
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Environ. Sci.
Sec. Environmental Economics and Management
Volume 13 - 2025 | doi: 10.3389/fenvs.2025.1549623
This article is part of the Research TopicEnvironmental Resilience and Sustainable Agri-food System ManagementView all 15 articles
The final, formatted version of the article will be published soon.
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
The advancement of the digital economy is vital for decreasing agricultural carbon emissions and fostering high-quality agricultural development. Using panel data from 31 Chinese provinces between 2000 and 2021, this paper employs a dual machine learning model for causal inference to analyze the impact of digital financial inclusion on agricultural carbon emissions intensity, its underlying mechanisms, and the characteristics of heterogeneity. The study finds that digital inclusive finance significantly reduces agricultural carbon intensity through two main channels: enhancing scientific and technological innovation and narrowing the urban-rural income gap. Additionally, the expansion of arable land management and the acceleration of economic structural transformation positively moderate these effects. These conclusions remain robust after a series of robustness tests. Further combining factors such as resource endowment, geographic location, economic concentration, and food production areas in the heterogeneity test, the study found that regional differences significantly influence the effect of financial inclusion on agricultural carbon intensity. Therefore, it is essential to enhance the development of inclusive finance, break down regional barriers to promote synergistic development, actively support economic transformation and large-scale operations, strengthen scientific and technological innovation, and narrow the urban-rural income gap to support China's agricultural green transformation.
Keywords: Digital financial inclusion, Double machine learning (DML), Carbon emission intensity (CEI), Impact mechanisms, green transformation
Received: 21 Dec 2024; Accepted: 17 Apr 2025.
Copyright: © 2025 Zheng, Chen and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Xizhao Wang, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, Beijing Municipality, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Supplementary Material
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.