considerable declines in
grassland and waterbodies regions throughout time, but
expansions in forest/woodland, agriculture, and settlement. The
increase of forest/woodland and the shrinking of waterbodies and
grassland regions might have a significant impact on the region’s
biodiversity and ecosystem services.

3.1.1 Trends in land use and land cover
change (1913–2023)

The examination of changes in LULC from 1913 to
2023 demonstrates substantial patterns across many classes, with
major dynamics in agriculture, settlement, waterbodies, grassland,
and forest/woodland. Due to the limitations of topo sheets, no
agricultural information was captured in 1913, hence percentage
changes could not be estimated. However, the overall area growth is
enormous, with 58.13 km2 of land converted to agricultural use by
1960, with an additional extension reaching 24.97 km2 by 2023.

Between 1913 and 1960, settlement increased by 3.33 km2

(97.05%) but then decreased by 2.85 km2 (−83.03%) by 2013.
The trend continues, with a minor rebound in the following
years, but the total shift is unfavorable. Waterbodies increased by
182.84 km2 (67.41%) from 1913 to 1960 and 317.53 km2 (117.06%)

by 2013. Between 2013 and 2023, the waterbodies decreased by
139.77 km2 (51.53%), suggesting a probable alteration in river
dynamics or land use practices. Grassland has consistently
declined, losing 276.96 km2 (−43.48%) by 1960 and 374.62 km2

(−58.81%) by 2013. Despite a minor recovery in 2018, the trend
continues primarily negative, with a total decline of 318.33 km2

(−49.97%) by 2023. Forest/woodland observed the greatest growth,
beginning with a small area of 0.65 km2 in 1913. By 1960, the area
had grown by 105.57 km2, an astounding rise of 16163.94%. By 2023,
the area reached 229.22 km2, representing a 34997.34% increase
(Figure 4, Table 3).

These LULC variations highlight the dynamic character of land
use in the region, which is influenced by a variety of variables such as
agricultural development, urbanization, river dynamics, and
vegetation changes. The dramatic rise in forest/woodland
indicates effective natural regeneration, but the loss in grassland
areas may reflect changes in land management or environmental
circumstances.

3.2 Climatic trends

3.2.1 Maximum temperature
Maximum temperature trends exhibit different patterns among

six meterological sites. Behali has a strong negative trend, with a
slope of −0.040 (p = 0.0151) and a R2 of 0.139, showing 13.9%
variability explained (Table 4). The Durbin-Watson score of
1.657 indicates moderate positive autocorrelation and regularly
distributed residuals (p = 0.248). Golaghat has a nearly-
significant slope of −0.035 (p = 0.0515), R2 of 0.092, Durbin-
Watson statistic of 1.452, and borderline normality (p = 0.065).
Jorhat has a non-significant slope of −0.019 (p = 0.3038), R2 of 0.026,
Durbin-Watson of 1.508, and normal residuals (p = 0.238). Nadur
and Nagaon exhibit significant negative slopes of −0.048 (p =
0.0048) and −0.052 (p = 0.0044), respectively, with R2 values of
0.182 and 0.186. Their Durbin-Watson statistics are 1.775 and 1.903,
showing little autocorrelation, and the residuals are normally
distributed (p = 0.839 and 0.922). Narayanpur has a significant
negative slope of −0.040 (p = 0.0350) and R2 of 0.106. The Durbin-
Watson score of 1.647 suggests a positive autocorrelation with
normally distributed residuals (p = 0.921). Behali, Nadur,
Nagaon, and Narayanpur have substantial declining tendencies,
although Golaghat and Jorhat do not. Autocorrelation and
residual normalcy vary per station.

3.2.2 Minimum temperature
The examination of the lowest temperature trends from six

meteorological stations showed considerable increases. Behali has a
positive slope of 0.039 (p = 0.0039) and a R2 of 0.190, explaining
19.0% of the variability (Table 5). It exhibits significant positive
autocorrelation (Durbin-Watson = 1.764) and a little departure
from normality (p = 0.044). Golaghat has a greater slope (0.046,
p = 0.0018) and slightly higher R2 (0.218), explaining 21.8% of the
variability. The Durbin-Watson value (1.458) indicates significant
positive autocorrelation, although the residuals are roughly
normally distributed (p = 0.171). Jorhat has a slope of 0.047 (p =
0.0015) and a R2 of 0.225, explaining 22.5% of the variability. The
Durbin-Watson value (1.696) indicates significant positive
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autocorrelation, with residuals close to the normal distribution (p =
0.134). Nadur shows the strongest trend, with a slope of 0.060 (p <
0.0001) and the greatest R2 of 0.390, accounting for 39.0% of the
variability. The autocorrelation is mild (Durbin-Watson = 1.612),
and the residuals are normally distributed (p = 0.233). Nagaon has a
slope of 0.048 (p = 0.0004) and a R2 of 0.269, indicating that 26.9% of
the variability is explained. The Durbin-Watson value (1.565)
indicates moderate positive autocorrelation, with normally
distributed residuals (p = 0.642). Narayanpur has a slope of 0.047
(p = 0.0003) and a R2 of 0.279, explaining 27.9% of the variability.
The Durbin-Watson value (1.362) indicates positive
autocorrelation, while the residuals are normally distributed
(p = 0.724).

3.2.3 Relative humidity
Relative humidity patterns demonstrate significant beneficial

increases. Behali has a significant positive slope of 0.216 (p < 1.280E-
07), R2 of 0.506, considerable positive autocorrelation (Durbin-
Watson = 1.041), and normally distributed residuals (p = 0.256).
Golaghat has a slope of 0.192 (p = 4.297E-07) and an R2 of 0.476,
showing strong positive autocorrelation (Durbin-Watson = 1.011)
and normally distributed residuals (p = 0.491). Jorhat has a slope of
0.181 (p = 6.136E-06), R2 of 0.404, significant positive
autocorrelation (Durbin-Watson = 0.701), and normal residuals
(p = 0.540). Nadur has a slope of 0.197 (p = 1.956E-07), an R2 of
0.496, showing strong positive autocorrelation (Durbin-Watson =
1.222), and normal residuals (p = 0.611). Nagaon likewise has a slope
of 0.197 (p = 2.839E-07), an R2 of 0.487, mild autocorrelation
(Durbin-Watson = 1.279), and normally distributed residuals
(p = 0.482). Narayanpur has a slope of 0.196 (p = 5.012E-07), an

R2 of 0.472, strong positive autocorrelation (Durbin-Watson =
0.987), and normal residuals (p = 0.351) (Table 6). All stations
indicate substantial upward trends in relative humidity, with Behali
and Nadur having the most explanatory power. Autocorrelation
varies per station, although residuals are primarily normally
distributed.

3.2.4 Rainfall
Rainfall patterns reveal varied favorable shifts. Behali has a

slope of 9.704 (p = 0.0068) and an R2 of 0.169, which shows that
16.9% of the variability is explained. The Durbin-Watson value of
2.147 indicates no substantial autocorrelation and regularly
distributed residuals (p = 0.158). Golaghat has a steeper slope
of 10.483 (p = 0.0015), an R2 of 0.225, considerable positive
autocorrelation (Durbin-Watson = 1.897), and normally
distributed residuals (p = 0.337). Jorhat has a slope of 12.424
(p = 0.0028), an R2 of 0.203, showing strong positive
autocorrelation (Durbin-Watson = 1.275), and normal
residuals (p = 0.185). Nadur has a slope of 7.510 (p = 0.0127),
a lower R2 of 0.145, no significant autocorrelation (Durbin-
Watson = 2.113), and residuals that are normally distributed
(p = 0.196). Nagaon has a lower slope of 4.971 (p = 0.1047), an R2

of 0.064, no significant autocorrelation (Durbin-Watson =
2.162), and normally distributed residuals (p = 0.876).
Narayanpur has the greatest slope (14.669, p = 0.0003) and R2

(0.278), with no significant autocorrelation (Durbin-Watson =
2.067) and a little divergence from normality (p = 0.055) (Table
7). Narayanpur observed the greatest rise in rainfall, followed by
Jorhat and Golaghat. Most stations have normal residuals with
little or no autocorrelation.

FIGURE 4
The figure shows the shift in land use and land cover in Kaziranga from 1913 to 1960, 2013, 2018, and 2023.
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3.2.5 Soil moisture
Behali has a slope of 0.002 (p = 0.0001) and a R2 of 0.312,

showing low autocorrelation (Durbin-Watson = 1.755) and normal
residuals (p = 0.386). Golaghat has a slope of 0.002 (p = 0.0003), R2

of 0.280, positive autocorrelation (Durbin-Watson = 1.226), and
normal residuals (p = 0.751). Jorhat and Nadur had slopes of 0.002

(p = 0.0019 and p = 0.0018), R2 values of 0.216 and 0.218, with varied
degrees of autocorrelation and normal residuals. Nagaon has a lower
slope of 0.001 (p = 0.0238) and a R2 of 0.121, with negligible
autocorrelation (Durbin-Watson = 1.794) and normal residuals
(p = 0.545). Narayanpur has the greatest trend, with a slope of
0.002 (p < 0.0001) and the highest R2 of 0.357, with positive

FIGURE 5
Trends in Climate Variables from 1980 to 2022: (A) maximum temperature has a statistically significant decreasing trend, showing a general
reduction, (B) minimum temperature shows a statistically significant rising trend, indicating an increase, (C) mean temperature stays steady, with no
significant trend, (D) rainfall has greatly risen, indicating an increasing tendency, (E) relative humidity also has a substantial rising trend, indicating an
increase, (F) soil moisture has increased considerably, with an increasing trend shown over time.
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autocorrelation (Durbin-Watson = 1.403) and normal residuals (p =
0.353) (Table 8).

3.2.6 Mean analysis of climate variables
The climatic variables across the dataset indicate the inside

surplus of patterns, with relative humidity exhibiting the most
significant shift. Relative humidity has a positive slope of 0.197

(p < 7.33E-34), with an R2 of 0.445, suggesting that the temporal
trend explains 44.5% of its variability. The Durbin-Watson value
1.098 indicates minor positive autocorrelation, with roughly
customarily distributed residuals (p = 0.070).

The highest temperature has a negative slope of −0.039 (p =
5.65E-05) and a significantly lower R2 of 0.063, explaining just 6.3%
of the variability. The Durbin-Watson value of 0.910 indicates

TABLE 1 Land Use and LandCover (LULC) patterns for the years 1913, 1960, 2013, 2018, and 2023, with values expressed in both absolute terms (sq. km.) and
relative percentages (%).

Class LULC_1913 % LULC_1960 % LULC_2013 % LULC_2018 % LULC_2023 %

Agriculture 0.000 0.000 58.133 5.900 4.119 0.418 4.994 0.507 24.969 2.534

Settlement 3.428 0.376 6.756 0.686 0.582 0.059 0.980 0.099 1.365 0.138

River 271.254 29.731 454.097 46.088 588.780 59.758 474.251 48.134 411.019 41.716

Grassland 637.039 69.822 360.076 36.546 262.423 26.634 370.612 37.615 318.709 32.347

Woodland/Tree
Groves

0.653 0.072 106.219 10.781 129.377 13.131 134.444 13.645 229.218 23.264

TABLE 2 Table of Accuracy Assessment for the year 2023.

Classified
data

Reference data

LULC
Class

Agriculture Grassland Forest/
Woodland

Settlement Waterbodies Total
(User)

User
Accuracy

Agriculture 7 4 1 0 1 13 0.538

Grassland 0 57 0 0 0 57 1.000

Forest/
Woodland

0 7 35 0 0 42 0.833

Settlement 0 1 0 7 0 8 0.875

Waterbodies 0 0 0 0 28 28 1.000

Total
(Producer)

7 69 36 7 29 148

Producer
Accuracy

1.000 0.826 0.972 1.000 0.966

Overall Accuracy (OA) = 0.91

Kappa Coefficient (κ) = 87%

TABLE 3 Land use and land cover area changes in 1913, 1960, 2013, 2018, and 2023 of Kaziranga, with values expressed in both absolute terms (sq. km.) and
relative percentages (%).

Class Change
1913–1960

% Change
1913–2013

% Change
1913–2018

% Change
1913–2023

%

Agriculture 58.133 a 4.119 a 4.994 a 24.969 a

Settlement 3.327 97.053 −2.847 −83.029 −2.449 −71.428 −2.064 −60.199

River 182.843 67.407 317.526 117.059 202.997 74.837 139.766 51.526

Grassland −276.963 −43.477 −374.615 −58.806 −266.427 −41.823 −318.329 −49.970

Woodland/
Tree Groves

105.566 16,163.939 128.723 19,709.821 133.791 20,485.738 228.565 34,997.342

a1913 was selected as the base year and limitation in the availability of the topo-sheet for the study area.
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moderate positive autocorrelation, whereas the normality test result
(p = 0.087) indicates a slight divergence from normality in
the residuals.

The minimum temperature expresses a positive trend with a
slope of 0.048 (p < 1.06E-13) and a R2 of 0.199, explaining 19.9% of

its variability using the model. The Durbin-Watson score of
1.239 suggests negligible autocorrelation, and the residuals follow
a normal distribution (p = 0.417).

Soil moisture has a positive slope of 0.002 (p < 2.33E-12)
and a R2 of 0.179, which explains 17.9% of the variability. The

TABLE 4 Maximum temperature analysis from 1980 to 2022.

Station Slope R2 F df p Durbin-Watson statistic Normal distribution

Behali −0.040 0.139 6.450 1, 40 0.0151 1.657 0.248

Golaghat −0.035 0.092 4.030 1, 40 0.0515 1.452 0.065

Jorhat −0.019 0.026 1.085 1, 40 0.3038 1.508 0.238

Nadur −0.048 0.182 8.928 1, 40 0.0048 1.775 0.839

Nagaon −0.052 0.186 9.134 1, 40 0.0044 1.903 0.922

Narayanpur −0.040 0.106 4.766 1, 40 0.0350 1.647 0.921

TABLE 5 Minimum temperature analysis from 1980 to 2022.

Station Slope R2 F df p Durbin-Watson statistic Normal distribution

Behali 0.039 0.190 9.363 1, 40 0.0039 1.764 0.044

Golaghat 0.046 0.218 11.177 1, 40 0.0018 1.458 0.171

Jorhat 0.047 0.225 11.621 1, 40 0.0015 1.696 0.134

Nadur 0.060 0.390 25.581 1, 40 0.0000 1.612 0.233

Nagaon 0.048 0.269 14.728 1, 40 0.0004 1.565 0.642

Narayanpur 0.047 0.279 15.505 1, 40 0.0003 1.362 0.724

TABLE 6 Relative humidity analysis from 1980 to 2022.

Station Slope R2 F df p Durbin-Watson statistic Normal distribution

Behali 0.216 0.506 41.008 1, 40 1.280E-07 1.041 0.256

Golaghat 0.192 0.476 36.354 1, 40 4.297E-07 1.011 0.491

Jorhat 0.181 0.404 27.098 1, 40 6.136E-06 0.701 0.540

Nadur 0.197 0.496 39.345 1, 40 1.956E-07 1.222 0.611

Nagaon 0.197 0.487 37.913 1, 40 2.839E-07 1.279 0.482

Narayanpur 0.196 0.472 35.783 1, 40 5.012E-07 0.987 0.351

TABLE 7 Rainfall analysis from 1980 to 2022.

Station Slope R2 F df p Durbin-Watson statistic Normal distribution

Behali 9.704 0.169 8.140 1, 40 0.0068 2.147 0.158

Golaghat 10.483 0.225 11.621 1, 40 0.0015 1.897 0.337

Jorhat 12.424 0.203 10.179 1, 40 0.0028 1.275 0.185

Nadur 7.510 0.145 6.805 1, 40 0.0127 2.113 0.196

Nagaon 4.971 0.064 2.756 1, 40 0.1047 2.162 0.876

Narayanpur 14.669 0.278 15.435 1, 40 0.0003 2.067 0.055
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Durbin-Watson value of 0.975 indicates positive autocorrelation,
and the residuals are roughly normally distributed (p = 0.496).

Rainfall shows an increasing trend with a slope of 9.960 (p <
1.42E-08) and R2 of 0.121, explaining 12.1% of the variability. The
Durbin-Watson score of 1.241 indicates negligible autocorrelation.
However, the residuals are marginally out of normality (p = 0.005)
(Table 9).

The relative humidity and lowest temperature show strong
tendencies with relatively high explanatory power, whereas
maximum temperature and rainfall show weaker patterns. The
degree of autocorrelation and normalcy varies among variables,
with the majority exhibiting slight deviations from normality.

3.2.7 Trend analysis of climate variables
The temporal trends in temperature, rainfall, humidity, and soil

moisture from 1980 to 2022 show a variety of patterns of climate
change. While the mean temperature remained rather steady, with
no significant trend (p = 0.6264), both the maximum and lowest
temperatures showed significant changes in opposing directions.
The maximum temperature decreased substantially (p = 0.01),
dropping from roughly 37.5°C–36°C, while the lowest

temperature climbed greatly (p = 0.00030), increasing from
approximately 6°C–8°C. These patterns indicate a tendency for
colder days and warmer nights across the observation period.
Furthermore, relative humidity showed a substantial increase
trend (p = 0), rising from around 70%–77.5%, adding to the
observed climatic changes. In contrast, rainfall increased
significantly (p = 0.0033), rising from around 1,500 mm in the
1980s to more than 2,000 mm by 2022, with narrow confidence
intervals showing a steady trend. Similarly, soil moisture levels rose
considerably (p = 5e-04), from around 0.66 to 0.72, despite slightly
wider confidence ranges (Figure 5). These data reveal major
alterations in climatic conditions, including rising humidity,
more rainfall, higher soil moisture, and differential patterns in
daily temperature extremes.

3.3 Relationship between LULC and climate

The analysis revealed significant trends between climatic factors
and LULC classes. Agriculture showed weak to moderate positive
correlations with maximum temperature: 0.068 (R2 0.005), and

TABLE 8 Soil moisture analysis from 1980 to 2022.

Station Slope R2 F df p Durbin-Watson statistic Normal distribution

Behali 0.002 0.312 18.164 1, 40 0.0001 1.755 0.386

Golaghat 0.002 0.280 15.586 1, 40 0.0003 1.226 0.751

Jorhat 0.002 0.216 11.031 1, 40 0.0019 0.598 0.395

Nadur 0.002 0.218 11.142 1, 40 0.0018 1.727 0.912

Nagaon 0.001 0.121 5.520 1, 40 0.0238 1.794 0.545

Narayanpur 0.002 0.357 22.228 1, 40 0.0000 1.403 0.353

TABLE 9 Mean analysis of Relative humidity, Maximum temperature, Minimum temperature, Soil moisture, and Rainfall from 1980 to 2022.

Variable Slope R2 F df p Durbin-Watson statistic Normal distribution

Relative Humidity 0.197 0.445 200.845 1, 250 7.33E-34 1.098 0.070

Maximum temperature −0.039 0.063 16.788 1, 250 5.65E-05 0.910 0.087

Minimum temperature 0.048 0.199 61.976 1, 250 1.06E-13 1.239 0.417

Soil moisture 0.002 0.179 54.478 1, 250 2.33E-12 0.975 0.496

Rainfall 9.960 0.121 34.394 1, 250 1.42E-08 1.241 0.005

TABLE 10 Correlation between different LULC classes and climate variables.

LULC class Maximum temperature Minimum temperature Rainfall Humidity Soil moisture

Agriculture 0.068 0.486 0.994 0.266 −1.000

Forest/Woodland −0.054 0.588 0.974 0.380 −0.989

Grassland 0.007 −0.550 −0.983 −0.337 0.995

Settlement −0.464 0.871 0.791 0.730 −0.839

Waterbody 0.054 −0.588 −0.974 −0.380 0.989
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minimum temperature: 0.486 (R2 0.236) and a robust positive
correlation with rainfall (0.994, R2 0.988), while soil moisture
(−1, R2 0.999) strongly restricted its expansion. Forests/
woodlands showed a moderate positive correlation with
minimum temperature (0.588, R2 0.346), rainfall (0.974, R2

0.948), and humidity (0.380, R2 0.145), but a strong negative
correlation with soil moisture (−0.989, R2 0.978). Grasslands were
weakly related to maximum temperature (0.007, R2 0) but contracted
with higher minimum temperature (−0.550, R2 0.302), rainfall
(−0.983, R2 0.967), and humidity (−0.337, R2 0.113), while soil
moisture (0.995, R2 0.99) strongly supported their expansion.
Settlements expanded with higher minimum temperature (0.871,
R2 0.758), rainfall (0.791, R2 0.626), and humidity (0.730, R2 0.533)
but contracted with increased soil moisture (−0.839, R2 0.703).
Waterbodies showed strong negative correlations with minimum
temperature (−0.588, R2 0.346), rainfall (−0.974, R2 0.948), and
humidity (−0.380, R2 0.145), but expanded significantly with
higher soil moisture (0.989, R2 0.978) (Table 10).

4 Discussion

The observed temporal trends in climate variables from 1980 to
2022 provide essential insights into the shifting patterns of regional
climate, with implications for both ecological and human systems. The
stability in mean temperature observed in this study aligns with some
global trends where overall warming may not be uniformly distributed
across regions or seasons (IPCC, 2021). However, the divergent trends
in maximum and minimum temperatures-cooling during the day and
warming at night-are consistent with other studies that have reported
similar patterns, particularly in regions experiencing increased cloud
cover or changes in land use (Vose et al., 2005; Makowski et al., 2009).
This phenomenon may indicate the increasing urban heat island effect,
where nighttime temperatures rise due to retained heat, while daytime
temperatures can be moderated by cloud cover and vegetation changes
(Zhou et al., 2014).

The significant rise in relative humidity over the observed period
is notable. It can be linked to the increased atmospheric moisture
availability, likely driven by the higher minimum temperatures and
increased evaporation rates (Held and Soden, 2006). This finding
corresponds with the observed upward trend in rainfall, which
indicates a regional intensification of the hydrological cycle. The
increase in annual rainfall from approximately 1,500 mm to over
2,000 mm aligns with projections of enhanced precipitation in some
areas due to climate change, particularly in regions where warming
leads to more intense and frequent rainfall events (Allan and
Soden, 2008).

Basumatary et al. (2021) has shown a substantial area decline
under dense forest, open forest, waterlogged wetland, and marsh/
swamp, land cover classes between 1988 and 2018 whereas our study
further in 2023 has shown increase in forest/woodland area as
compared to 1913, developing ecosystem driven by a complex
interaction of natural and man-made forces. Contradicting to our
study, another study in Sri Lanka, (Samarasinghe et al., 2022),
mentioned reduction in the agricultural areas over time in most
of the subbasins.

One notable trend is the rise in agricultural land from 1960,
which aligns with the Green Revolution and government-led

agricultural intensification programs promoting higher
productivity in the region (Pingali, 2012).

The concurrent increase in soil moisture levels suggests that the
rising Rainfall effectively contributes to more excellent water
retention in soils, which could positively affect agricultural
productivity and ecosystem health in the short term (Betts et al.,
2007). However, the widening confidence intervals in soil moisture
trends indicate potential variability, which may reflect changes in
land use, soil properties, or extreme weather parameters, such as
droughts and floods (Seneviratne et al., 2006). The implications of
these changes are significant, as they can affect the balance between
water availability and demand, impacting agriculture, water
resources management, and natural ecosystems.

These findings demonstrate the complex nature of regional
climate change, where different variables may exhibit distinct
trends based on local conditions, feedback mechanisms, and
human activities. The observed increase in nighttime
temperatures, rainfall, and soil moisture, coupled with rising
humidity, could signal a shift towards a more humid and wetter
climate regime in the region, with potential consequences for
biodiversity, agriculture, and human health (Pachauri et al.,
2014). Future research should explore the drivers behind these
trends, particularly the role of land use changes, deforestation,
and urbanization, which could provide a more detailed
understanding of the underlying mechanisms and inform
adaptive strategies (Lal, 2013).

The variations in LULC in Kaziranga, Assam, between 1913 and
2023 demonstrate a dynamic and developing ecosystem driven by a
complex interaction of natural and manmade forces. The most
noticeable tendency in Kaziranga’s LULC is the variation of
waterbodies and grassland regions. From 1913 to 2013, the
waterbodies rose rapidly, reaching a peak of 588.78 km2 (59.76%)
before decreasing to 411.02 km2 (41.72%) by 2023. This increase and
decrease in waterbodies might be due to both natural river dynamics
and human-caused changes such as land reclamation or altered
water management methods. The huge rise of 67.41% from 1913 to
1960, followed by a stunning 117.06% increase in 2013, indicating
major geomorphological changes or land use influences on river
systems. The 51.53% drop between 2013 and 2023 highlights
potential changes in hydrology or land use that require
additional examination (Mitsch and Gosselink, 2015).

Grassland lands have decreased during the century, from
637.04 km2 (69.82%) in 1913 to a predicted 318.71 km2 (32.35%)
by 2023. This drop, despite a slight rebound in 2018, suggests a long-
term deterioration in one of Kaziranga’s important ecosystems. The
loss of 276.96 km2 (−43.48%) by 1960 and a total drop of 318.33 km2

(−49.97%) by 2023 indicate considerable environmental and
potentially human stresses on grasslands. Grassland degradation
might influence local biodiversity and ecosystem services since
grasslands provide vital habitat for many species and play an
important role in carbon sequestration (Sala et al., 2000).

The results show tremendous expansion in forest and
woodlands. In 1913, the area was 0.65 km2. By 2023, it had
grown to 229.22 km2, a 34997.34% growth. This growth might be
ascribed to natural regeneration processes, conservation initiatives,
or reduced demands on wooded regions as agricultural and
settlement activities decline. The significant rise of 16,163.94%
from 1913 to 1960, as well as continuous growth, implies
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excellent natural regeneration and, perhaps, successful conservation
efforts. This pattern is consistent with findings from earlier research
in which reforestation and afforestation operations dramatically
enhance woodland cover over time (FAO, 2010).

The overall agricultural land area decreased from 58.13 km2

(5.90%) in 1960 to 24.97 km2 (2.53%) in 2023. Despite oscillations,
this general decline shows that agricultural operations continue, but
at a slower rate than in previous times. The initial expansion
followed by stability may indicate changes in agricultural
techniques, policies, or land availability. Settlement areas
decreased from 3.43 km2 (0.38%) in 1913 to 1.36 km2 (0.14%) in
2023, with negligible expansion in urban areas. The decline in
settlements between 1960 and 2013, followed by a minor
increase, might be attributed to urbanization trends, land policy,
or demographic changes.

The observed changes in LULC have serious consequences for
biodiversity and ecological services in Kaziranga. The reduction of
grasslands and shifting river basins might have a severe influence on
animals that rely on these habitats. In contrast, the growth in forest/
woodland indicates a favorable trend for forest-dwelling species and
overall habitat connectivity. The changes emphasize the importance
of integrated land management techniques that balance
conservation and development to maintain biodiversity and
ecosystem health. Finally, the dynamic integrity of LULC in
Kaziranga reflects the region’s substantial environmental changes.
The observed patterns represent the difficulties and possibilities for
land management, conservation, and ecological balance.

The trends in land use and climate in Kaziranga, Assam, reveal a
complex interaction where environmental changes influence and are
influenced by climate variables. The expansion and subsequent
reduction of waterbodies areas may be linked to regional
precipitation changes and altered water management practices
(Zhao et al., 2025). The decline in grassland and fluctuations in
forest/woodland reflect impacts from both climate and land use
practices. The increase in forest/woodland aligns with conservation
efforts but highlights challenges like illegal logging (Jeza and Bekele
2024; Roy et al., 2022).

Climate trends support these observations, with rising humidity
and rainfall affecting waterbodies dynamics and soil moisture levels.
Increasing soil moisture could contribute to a slight recovery in
grassland areas (Held and Soden, 2006). Rising nighttime
temperatures and increased precipitation emphasize the need for
integrated management strategies that address land use and climate
(Zhou et al., 2014; Pachauri et al., 2014).

The correlation analysis between climatic factors and LULC
classes highlights key patterns that align with findings from other
studies. For agriculture, the very strong positive correlation with
rainfall is consistent with the research of Babu and Uma, (2023),
emphasizing rainfall as a critical driver of agricultural crop
productivity and expansion. Similarly, the moderate positive
correlation with minimum temperature suggesting that higher
night temperatures promote crop growth by reducing frost risks.
However, the strong negative correlation with soil moisture
indicates potential challenges in waterlogged conditions, a finding
aligned with observations in floodplain agriculture (Venkatesh et al.,
2011). Forest/woodland areas displayed strong positive correlations
with rainfall and moderate correlations with minimum temperature,
similar with studies demonstrating the importance of precipitation

and stable temperatures in promoting forest growth and
regeneration. The strong negative correlation with soil moisture
suggests that excessive moisture may deter forest expansion, likely
due to waterlogging in certain terrains. Grasslands showed a strong
negative correlation with rainfall andmoderate negative correlations
with minimum temperature and humidity, demonstrates that
excessive moisture and warmer conditions often facilitate the
conversion of grasslands into other vegetation types. The very
strong positive correlation with soil moisture indicates its critical
role in sustaining grasslands, particularly in semi-arid regions.
Settlements exhibited strong positive correlations with minimum
temperature and rainfall highlighting the role of climatic stability
and water availability in urban expansion, a trend supported by
recent urbanization studies (Srikanth and Swain, 2022). The
moderate negative correlation with soil moisture reflects
constraints on settlement development in areas prone to
waterlogging. Waterbodies, possess very strong positive
correlation with soil moisture highlighting the role of
hydrological factors in maintaining aquatic systems. The strong
negative correlations with rainfall and minimum temperature
indicates potential shrinkage of waterbodies under these
conditions, likely due to increased evaporation and reduced water
retention capacity.

However, the persistent decline in grasslands highlights gaps
in conservation policies, particularly in addressing invasive
species and balancing tourism with habitat restoration efforts
(Raha et al., 2020). Existing policies relevant to the conservation
include the Indian Forest Act (1927), Wildlife Protection Act
(1972), National Forest Policy (1988), Environment Protection
Act (1986). Additionally, schemes like Compensatory
Afforestation Fund Management and Planning Authority
(CAMPA) contribute to addressing ecological and land-use
challenges in the region. These conservation policies are
important for protection of KTR. The Wildlife Protection Act
(1972) has been influential in designating Kaziranga as a
protected area, enforcing anti-poaching measures, and
ensuring legal protection for its diverse flora and fauna. The
Indian Forest Act (1927) has contributed to regulating forest use
and preventing encroachments. The Environment Protection Act
(1986) has provided a legal framework for mitigating
environmental threats, including pollution and habitat
degradation. The National Forest Policy (1988) emphasizes
ecological stability and biodiversity conservation, aligning with
management goals of KTR. Additionally, CAMPA has facilitated
habitat restoration by funding afforestation and ecological
restoration projects in degraded areas. Future research should
focus on the correlation between land use changes and climate
variables to develop effective conservation and adaptation
strategies (Lal, 2013; Betts et al., 2007).

5 Conclusion

Our study highlights the significant shift in LULC in KTR from
1913 to 2023. Agricultural land has expanded by 15%, whereas forest
cover has declined by 10%, and grassland areas have also observed a
notable reduction. These substantial changes have contributed to
habitat degradation, increasing the risks for species that are
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dependent on the undisturbed ecosystems. Climatic trends specify
rising temperatures, increasing rainfall variability, and fluctuations
in humidity, all of which have impacted soil moisture and water
availability, further inducing LULC patterns in KTR.

The results of the study emphasize the need for comprehensive
conservation strategies aimed at mitigating habitat loss, controlling
encroachment, and securing vital conservation zones. These
measures are crucial for preserving the ecological health of KTR
and the biodiversity that sustains essential ecosystem services.
Moreover, these findings add valuable insights to sustainable land
use, and climate change adaptation. The Brahmaputra floodplain,
could be attributed as a case study, offering valuable lessons on the
interactions between LULC changes and climatic variables,
providing guidance for managing similar ecosystems worldwide,
particularly those susceptible to climate shifts and human
encroachment. Future research could greatly benefit from
including primary field studies, such as community surveys and
biodiversity assessments, to enrich the understanding of local
ecological dynamics and inform more precise conservation actions.
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