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Monitoring water quality is crucial for sustainable water management and
meeting the United Nations Sustainable Development Goals. Urbanisation,
agricultural practices, industrial activities, and population growth increase the
presence of biological, chemical and physical properties in water bodies.
Traditional water quality monitoring methods (laboratory and in situ
measurements) are limited spatially, temporarily and are costly. Satellite
remote sensing has been shown to provide a systematic, cost-effective, and
near-real-time alternative. This paper analysed 142 peer-reviewed articles
published between 2002 and 2024 from Web of Science and Scopus
databases. The final included articles in the review were achieved through the
PRISMA flowchart. The review revealed that low-resolution sensors with long-
term records, such as MODIS, were commonly applied to study large lakes. In
contrast, sensors such as Landsat-8 and Sentinel-2 were applied for both lakes
and dams. These sensors contain necessary spectral regions formonitoringwater
quality, where it was shown that the 500–600 nm region is critical for chlorophyll
assessment, while the 640–670 nm region is used for turbidity. The Secchi disk
depth and the total suspended solids were assessed using regions 860–1040 nm
and 1570–1650 nm. Water quality research also focused on countries such as
China, India, Brazil, and South Africa, with an emphasis on optically active
parameters. There is, however, limited research on non-optically active
parameters, such as nitrogen, phosphorus, and temperature, especially in
small inland water bodies. Therefore, there is a need for more research in
these areas, using direct and indirect methods of water quality parameter
estimation with the integration of machine learning algorithms.
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1 Introduction

The global management and protection of water resources is of critical importance due
to pressures from population growth, industrial activities, agricultural practices, and climate
change (Chathuranika et al., 2023). Sustainable Development Goal (SDG) 6 of the United
Nations (UN) prioritises the sustainable management and accessibility of water and
sanitation for all, reflecting a worldwide commitment to tackling water-related
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challenges by 2030. Insufficient sanitation and polluted water pose
serious health risks, promoting the spread of diseases like cholera,
hepatitis, and typhoid (Zainurin et al., 2022). Therefore,
environmental and water quality monitoring of rivers and other
water bodies is essential for their sustainable use (Yang and Jin,
2023). Water quality monitoring focuses on the biological, chemical
and physical parameters of water and has been completed through
laboratory tests and in situ testing (Ahmed et al., 2020). In
laboratory tests, water samples are collected at key locations and
examined in laboratories to determine the concentration of
chemical, physical and biological parameters of water that
indicate their quality for a particular purpose (Jaji et al., 2007).
In-situ testing involves measuring water quality parameters directly
from the water body, leading to a real-time understanding of water
quality while preventing potential contamination that may be
incurred in transit to the laboratory (Liber et al., 2016).

However, these approaches have limitations in terms of spatial
coverage, temporal resolution, cost-efficiency, precision and
accuracy (of sampled in situ data) (Ndou, 2023; Zainurin et al.,
2022; Adjovu et al., 2023). The availability of multispectral satellite
sensors with high temporal and spatial resolution presents an
opportunity to monitor water quality regularly and over large
geographic areas using spectral sensors onboard satellites (Pizani
et al., 2020; Dube et al., 2015). Before the advancements in remote
sensing, various studies (Park and Latrubesse, 2014; Shi et al., 2018;
Xiong et al., 2019) have used lower-resolution satellite sensors such
as the Moderate Resolution Imaging Spectroradiometer (MODIS)
multi-spectral instrument to monitor the larger water bodies such as
lakes. For instance, MODIS, with its spatial resolution of 250m -
500 m–1,000 m and temporal resolution of 1–2 days has been used
by Shi et al. (2018) who combined long-term MODIS-Aqua satellite
data and in situ measurements to track changes in water clarity
(Secchi disk depth) in Lake Taihu, a shallow, turbid lake, from
1993 to 2015. The findings revealed a decline in water quality linked
to increased cyanobacterial blooms driven by eutrophication and
decreasing wind speeds. This study demonstrates that low-
resolution satellite sensors such as MODIS have had success in
regular water quality monitoring especially because of their higher
temporal resolutions, however, they cannot provide enough detail to
accurately monitor the quality of small inland surface waters due to
limitations in spatial resolution (Olmanson et al., 2011).

High-resolution multispectral satellite sensors, such as Sentinel-
2, address these limitations by providing finer spatial detail and
higher temporal resolution, enabling more precise and regular water
quality monitoring (Yang et al., 2022). The Sentinel-2 MSI satellite
constellation has a spatial resolution of 10 m–20 m - 60 m, and a
temporal resolution of 5 days for each of the 2 sensors. It has been
used by Kowe et al. (2023) for monitoring spatial and temporal
variations in water quality parameters, such as total nitrogen,
turbidity, chlorophyll-a, and total suspended solids, in Lake
Manyame, Zimbabwe, from 2017 to 2022. The study revealed
Sentinel-2 effectiveness in water quality monitoring by
developing empirical models with regression coefficients that
reached R2 = 0.63 and R2 = 0.95 for water quality parameter
estimation. This study showed that freely available high-
resolution remote sensing data can be used for water quality
monitoring, especially in resource-constrained areas, offering
critical insights for resource management and decision-making.

Guo et al. (2023) notes that small water bodies are often ignored
in water resource assessments yet they play a critical role in the local
ecological environments. Thus the Sentinel-2 MSI with its high
spatial and temporal resolutions provides an opportunity to fill this
gap and provide a comprehensive understanding of their water
quality parameter spatial distribution in the water.

Multispectral sensors such as Landsat-8 Operational Land
Imager (OLI) and Sentinel-2 Multispectral Instrument (MSI)
collect data in multiple, distinct spectral bands within the
electromagnetic spectrum, typically covering the visible and near-
infrared region. Data from these satellite sensors facilitates large-
scale and consistent water quality monitoring over regular intervals
(Li et al., 2022a). Their distinct spectral bands assist in capturing
various water quality parameters but these sensors have shown
strong potential in monitoring optically active parameters like
chlorophyll-a, Secchi disk depth, and turbidity due to their
sensitivity to changes in water reflectance characteristics, enabling
reliable estimation of these parameters across large spatial scales
(Zhang et al., 2022a). For instance, Pizani et al. (2020) assessed a
hydroelectric reservoir in Brazil using the Landsat-8 OLI and
Sentinel-2 MSI to develop regression models for water quality
parameters. The models for optically active parameters showed
strong performance, with R2 values exceeding 0.75 for both
sensors, demonstrating their ability to complement in situ
measurements and reduce operational costs for water agencies.
These findings highlight the practicality of using freely available
remote sensing data to produce spatially distributed maps of water
quality parameters. However, despite the technological
advancements in remote sensing, significant gaps remain in its
application to water quality monitoring.

Most studies still focus on optically active water quality
parameters, while the potential of remote sensing for non-
optically active parameters, such as nutrients and dissolved
oxygen, is still underexplored (Gao et al., 2024). Moreover,
Bangira et al. (2024) indicate that chlorophyll-a and total
suspended solids are the most studied optically active water
quality parameters in Africa, as studying non-optically active
water quality parameters often incurs high costs due to the need
for in situ sample collection to validate models for parameters
lacking direct spectral signatures. Non-optically active parameters
lack clear optical signals, making them difficult to detect directly
through remote sensing (Yang et al., 2022). High-resolution
multispectral sensors such as the Sentinel-2 MSI have the
potential to address this gap by integrating empirical and
machine-learning retrieval methods (Yang et al., 2022). For
instance, using an empirical regression model, Al-Shaibah et al.
(2021) demonstrated that certain sensors from the Landsat series are
highly sensitive to non-optically active water quality parameters
such as V-phenol, dissolved oxygen (DO), ammonium nitrogen
(NH4-N), and nitrate nitrogen (NO3-N) in Erlong Lake, China.
Their study achieved good accuracy, with the coefficient of
determination R2 reaching up to 0.95 and the Mean Square Error
(RMSE) ranging from 1.390 to 0.050 during validation. Meanwhile,
Sent et al. (2021) showed that Sentinel-2 data and a multiple linear
regression model can be used to indirectly quantify non-optically
active water quality parameters in Brazilian lakes with an R2 of
0.85 and 0.83 (MSI_30, MSI_90) for DO and an R2 of 0.89 and 0.79
(MSI_30, MSI_90) for pH.
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On the other hand, machine learning algorithms such as Neural
Networks, Support Vector Machines, or Random Forests are used to
learn complex relationships between input spectral variables and in
situ water quality parameter measurements from water bodies
(Leggesse et al., 2023). These models have been effectively
applied in numerous studies (Guo et al., 2021; Kupssinskü et al.,
2020; Mpakairi et al., 2024; Saberioon et al., 2020) for water quality
monitoring and retrieval, demonstrating satisfactory results,
especially in complex and variable water systems (Zhao et al.,
2022). For instance, Guo et al. (2021) attempted to address the
challenge of monitoring non-optically active water-quality
parameters (total phosphorus, total nitrogen, and chemical
oxygen demand) in small urban waterbodies using Sentinel-2
data and machine learning models. By evaluating 255 Sentinel-2
band combinations, they identified optimal bands for parameter
retrieval and the models achieved high predictive accuracy (R2 of
0.94, 0.88, and 0.86 for neural networks, random forest, and support
vector machine models, respectively). By leveraging machine
learning models, the study demonstrates how complex
relationships between spectral variables and in situ measurements
of non-optically active water-quality parameters (total phosphorus,
total nitrogen, and chemical oxygen demand) can be effectively
predicted. While advancements in high-resolution multispectral
sensors and machine learning models have significantly enhanced
water quality monitoring, challenges persist in applying these
technologies effectively, particularly in resource-constrained
regions like Africa (Bangira et al., 2024).

Remote sensing, combined with machine learning, has
demonstrated a potential to address these challenges by enabling
the monitoring of water quality parameters with greater spatial and
temporal accuracy. However, there remain gaps in the application of
these technologies to smaller inland water bodies and non-optically
active water quality parameters, which are crucial to local ecological
systems but often overlooked in water resource assessments. Thus,
this paper provides a comprehensive systematic review of the
literature to derive progress in remote sensing of water quality,
expose areas requiring further research, and identify opportunities
presented by Sentinel-2 sensors for inland water bodies. The specific

objectives were to (1) perform a brief bibliometric analysis to
identify the trends in publications and distribution of remote
sensing-based water quality monitoring studies; (2) review and
categorise the types of satellite sensors used in assessing the
water quality of inland water bodies, focusing on their
advantages, limitations, and technological advancements in
assessing optically and non-optically active water quality
parameters; (3) review and analyse how machine learning
algorithms have been used with remotely-sensed data in water
quality parameters and (4) identify existing gaps and trends in
current literature and propose areas for future research to enhance
remote sensing-based water quality monitoring in small inland
water bodies in South Africa.

2 Methods

2.1 Literature search and data extraction

This review followed the guidelines of the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
framework to identify and extract peer-reviewed articles focused
on water quality monitoring through remote sensing. The PRISMA
Statement outlines a set of evidence-based items to enhance the
quality of reporting in systematic reviews and meta-analyses (Page
et al., 2021). Its purpose is to assist authors in enhancing the quality
of reporting in systematic reviews and meta-analyses. The literature
reviewed in this study, therefore, uses the PRISMA 2020 statement
(version 1), which now includes databases and preprint registers. To
search for relevant literature, the study used scholarly databases such
as SCOPUS andWeb of Science. Literature from these databases was
accessed based on the following keywords: “Water quality,” “Water
pollution,” “Water quality parameters,” “Remote sensing,” “Inland
water bodies,” “Machine learning,” “vegetation indices,” “red-edge,”
“Sentinel-2,” and “Landsat” (Table 1).

Peer-reviewed international journals with an emphasis on
geography, hydrology, ecology, remote sensing, and water
resources were some of the publications that were sought for

TABLE 1 Key search words used to find relevant articles for inclusion in this study.

Database Search criterion No. of articles

Scopus TITLE-ABS-KEY (“water quality” AND “remote sensing” AND “Inland water
bodies” OR “machine learning” OR “vegetation indices” OR “red-edge” OR
“Sentinel-2” OR “Landsat”)

1980

TITLE-ABS-KEY (“water quality” AND “remote sensing” AND “Inland water
bodies” OR “machine learning” OR “vegetation indices” OR “red-edge” OR
“Sentinel-2” OR “Landsat”) AND (LIMIT-TO (SUBJAREA, “ENVI”)] AND
[LIMIT-TO (DOCTYPE, “ar”) ] AND [LIMIT-TO (PUBSTAGE, “final”)] AND
[LIMIT-TO (SRCTYPE, “j”)] AND [LIMIT-TO ( LANGUAGE, “English”)]

745

TITLE-ABS-KEY (“water quality” AND “remote sensing” AND “Inland water
bodies” OR “machine learning” OR “vegetation indices” OR “red-edge” OR
“Sentinel-2″ OR “Landsat”) AND PUBYEAR >2013 AND
PUBYEAR <2025 AND [LIMIT-TO (EXACTSRCTITLE, “Remote Sensing”)]
AND (LIMIT-TO (SUBJAREA, “EART”)] AND [LIMIT-TO (DOCTYPE, “ar”)
OR LIMIT-TO (DOCTYPE, “re”)] AND [LIMIT-TO (PUBSTAGE, “final”)] AND
(LIMIT-TO (SRCTYPE, “j”)] AND [LIMIT-TO (LANGUAGE, “English”)]

213

Web of science Water quality, remote sensing, water quality parameters, satellite sensors 281
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their contributions. To add relevant literature, the search on the
above-mentioned databases covered the years 2002–2024.
Initially, the literature searches from Scopus and Web of
Science retrieved 1695, 281 and 5,702 articles, respectively
(Table 1). The retrieved articles underwent further screening
as filters were added to further refine the results. This included
filtering by the subject area, document type, publishing stage,
source type and language, the years of publications, and topic of
focus (Figure 1). Full-length articles of the selected abstracts were
then obtained and analysed based on their relevance to the
study’s objectives and methodology. Subsequently, 142 articles
were retained.

3 Results

3.1 Searched literature traits:
published trends

Results of publication trends show that there were relatively
fewer studies conducted between 2002 and 2015. In 2016 and 2017,
studies started to increase. As observed in Figure 2, between
2018 and 2024, there was a steady increase in research on water
quality monitoring, as compared to the previous years.
Approximately 50 studies focused on lakes, looking at the years
2005, 2008–2009, 2011, 2013, 2015, and 2018–2023. Studies on

FIGURE 1
PRISMA flowchart used for selection of the studies considered in this review.
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rivers, particularly large rivers, were conducted between 2013, 2014,
2016, 2017, 2019, 2021, 2022, and 2024, making large rivers the
second most studied water body. Some studies also focused on large
dams, particularly during 2015, 2017, 2018, 2022, 2023, and 2024.
Additionally, a portion of the reviewed studies were systematic and
general reviews on various inland water bodies and some ocean
waters but ocean waters were not the primary focus. Regarding
satellite sensors, the Landsat series was mainly used between

2011 and 2024, with the Landsat-8 OLI being the most
utilised sensor.

The Sentinel-2 MSI, known for its high spatial and temporal
resolutions, was the second most used sensor, particularly between
2019 and 2024. The MODIS sensor was mainly used before the
launch of Landsat-8 OLI and Sentinel-2 MSI, and it continued to be
used as recently as 2022. The MERIS sensor was also utilised for
water quality monitoring between 2005 and 2023. The SeaWiFS

FIGURE 2
Annual trends in research.

FIGURE 3
Publication trends.
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sensor, mainly suited for larger water bodies like oceans, was used in
2002 and 2010. The Sentinel-3 OLCI sensor was employed in studies
from 2020, 2022, and 2023.

3.2 Trends in journal publications for
water quality

The table (Figure 3) highlights trends in the distribution of
articles across different types of journals. Remote sensing journals
take the lead, with a significant number of articles (30), showing just
how important spatial technologies are in environmental research.
“Remote Sensing of Environment” follows with 21 articles, and
“Sensors” follows with 7, both showing the growing role of advanced
sensing tools in this field. Water-related journals also have a strong
presence. The journal “Water Quality” leads this category with
14 articles, while “Water” has 10, and “Environmental
Monitoring and Assessment” contributes 6. These numbers
highlight the increasing focus on monitoring and managing
water resources. “Water Resources Research” also makes a
notable contribution with 9 articles. There’s also a clear move
toward interdisciplinary research. Journals like “Science of the
Total Environment” (2 articles) and “International Journal of
Applied Earth Observation and Geoinformation” (7 articles)

show how diverse fields are coming together to address
environmental issues. Even niche journals, like “Agriculture
(Switzerland)” and “Frontiers in Sustainable Cities,” make an
appearance, which suggests that interest in areas like
sustainability, agriculture, and urban environments is expanding.

Engineering and technical journals, such as “Alexandria
Engineering Journal” and “International Journal of
Environmental Impacts,” round out the list. Their inclusion
shows a growing emphasis on practical, hands-on solutions to
environmental problems. Overall, the trends point to a strong
reliance on geospatial technologies (satellite remote sensing), a
growing focus on water science, and an increasing recognition of
the need for interdisciplinary approaches and practical engineering
solutions to tackle complex environmental challenges.

3.3 Geographic distribution and
publication trends

The spatial distribution of studies on water quality monitoring
using remote sensing, as shown in the choropleth map (Figure 4),
reveals significant global geographic trends in research. Studies were
conducted across six continents, excluding Antarctica. In Asia,
countries such as India, Malaysia, Bangladesh, and Bhutan were

FIGURE 4
Geographic distribution and publication trends.
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included, with China being the most studied country for monitoring
inland water bodies, particularly lakes. In Europe, countries such as
Italy, Germany, and Portugal focused primarily on monitoring lakes
and rivers for water quality. In Africa, South Africa led studies on
dams using the Landsat series and Sentinel-2 MSI, followed by
Kenya, Rwanda, andMorocco. North America saw the United States
leading research on inland water bodies, with Canada following,
while in South America, Brazil and Argentina were prominent.
Finally, in Oceania, New Zealand was the primary country engaged
in water quality monitoring studies. Overall, the map highlights a
need for a more balanced global research landscape, with increased
studies on water quality monitoring and remote sensing in currently
underrepresented countries.

3.4 Keyword analysis

The development and trajectory of research in water quality
monitoring based on primary terms extracted from published paper
titles, abstracts, and keywords are analysed in this review (Figure 5).
The network map categorises the identified literature into 4 clusters
of concepts. The first cluster, represented in red, focuses on

keywords related to “water quality,” “remote sensing,” “Landsat,”
“Sentinel,” and “optical properties,” among others. This cluster
highlights research endeavours in remote sensing applications for
water quality monitoring and also highlights connections between
these primary keywords and other clusters. The red cluster also
features keywords such as “land use,” “pollution,” and “water
management,” highlighting investigations into the factors
contributing to water quality deterioration and the locations
targeted for monitoring efforts. The second cluster, represented
in yellow, showcases terms such as “machine learning,”
“regression analysis,” and “neural networks.” This cluster
indicates the integration of machine learning techniques into
water quality monitoring studies, with links to the primary red
cluster focusing on how research on water quality has been done
using remote sensing and machine learning.

The third cluster, represented in green, focuses on terms such as
“lakes”, “China,” and “surface water,” showing that there has been
research mostly done on water quality monitoring in China, and the
focus has been on lakes. The fourth cluster, represented in blue,
focuses on terms such as “chlorophyll-a,” “algae”, “inland”,
“reservoirs,” and “sentinel,” emphasising the research focus on
chlorophyll-a analysis in water quality monitoring on lakes and

FIGURE 5
Network map showcasing concepts in water quality monitoring and remote sensing studies derived using data from titles, abstracts, and keywords.
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reservoirs using remote sensing satellite sensors such as Sentinel-2.
These clusters also exhibit connections with other clusters in the
network. In summary, the network map offers valuable insights into
the trends and connections within water quality monitoring
research, highlighting the various approaches and main areas of
scholarly interest in this field.

3.5 Sources and impacts of water pollution

Identifying the main sources and impacts of water quality
degradation is fundamental to efficient and effective water quality
management (Parris, 2011). Anthropogenic activities such as
urbanisation, agricultural practices, industrialisation, and
population growth have been identified as significant contributors
to the deterioration of water quality worldwide (Gupta and Singh,
2016). For example, industrial activities, including those in the
paper, iron and steel, distillery, and nuclear industries, release
toxic chemicals and organic and inorganic substances into the
environment, leading to increased wastewater production (Gupta
and Singh, 2016). Similarly, agricultural activities contribute to
water contamination through the use of pesticides, nitrogen
fertilisers, and organic farm wastes, which introduce nitrates,
phosphorus, pesticides, and soil sediments into water bodies
(Parris, 2011; Lin et al., 2022b). Excessive nitrates and
phosphorus (nutrient enrichment) in water bodies thus cause
eutrophication which Wilkinson and Johnson (2024) describe as
the process of enriching aquatic habitats with nutrients, primarily
nitrogen and phosphorus, leading to increased rates of organic
matter causing harmful algal blooms (HABs) that affect
water quality.

This process is a growing concern in the African continent, and
in South Africa, the Hartebeespoort Dam serves as a notable
example of a reservoir affected by chemical parameters such as
nitrogen and phosphorus which cause eutrophication in the water.
The dam supplies water for irrigation, industry, residential use,
tourism, recreation, and municipal purposes downstream along the
Crocodile River (West) (Hobbs, 2017). However, the dam is also
impacted by acid mine drainage and bacterially contaminated
municipal wastewater effluent, flowing through the Cradle of
Humankind World Heritage Site’s karst system (Hobbs, 2017).
Matthews and Bernard (2015) highlight eutrophication as a
significant issue in South African water bodies, given the
country’s limited freshwater resources. This phenomenon, along
with cyanobacterial blooms, poses economic burdens due to costs
associated with water treatment, tourism losses, and negative human
health impacts like cholera and diarrhoea. Eutrophication causes
concern about the quality of inland water bodies and needs attention
from authorities, scientists and the public (Oliphant et al., 2018).

In countries outside the African continent, Xu et al. (2022)
studied the Yangtze and Yellow River Basins in China to identify the
primary sources of pollution and their effects on water quality. Their
findings revealed that while agricultural activities contribute to water
pollution and quality degradation, the impact of industry on river
health outweighs that of agriculture. Moreover, Lin et al. (2022) also
reported that around 80% of industrial and municipal wastewater is
released into the environment, including rivers, without treatment,
with higher discharge rates in developing countries. Edokpayi et al.

(2017) highlighted poor wastewater infrastructure, design flaws, lack
of expertise, and corruption as key issues leading to the failure of
wastewater treatment facilities in developing nations. This results in
untreated wastewater entering surface water, causing water quality
deterioration. Globally, the issue of water pollution continues to
raise concern as it affects the environment, public health, and
economies. Therefore, monitoring water quality is essential to
protect ecosystems, sustain economies, and ensuring access to
clean, safe drinking water (Zainurin et al., 2023).

3.6 Traditional methods for water quality
assessment

Water quality monitoring focuses on the biological, chemical,
and physical parameters of water. These water quality parameters
are used to evaluate pollutant levels and determine whether the
water is suitable for human use and maintaining ecosystem health
(Table 2) (Ahmed et al., 2020; Wen et al., 2020).

Water samples are usually collected from designated stations
and water quality monitoring is then completed through traditional
methods such as laboratory and in situ tests (Zainurin et al., 2022).
In-situ testing involves using sensors that are designed to assess
parameters such as pH, dissolved oxygen, conductivity, turbidity,
and nutrient concentrations (Osman et al., 2018). These sensors can
be used individually or as part of a multisensor monitoring system.
This method can prevent artefacts from occurring due to data being
collected directly from the water body, leading to an understanding
of the conditions and interactions within that environment in real
time (Liber et al., 2016). For instance, a study by Mujathel et al.
(2022) aimed to evaluate trihalomethane (TTHM) levels of
chlorinated drinking water sources in the Aseer region of Saudi
Arabia, over four seasons (Summer, Autumn, Winter, and Spring).
One of the parameters associated with increasing TTHM was
turbidity and the study utilised a turbid meter (HACH 2100 N)
to do in situ measurements of turbidity. The in situ results for
surface water revealed that the mean turbidity for raw surface water
(4.54 NTU) is higher than the mean turbidity for treated surface
water (1.458 NTU). This finding revealed that raw surface water
with high turbidity contributed to increased TTHM levels.

Another study by Bai et al. (2023) investigated how different
ways of controlling river flow affect the movement of dissolved
oxygen matter (DOM) in the Yongding River Basin of China.

TABLE 2 Water quality properties.

Chemical properties Biological
properties

Physical
properties

Dissolved Oxygen (DO), Chemical
oxygen demand (COD), Biochemical
oxygen demand (BOD)

Bacteria Turbidity

pH Level Algae Temperature

Ammonia Viruses Colour

Salinity Taste and odour

Harness Suspended solids

Organic Compounds Metals
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Parameters such as dissolved oxygen, electrical conductivity (EC),
temperature, and pH were measured in situ after calibration and
stabilisation for 2 min, using the HQ40d, Hach, multiparameter
system. The results and values of the parameters were recorded in
situ and helped determine the seasonal concentration and patterns
of DOM in the river. Randhawa et al. (2016) also used a
multiparametric sensor probe for real-time monitoring of water
pollution on the Yamuna River in New Delhi, India. The study
assessed physio-chemical parameters such as pH, electrical
conductivity, dissolved oxygen and turbidity with records of
sensor data (e.g., dissolved oxygen recorded as a low 3 mg/L),
assisting in creating heatmaps, real-time and on-site monitoring
and identification of pollution hotspots. Kalaitzidou et al. (2023)
have also used instruments such as the WTW 3310 instrument to
measure pH and EC, a Perkin Elmer Analyst 800 Atomic Absorption
Spectrophotometer to measure parameters such as Nitrate,
Ammonium and Sodium in situ.

These studies (Randhawa et al., 2016; Mujathel et al., 2022; Bai
et al., 2023; Kalaitzidou et al., 2023) show how in situmeasurements
can prevent artefacts from occurring during data capturing in
traditional methods as compared to the sampling, transporting,
and storing contaminated water and sediment for toxicity testing
that would be done in a lab (Liber et al., 2016). However, in situ
monitoring can have challenges with reliability of sensors, factors
that can ruin their accuracy, environmental conditions (high
temperatures, low oxygen concentrations) and being expensive if
it involves calibration, upkeep, and periodic replacement of the
sensors (Lal et al., 2023). Mujathel et al. (2022), showcased ways of
avoiding some of these challenges in their study of evaluating TTHM
levels of chlorinated drinking water sources in the Aseer region,
where they used a turbid meter (HACH 2100 N) to do in situ
measurements of turbidity (as one of the parameters). Water
samples were collected and measured for turbidity on-site and
the cell of the meter had to be cleaned and dried to prevent false
results and ruining accuracy.

Demetillo et al. (2019) also tried to avoid these challenges in
their study of developing a low-cost, real-time water quality
monitoring system (commercial electrochemical sensors from
Atlas Scientific) to monitor temperature, dissolved oxygen and
pH in a large aquatic area. For example, the pH sensor in the
system was tested and calibrated using a Horiba multi-parameter
tester and results showed a 0.23 difference in value readings between
the pH sensor and the multi-parameter tester, proving that regular
calibration can minimise inaccuracies. The laboratory testing
approach has been done through the collection of samples on
water bodies, followed by transportation of the samples to a
laboratory for chemical and biological analysis (Coraggio et al.,
2022). For instance, Barakat et al. (2016) conducted a study to assess
water contamination in the Oum Er Rbia River basin in Morocco,
focusing on identifying sources and effects on water quality. Samples
were collected at different stations and various parameters such as
temperature, pH, turbidity, and dissolved oxygen were measured
both in situ and in the laboratory.

Additionally, parameters such as total suspended solids,
ammonia, nitrate, total phosphorus, and faecal coliforms were
analysed in the laboratory. Various analytical methods, including
spectrophotometry and pH probes were employed and the findings,
analysed using multivariate statistical methods, revealed that water

quality at some stations exceeded Moroccan standards, posing
potential health risks to consumers. Another study by Zhang
et al. (2022a) collected samples and did laboratory testing to
calculate the Water Quality Index (WQI), a mathematical tool
used to assess and calculate the overall quality of water in a
particular water body using a mathematical equation (Equation 1)
(Rocha et al., 2015).

WQI � ∑
n
i �1CiPi

∑
n
i �1Pi

(1)

Zhang et al. (2022a) used both traditional methods and the
Water Quality Index (WQI) to assess water quality in the Nanxi
River within the Taihu Watershed, China. The study collected and
did a laboratory analysis on 22 water samples from 14 monitoring
stations between 2015 and 2020. Results indicated a trend of
moderate to low water quality, with certain stations consistently
exhibiting good to excellent conditions. Cluster analysis revealed
spatial variations in contamination levels, assisting in the
identification of pollution sources and the formulation of
targeted management strategies. These studies show how in situ
and laboratory testing methods have been effective in measuring
water quality (Zainurin et al., 2022). They can, however, be time-
consuming and costly if there is a need to provide short-term data
and they can be affected by weather or other environmental impacts
(Coraggio et al., 2022). Additionally, they are criticised for being
point-based and limited in temporal and spatial scales (Ndou, 2023).
Additionally, water sampling and laboratory testing face limitations,
particularly regarding the large number of samples needed for
analysis. There are often logistical difficulties in managing and
transporting the hundreds of litres of water samples required for
laboratory testing to measure various parameters (Altenburger
et al., 2019).

Some studies (Barakat et al., 2016; Wu et al., 2018; Zhang et al.,
2022b; Kalaitzidou et al., 2023) have reported that water quality
needs to be monitored regularly on seasonal periodical variations
(i.e., labour will be needed to return to the water bodies and collect
samples on a regular basis) for detecting spatiotemporal variations
and this may cause issues in relation to the methods being labour-
intensive, and time-consuming (Ndou, 2023; Zainurin et al., 2022).
To minimise these challenges, the integration of multiple
measurement techniques, including laboratory analysis and
remote sensing, can help provide a more comprehensive
understanding of water quality dynamics (Harmel et al., 2023).

3.7 Remote sensing for water quality

The introduction of satellite remote sensing in water quality
monitoring has revolutionised the field by providing a systematic
and synoptic perspective on water quality parameters over large
water bodies, enabling efficient, cost-effective, and near real-time
assessments (Swain and Sahoo, 2017). This technology enables the
study of physical and chemical water quality parameters over space
and time using remotely sensed data. It is a combination of
technology and science to obtain information about an object,
area, or phenomenon through the analysis of spectral data
collected by technological devices (Jafarbiglu and Pourreza,
2022). These devices collect data by measuring the transmission
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of electromagnetic energy from surfaces that reflect or emit radiation
(Sivakumar et al., 2003). Various surface features reflect various
amounts of energy across the electromagnetic spectrum based on
their structural, chemical, and biological properties, as well as factors
such as surface roughness, angle of incidence, intensity, and
wavelength of radiation (Sivakumar et al., 2003). The application
of remote sensing in water quality assessment is, thus, premised on
the understanding of how the technology measures the physical,
chemical, and biological characteristics of water bodies (Bresciani
et al., 2019; Sent et al., 2021).

Moreover, it helps to establish the possible sources of water quality
contamination with a catchment-level assessment of water quality
(Usali and Hasmadi Ismail, 2010). Contamination sources include
municipal waste discharges, agricultural chemicals, heavy metals,
microorganisms, and sedimentation. These sources of contamination
alter the chemical, physical and biological characteristics of water
bodies, significantly changing their reflection characteristics and
affecting the reflectance signal captured by remote sensing devices.
Satellite sensors detect these changes in the spectral signature of
reflected light and relate these changes to water quality parameters
using empirical or analytical models (Murray et al., 2022). In the visible
range of the electromagnetic spectrum, water generally exhibits low
reflectivity across most wavelengths, including the blue and green
spectral bands and absorbs light in the near-infrared range, further
enabling the differentiation of water bodies from other objects in images
(Sultana and Dewan, 2021). In contrast, contaminated water has
exaggerated concentrations of chemical, physical or biological
properties that are detectable using remote sensing by analysing its
spectral characteristics and reflectivity (Adjovu et al., 2023).

The contaminants in the water can change how water interacts
with light as they display unique spectral characteristics in the visible
(400 nm–700 nm) and near-infrared (700 nm–2500 nm) regions of
the electromagnetic spectrum (Sultana and Dewan, 2021). As a
result, significant advancements have beenmade in remotely sensing
water quality, particularly focusing on optically active and non-
optically active water quality parameters. Optically active water
quality parameters interact with light, and therefore are
detectable in the visible and near-infrared spectral regions
(Zhang et al., 2022c). Examples of such parameters are
chlorophyll-a, total suspended solids, Secchi Disk Depth, Water
temperature, and turbidity. Non-optically active parameters lack
clear optical signals, making them difficult to detect directly through
remote sensing (Yang et al., 2022). Instead, these parameters have
been indirectly estimated using optically active components like
chlorophyll-a, total suspended matter, and coloured dissolved
organic matter. Examples of non-optically active water quality
parameters include electrical conductivity, temperature, pH,
dissolved oxygen, nitrogen and phosphorus (among others)
(Wang and Yang, 2019). To monitor these parameters, various
satellite sensors have been developed and used together with field
measurements, empirical, analytical, semi-empirical, and machine
learning retrieval methods.

3.7.1 Advantages and disadvantages on remote
sensing for water monitoring in inland
water bodies

Small inland water bodies, such as rivers, lakes, and reservoirs,
play a critical role in local ecosystems by supporting flood control,

irrigation, and climate regulation (Sun et al., 2024). These water
bodies are often referred to as “sentinels of environmental change,”
highlighting the importance of long-term water quality monitoring
to track the health of water (Liu et al., 2024b). Traditional methods
like sampling, laboratory analysis, and in situ measurements are
accurate but time-consuming, costly, point-based, and limited in
spatial and temporal coverage (Adjovu et al., 2023). This creates
significant challenges for effectively monitoring small, remote, or
diverse inland water bodies. Remote sensing has emerged as a cost-
effective alternative for large-scale water quality monitoring. For
example, Chebud et al. (2012) developed a remote sensing-based
approach using Landsat spectral data and a neural network model to
predict water quality parameters (chlorophyll-a, turbidity, and
phosphorus) in the Kissimmee River basin in South Florida. This
approach proved to be highly accurate (R2 > 0.95) between
1998–1999 and 2009–2010 across both wet and dry seasons. The
cost-effectiveness of this remote sensing-based approach is largely
due to the availability of freely accessible Landsat data, which
reduces the need for costly site visits involved in traditional
water quality monitoring methods (Chen et al., 2024).

Remote sensing also offers advantages in high spatial and
temporal coverage. Satellite sensors with high spatial resolution
allow for detailed monitoring of smaller water bodies, capturing
fine-scale changes that might not be noticeable (Sigopi et al., 2024).
Combined with high temporal resolution, remote sensing enables
the detection of dynamic changes and pollution events in near real-
time, even in remote or inaccessible locations. For instance, the
Geostationary Ocean Colour Imager (GOCI), the world’s first ocean
colour satellite sensor, offers a moderate spatial resolution (500 m)
and a very high temporal resolution (1 h, eight times a day) for near
real-time monitoring of marine environments in northeast Asia
(Ryu et al., 2012). On the other hand, the MODIS sensor, which
offers a temporal resolution of 1–2 days and spatial resolutions
ranging from 250 m to 1000m, is well-suited for monitoring ocean
waters and larger inland water bodies and this sensor is one of the
most widely used satellite sensors (Shi et al., 2018; Xiong et al., 2019).
Recent sensors with even higher spatial and temporal resolutions,
like the Sentinel-2 sensor (10 m–20 m - 60 m, spatial resolution and
5 days temporal resolution), have further enhanced the use of
remote sensing in monitoring smaller inland water bodies
(Caballero et al., 2018). Sentinel-2’s 10 m spatial resolution offers
an opportunity for detailed mapping and analysis of smaller inland
water bodies, which may be difficult to analyse with coarser-
resolution sensors such as MODIS (Li et al., 2022b).

Furthermore, Sentinel-2’s 5-day revisit time can assist with
frequent water quality monitoring, making it possible to capture
short-term variations and seasonal trends in waterbodies more
effectively (Kowe et al., 2023). Satellite sensors such as Sentinel-2
are easily accessible, enabling more frequent, cost-efficient, and
accurate monitoring of these smaller bodies (Sigopi et al., 2024).
Remote sensing also allows for multi-parameter analysis of water
bodies. The advancement of multispectral (and now hyperspectral)
sensors has improved the prediction of water quality parameters, as
satellite sensors can derive multiple parameters (e.g., turbidity,
chlorophyll-a, total suspended solids) from spectral bands across
the electromagnetic spectrum (Bangira et al., 2024). Multispectral
sensors such as Landsat’s Operational Land Imager (OLI), Thermal
Infrared Sensor (TIRS), Sentinel-2’s MultiSpectral Instrument
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(MSI), and MODIS have been used to derive various water quality
parameters simultaneously (Bangira et al., 2024). This is an
advantage over traditional methods, which are point-based and
require handheld sensors and probes to measure individual
parameters (Yang et al., 2022). For instance, Mamun et al. (2024)
used Sentinel-2 MSI and Landsat-8 OLI with machine learning to
monitor chlorophyll-a, Secchi depth, and total suspended solids in
a reservoir.

Key predictor band ratios for chlorophyll-a and total suspended
solids included the red/red-edge1 × red-edge2 for Sentinel-2 MSI
and the red/blue ratio for Landsat-8 OLI, while Secchi depth was
predicted using the red/blue band ratio (Sentinel-2 MSI) and the
green band (Landsat-8 OLI). These results demonstrate how specific
spectral band combinations can accurately estimate water quality
parameters, demonstrating the cost-effectiveness and reduced
labour intensity of remote sensing. These results further highlight
how the presence of Sentinel-2 red-edge bands (Bands 5, 6, and 7)
can enhance the detection of chlorophyll-a, a key indicator of
eutrophication (Pizani et al., 2020). Moreover, remote sensing
with the Sentinel-2 sensor provides and advantage of suspended
sediments and turbidity prediction improvement with its shortwave
infrared bands (Bands 11 and 12) (Ndou, 2023). Remote sensing
offers significant advantages in monitoring inland water bodies, yet
several challenges remain in applying it effectively, particularly for
small inland water bodies. One of the most widely studied challenges
is related to the resolution of remotely sensed data, which impacts
the ability to retrieve both optically and non-optically active water
quality parameters (Yang et al., 2022). Spatial resolution constraints
of satellite sensors complicate accurate monitoring. For instance,
low spatial resolution sensors such as MODIS, MERIS, and SeaWiFS
are suitable for monitoring large water bodies like oceans and large
lakes but face difficulties in detecting water quality parameters in
smaller inland water bodies like small lakes or narrow rivers (Li
et al., 2023).

These sensors often fall below the pixel size required for detailed
observation of such features, as noted by Frasson et al. (2024). High-
resolution sensors such as the Sentinel-2 MSI improve on these
limitations with their high spatial resolution, yet they still encounter
challenges (Abdelal et al., 2022). According to Bangira et al. (2024),
wider spectral bands of multispectral sensors, including those of
Sentinel-2, struggle with predicting water quality parameters in
water bodies with heterogeneous ecosystems, such as those that
contain both green and blue-green algae with comparable spectral
profiles. Goyens et al. (2022) note that sensors with narrower
spectral bands or hyperspectral sensors (which have much finer
spectral resolution) may perform better in identifying and analysing
specific water quality parameters in inland water bodies with
complex and mixed compositions. Additionally, many existing
optical sensors face difficulty in estimating crucial non-optically
active water quality parameters like dissolved oxygen, nitrogen, and
phosphorus, due to their weak optical characteristics and low signal-
to-noise ratios, which complicates measurements (Gholizadeh et al.,
2016). To address this challenge, researchers have explored machine
learning algorithms as a solution for estimating non-optically active
parameters.

For instance, Li et al. (2022b) employed random forest and
artificial neural networks to predict water quality parameters such as
total nitrogen and phosphorus in large inland rivers, achieving better

accuracy (R2 values ranging from 0.44 to 0.67). This approach
improves the accuracy of remote sensing models, offering a
promising solution for monitoring water quality parameters that
cannot be directly measured with optical sensors. Further
complicating the use of remote sensing are atmospheric
correction errors, which can impact the accuracy of water quality
estimations (Jaywant and Arif, 2024). To mitigate this, studies have
compared atmospheric correction algorithms like Acolite, C2RCC,
FLAASH, iCOR, and L2gen, with varying degrees of effectiveness
depending on the band and sensor (Wang et al., 2024). Moreover,
Liu et al. (2024a) mentions that finding a suitable algorithm for
specific inland water bodies or study areas is essential for reliable
satellite-based monitoring of water and environmental conditions
due to this varied accuracy and effectiveness of atmospheric
correction algorithms. The need for accurate calibration and
validation with in situ data is also crucial for ensuring reliable
results especially when dealing with the limitations of passive
sensors, which rely on sunlight and may be hindered by cloudy
conditions (Jaywant and Arif, 2024).

In such cases, integrating in situ measurement networks,
Synthetic Aperture Radar (SAR) data, and developing special
tools like the WQEI index can enhance model accuracy even in
challenging weather conditions (Kumar et al., 2023). While remote
sensing continues to show promise for monitoring water quality,
especially in smaller and remote inland water bodies, further
advancements in sensor technology, data resolution, and
algorithm development are necessary to address existing
challenges and fully realise the potential of this approach.

3.7.2 Remote sensing for water quality assessments
Significant advancements have been achieved in assessing the

water quality of coastal and inland waters using low-resolution
remote sensing sensors that cover larger areas of water bodies
and use thermal/optical sensors (Swain and Sahoo, 2017). Ocean
colour satellite sensors such as the Moderate-resolution Imaging
Spectroradiometer (MODIS), Sea-viewing Wide Field-of-view
Sensor (SeaWiFS) and Medium Resolution Imaging Spectrometer
(MERIS) have been used for this (McClain et al., 2014). The MODIS
sensor, launched on the Terra and Aqua satellites in 1999 and 2002,
respectively, provides near-daily coverage with 1–2 days temporal
resolution, spatial resolution from 250 m to 1 km, and 36 spectral
bands (Olmanson et al., 2011). MODIS data is openly accessible and
has proven suitable for monitoring various water bodies, including
coastal areas, large lakes, and rivers (Gholizadeh et al., 2016; Chavula
et al., 2009; Liu et al., 2022; Abbas et al., 2019). Similarly, the
SeaWiFS sensor, launched in 1997, has a 1 km spatial resolution,
8 spectral bands covering visible and near-infrared wavelengths, and
a 1–2 days temporal resolution. Although primarily designed for
ocean monitoring, it has also been used to monitor water quality in
rivers, lakes, and reservoirs (Gholizadeh et al., 2016; Groom
et al., 2019).

The MERIS sensor, aboard the Envisat satellite launched in
2002, had 15 spectral bands covering visible and near-infrared
wavelengths, a 300 m spatial resolution, and a 3-day repeat cycle,
allowing frequent earth observations (Arabi et al., 2020). The sensor
was suited for ocean colour monitoring and assessing water quality
parameters like chlorophyll-a concentration and suspended
sediment load in large lakes and coastal areas (Arabi et al., 2020).
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Studies (Attila et al., 2018; Odermatt et al., 2008; Reinart, 2005) have
used these low resolution sensors to monitor inland water bodies
such as lakes. For instance, (Reinart, 2005), compared MERIS data
with MODIS and SeaWiFS data to evaluate its efficiency in
monitoring the water quality of the European Union’s three
largest lakes. Their study found MERIS to be more suitable for
estimating water quality parameters, particularly chlorophyll-a
concentrations, in larger inland water bodies area >0 0.1 km2)
due to its higher spatial resolution, better atmospheric correction,
and more appropriate spectral bands. More studies (Ogashawara
and Moreno-Madriñán, 2014; Swain and Sahoo, 2017; Johansen
et al., 2018; Jiang et al., 2023) have used low spatial resolution
satellites for monitoring inland water bodies due to their high
temporal resolutions, providing strong real-time performance.

SeaWiFS, MODIS, and MERIS sensors can capture data
frequently, allowing timely monitoring and analysis of water
body changes (Topp et al., 2020). However, these sensors may
not provide detailed images in their data for small inland water
bodies (area <0.1 km2) such as rivers, dams and some lakes
(Llodrà-Llabrés et al., 2023). They are known as “ocean colour
sensors,” with relatively lower spatial resolutions limiting their
accuracy in observing smaller bodies due to larger pixel coverage
(Li et al., 2022a). In contrast, higher-resolution sensors, often
called “land surface sensors,” offer finer spatial resolutions
(10 m–30 m) but lower temporal resolutions, allowing for
more accurate detection of spatial patterns in smaller water
bodies, typically with 1–2 observations per month depending
on the sensor and cloud cover (Li et al., 2022b). This highlights
how high-resolution satellite sensors are better suited for
monitoring smaller inland water bodies, like rivers, dams, and
small lakes (Lulla et al., 2021). Other examples of these satellite
sensors include the Ocean and Land Colour Instrument (OLCI)
on Sentinel-3A/3B, the Operational Land Imager 2 (OLI-2) on
Landsat-9, the Multispectral Instrument (MSI) on board
Sentinel-2A/2B and the Operational Land Imager (OLI) on
board Landsat-8 (among others).

The Landsat-9 carries the OLI-2 and the Thermal Infrared
Sensor 2 (TIRS-2) launched on the 27th of September 2021
(Lulla et al., 2021). The OLI-2 carries 9 spectral bands and the
TIRS has 2 spectral bands, making the Landsat-9 have 11 spectral
bands (Lulla et al., 2021). The OLI-2 has spatial resolutions of 15 m
(band 8) – 30 m (band 1–7 and band 9) and the TIRS has spatial
resolution of 100 m (band 10–11). Niroumand-Jadidi et al. (2022)
compared the Landsat-9 OLI 2 to the Sentinel-2 MSI using physics-
based and NN-based machine learning algorithms. The study found
that Landsat-9 OLI-2 outperformed the Sentinel-2 MSI in retrieving
higher accuracies due to its higher signal-to-noise (SNR) and 14-bit
radiometric resolution, which is more sensitive to water-leaving
reflectance. The Sentinel-3 satellite constellation is another land
surface mission, launched in 2016 and 2018 and consists of two
satellites, Sentinel-3A and Sentinel-3B. The Ocean and Land Colour
Instrument (OLCI) on board these satellites provides 21 band
images with high spectral resolution for ocean, land, and
atmospheric monitoring (Soomets et al., 2020; Rodrigues et al.,
2022). The OLCI can provide data at a temporal resolution of 3 days
and a low-medium spatial resolution of 300 m.

A study by Soomets et al. (2020) comparing Sentinel-2’s MSI
and Sentinel-3’s OLCI found optimal atmospheric correction led to
the best results with the optical water-type guided approach.
However, OLCI’s effectiveness was hindered by challenges with
atmospheric correction, spatial resolution, and masking, resulting
in lower accuracy compared to the MSI. The study highlights that
higher spatial resolution sensors like Sentinel-2 MSI are better suited
for detailed monitoring, especially for smaller inland water bodies.
Multispectral sensors like Sentinel-2 MSI and Landsat-8 OLI offer a
chance to regularly monitor water quality, even in smaller inland
water bodies (Pizani et al., 2020). Both Landsat-8 OLI and Sentinel-2
MSI are also utilised for monitoring larger water bodies, with
Landsat-8 OLI having a spatial resolution of 15 m–30 m and
Sentinel-2 MSI offering resolutions of 10 m (4 bands), 20 m
(6 bands), and 60 m (3 bands) (Pizani et al., 2020). The MSI on
Sentinel-2 provides data across its 13 spectral bands, while Landsat-

TABLE 3 Characteristics of sensors commonly applied for water quality assessments and monitoring.

Satellite
sensor

Status Spatial
resolution

Temporal
resolution

Number of
bands

Studies that have utilised the sensors

MODIS (Terra) 1999 - active 250 m–500 m - 1 km 1–2 days 36 McClain et al. (2014), Park and Latrubesse (2014), Shi et al.
(2018), Xiong et al. (2019), Liu et al. (2022)

MODIS (Aqua) 2002 - active 250 m–500 m - 1 km 1–2 days 36 McClain et al. (2014), Park and Latrubesse (2014), Shi et al.
(2018), Xiong et al. (2019), Liu et al. (2022)

MERIS (Envisat) 2002–2012 300 m 3 days 15 Odermatt et al. (2008), Kratzer et al. (2010), Majozi et al.
(2014)

SeaWiFS 1997–2010 1 km 1–2 days 8 Flemming et al. (2002), Reinart and Pierson (2014), Groom
et al. (2019)

OLI (Landsat-8) 2013 - active 15 m–30 m 8 days 9 Pizani et al. (2020), Kramer et al. (2023), Omondi et al. (2023)

MSI (Sentinel-
2A/B)

2015 - active 10 m–20 m - 60 m 5 days for 2A and 2B 13 Arias-Rodriguez et al. (2023), Kowe et al. (2023), Ndou
(2023), Obaid et al. (2021), Sent et al. (2021)

OLCI (Sentinel-
3A/3B)

2016/2018 -
active

300 m 3 days 21 Soomets et al. (2020), Rodrigues et al. (2022)

OLI-2 (Landsat-9) 2021 - active 15 m–30 m 8 days 9 Ghasempour et al. (2023), Trevisiol et al. (2024)

TIRS (Landsat-9) 2021 - active 100 m 8 days 2 Wang et al. (2023), Eon et al. (2024)
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8 OLI gathers data through its 9 spectral bands (bands 10 and
11 dedicated to Thermal Infrared Sensor (TIRS) (Dube et al., 2015).

Additionally, the IOCCG (2018) highlights Landsat-8 OLI and
Sentinel-2 MSI as two of the most important earth-observing
sensors for monitoring inland waters, especially small inland
lakes (Table 3). For example, the Sent et al. (2021) study on
water quality parameters in the Sado Estuary of Portugal found
that the Sentinel-2 MSI sensor could be more useful for smaller
regions, such as estuaries, due to its ability to reach the smallest
water bodies. The sensor offers advantages such as publicly available
and well-documented data, facilitating long-term coverage, and its
high temporal resolution, compared to Landsat-8 OLI, allowing for
more frequent revisits (Sent et al., 2021; Dube et al., 2015).
Additionally, its high spatial resolution captures detailed
observations of water bodies and facilitates monitoring changes
over time, aided by its multispectral capabilities with 13 spectral
bands (Table 3). The sensor’s ability to capture the reflectance
properties of water is driven by its multispectral capabilities
(Soomets et al., 2020; Sent et al., 2021). Pizani et al. (2020) also
assessed two satellite sensors’ performance in estimating water
quality parameters in a Brazilian reservoir.

The study examined optically active and non-optically active
parameters, including chlorophyll-a, Secchi disk depth, turbidity,
dissolved oxygen, and temperature, and compared the Landsat-8
OLI with the Sentinel-2 MSI. Employing a multiple regression
model, the findings revealed that the Sentinel-2 MSI sensor
outperformed the Landsat-8 OLI due to its greater number of
spectral bands. The sensor has red-edge, near-infrared, and
shortwave infrared bands, along with the finer spectral resolution
of bands 3–7 (560–783 nm) and 8a (865 nm), which showed
enhanced reflection and retrieval of water quality parameters.
Additionally, the sensor was also able to retrieve data related to
dissolved oxygen and pH levels (non-optically active parameters)
due to the higher concentrations of chlorophyll associated with the
photosynthesis presence of algae reflected at bands
2–5 (490–705 nm).

Remote sensing of water quality has made significant progress,
particularly in focusing on optically active parameters like
chlorophyll-a, total suspended solids, Secchi Disk Depth, water
temperature, and turbidity. Additionally, Bangira et al. (2024),

mention that chlorophyll-a and total suspended solids are two of
the most researched water quality parameters in Africa. However,
non-optically active parameters like nitrogen, phosphorus, pH,
temperature, and EC are not frequently mentioned in the
literature, yet advancements in remote sensing technology and
retrieval model techniques have enabled indirect and direct
methods for estimating these parameters (Tesfaye, 2024).

The next sections look at the descriptions of some of these
optically active and non-optically active water quality parameters
and how they have been estimated using the various satellite sensors.

3.7.2.1 Remote sensing for optically active water quality
parameters

Optically active parameters in water, such as turbidity, total
suspended solids (TSS), and chlorophyll-a, interact with light to alter
the energy spectrum of reflected solar radiation (Adjovu et al., 2023).
Retrieving these parameters requires specific sensors (Table 4)
tailored to the task and suitable for the specific environmental
conditions.

3.7.2.1.1 Chlorophyll-a. Out of all these parameters,
chlorophyll-a is a commonly used parameter in the assessment of
the trophic status of freshwater ecosystems (Bangira et al., 2024;
Deng et al., 2019; Mpakairi et al., 2024). Chlorophyll-a, a green
pigment found in organisms like land plants and algae, is influenced
by factors like light intensity, penetration, turbidity, and nutrient
levels. It absorbs light in blue and red wavelengths and reflects light
in green wavelengths (Deng et al., 2019). For instance, Arora et al.
(2022) focused on assessing optically active water quality parameters
in the Punjab region of India across different seasons. The study
found that chlorophyll-a concentrations strongly absorbed light in
the blue (490 nm) and red (665 nm) wavelengths, while reflecting
light in the green (560 nm) and near-infrared (842 nm) wavelengths.
Moreover, using the Sentinel-2 MSI, the study estimated maximum,
minimum, and average chlorophyll-a concentration accuracies in
the Harike wetland area as 36.31, 0.01, and 29.53 mg/ m3

(respectively) in pre-monsoon season (during the period from
2018 to 2021). For the post-monsoon season, the estimated
maximum, minimum, and average were 32.20, 0.01, and
29.15 mg/ m3, respectively. The study highlighted the usefulness

TABLE 4 Water quality parameters and some of the sensors utilised to assess them.

Water Quality Parameters (WQP) Satellite sensors used Studies that have assessed the WQP

Chlorophyll-a Landsat-8 OLI
Sentinel-2 MSI

Ali et al. (2022), Leggesse et al. (2023), Niroumand-Jadidi et al. (2022),
Obaid et al. (2021), Oliphant et al. (2018), Pizani et al. (2020)

Turbidity & Total Suspended Solids MODIS
Sentinel-2 MSI
Landsat-8 OLI

Ndou (2023), Omondi et al. (2023); Sent et al. (2021), Umwali et al. (2021)

Secchi Disk Depth MODIS
Sentinel-2 MSI
Landsat – 8 OLI

Shi et al. (2018); Bonansea et al. (2019), Maciel et al. (2021), Yin et al.
(2021), Liu et al., 2022

Nitrogen & Phosphorus MODIS
Sentinel-2 MSI
Landsat-8 OLI

Dong et al. (2020), Gao et al. (2024), Guo et al. (2021), Guo et al. (2021);
Xiong et al. (2019)

Temperature Landsat-7 ETM+
Landsat-8 (TIRS)

Lamaro et al. (2013), Zhu et al. (2021), Kramer et al. (2023)
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of spectral signatures and semi-analytical models in identifying
small-scale changes in contamination of water bodies caused by
optically active parameters such as chlorophyll-a.

Pizani et al. (2020) used Sentinel-2 (band 2, 3, 4 and 5) and
Landsat-8 (band 2, 3 and 4) sensors to estimate chlorophyll-a in Tres
Marias Reservoir, Brazil. The Sentinel-2B MSI sensor outperformed
the Landsat-8 OLI sensor across all parameters due to its broader
range of spectral bands (encompassing red-edge, near-infrared, and
shortwave infrared), providing finer spectral resolution and
improved water quality parameters reflection and retrieval.
Similar studies have compared the Landsat series to Sentinel-2
MSI for chlorophyll-a estimation. For instance, Niroumand-
Jadidi et al. (2022) compared Landsat-9 OLI-2 and Sentinel-2
MSI accuracy in estimating water quality parameters in four
Italian lakes. Landsat-9 OLI-2 showed superior performance due
to its higher signal-to-noise ratio and sensitivity to water-leaving
reflectance. However, further research across diverse water types and
more in situ data is needed to validate these findings. Sentinel-2
MSI’s coastal blue band with a higher signal-to-noise ratio and
spatial resolution could potentially yield better results in estimating
water quality parameters, especially in small water bodies.

Various studies (Ali et al., 2022; Munyai et al., 2022; Ndou, 2023;
Obaid et al., 2021; Oliphant et al., 2018) in South Africa have
assessed chlorophyll-a concentrations in various inland water
bodies using high-resolution sensors like the Landsat series and
Sentinel-2 MSI. However, it is important to consider seasonal
changes that may affect chlorophyll-a concentration and
acknowledge potential variations in accuracy among different
sensors. For instance, a study by Obaid et al. (2021) employed
Sentinel-2 and Landsat-8 OLI to assess water quality and estimate
chlorophyll-a in South Africa’s Vaal Dam, finding an average
summer concentration of 5.5 μg/L, which dropped to 4.9 μg/L in
winter. This seasonal variation is attributed to increased river
discharge during the rainy season, which subsequently decreases
afterwards. The Sentinel-2 MSI’s red/near-infrared based model
performed well, with an R2 of 0.75 and an RMSE of 0.48 μg/L.
This is attributed to Sentinel-2 MSI’s higher spatial and spectral
resolutions and the additional chlorophyll-a sensitive band in the
near-infrared region, which the Landsat-8 OLI lacks. This is also
further supported by Oliphant et al. (2018), who used Landsat-8
bands in a stepwise logistic model, revealing fluctuating trends in
chlorophyll-a mapping accuracy over time. In April 2014,
chlorophyll-a concentration was mapped with 76.8% accuracy,
dropping to 35.01% in May 2015.

Such variations in accuracy across seasons and sensors justify
the need for further investigation, especially in South African small
inland water bodies. The availability of Sentinel-2 sensors with
coastal and red-edge bands offers an opportunity to enhance
chlorophyll-a estimation, particularly in winter seasons. This
potential is also further supported by Mpakairi et al. (2024), who
examined chlorophyll-a concentrations in South Africa’s Nandoni
Reservoir using Landsat-8 OLI and Sentinel-2 MSI. The study
highlighted that Sentinel-2 MSI’s additional red-edge spectral
bands effectively captured subtle changes in chlorophyll-a
concentrations due to weaker chlorophyll-a absorption, yielding
higher reflectance values than other bands (Bramich et al., 2021).
Chlorophyll-a is one of the most studied water quality parameters in
South African water bodies and Landsat-8 and Sentinel-2 have been

utilised for this purpose. However, this research (Bramich et al.,
2021; Ali et al., 2022; Munyai et al., 2022) has been done on
reservoirs or Dams. The Sentinel-2 MSI, especially with its red-
edge band, offers a notable advancement in water quality estimation.
Its high spatial resolutions of 10 m, 20 m (for the red-edge band),
and 60 m can significantly enhance water quality monitoring and
decision-making, particularly for managing small inland rivers in
South Africa.

3.7.2.1.2 Turbidity and total suspended solids. Water turbidity
and total suspended solids are other water quality parameters that
are frequently studied using various satellite sensors (Bangira et al.,
2024). Water turbidity, indicating the degree of light absorption due
to suspended particles, is closely linked to total suspended matter
levels, with higher concentrations resulting in increased turbidity
(Gholizadeh et al., 2016). Therefore, total suspended matter and
turbidity are important variables in the remote sensing of water
quality due to their interaction with incoming sunlight (Myint and
Walker, 2002; Gholizadeh et al., 2016). According to Duan et al.
(2024), suspended sediment in surface water exhibits seasonal
variations due to climatic factors and reservoir management. The
varying concentration of suspended sediments across seasons
necessitates algorithms that are sensitive to these variations. In
developing such an algorithm, an exploratory analysis of the
utility of spectral reflectance from 600 nm to 800 nm may be
useful in establishing an algorithm for estimating suspended
sediments across seasons. To study suspended sediments across
seasons, Sagan et al. (2020) mention that research has been done
using Landsat, MODIS, andMERIS sensors on large rivers, lakes and
reservoirs.

For instance, a study by Park and Latrubesse (2014) assessed the
large Amazon River in South America using MODIS data to
estimate regional and seasonal variability of surface sediment
concentrations (as one of its aims) with its 250 m–500 m - 1 km
spatial resolution and its 1–2 days temporal resolution. Band 1
(620–670 nm) of the MODIS satellite sensor demonstrated a very
high and consistent sensitivity to the suspended sediment
concentrations in the water, making it well-suited for identifying
the spatiotemporal patterns of surface sediment distribution in large
rivers. Data from the sensor was then used to develop empirical
models to relate field surface sediment concentration to surface
reflectance data from MODIS. The results revealed high R2 values
(0.79–0.92) and significant slopes at a 99% confidence level, proving
that the MODIS-Based model effectively captured the spatial and
temporal variability of surface sediments in the large Amazon River
Basin. Other studies have also focused on assessing spatiotemporal
variability in turbidity and total suspended solids, although they
primarily utilised low-resolution satellite sensors and targeted larger
water bodies (Hafeez et al., 2019; Hou et al., 2017; Long and
Pavelsky, 2013; Sagan et al., 2020).

In the African context, a few studies have looked at the
spatiotemporal patterns of suspended sediments and some of
these studies, such as Kowe et al. (2023), assessed the spatial and
temporal variations of turbidity and total suspended solids in a large
lake (between 2017 and 2022) using the Sentinel-2 MSI. Sentinel-2
images were used due to its high spatiotemporal resolution, which
makes it suitable for inland water monitoring. The results revealed
that the sensor estimated the lowest and highest values of turbidity
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in 2022 to be 3.01 NTU and 43.96 NTU, respectively with higher
turbidity levels concentrated on the lake’s western side. The lowest
and highest values of total suspendedmatter in 2022 were 1.506 μg−1

and 1.729 μg−1, respectively, with higher concentrations near the
banks and tributaries of the lake. The study concluded that Sentinel-
2 reached accuracy levels for Total Suspended Matter as R2 =
0.90 and turbidity as R2 = 0.95. More studies such as Ndou
(2023) have also assessed the accuracy of Sentinel-2 in estimating
various parameters in the South African Setumo Dam and found
that turbidity has a significant relationship with Band 3 of the
satellite sensor and total suspended solids responded to Band 11
(shortwave infrared) of the sensor.

These studies show that research about turbidity and total
suspended solids has mainly been done on larger water bodies
and newer studies focusing on these parameters need to look at
their spatiotemporal variability in smaller water bodies.

3.7.2.1.3 Secchi Disk Depth. More optically active water quality
parameters that have been studied using satellite sensors include the
Secchi disk depth (SDD) which is a parameter that commonly
represents water clarity (Yin et al., 2021). Water clarity is
affected by parameters such as suspended sediments, coloured
dissolved organic matter and chlorophyll-a that change the
underwater light field through their concentration in the water
and impact water transparency (Maciel et al., 2021). The Secchi
Disk, typically 30 cm in diameter and coloured white or black-white,
is lowered into the water column until it becomes invisible from the
water surface to measure water transparency (Maciel et al., 2021).
However, despite how simple and cost-effective the method is, it
cannot capture spatial and temporal variations needing a larger
sample size to characterise larger areas of statistical significance
(Zhang et al., 2021). Due to its advantages, satellite remote sensing
emerges as the optimal choice for investigating variations in SDD
across various water bodies (including lakes) at various
spatiotemporal scales (Zhang et al., 2021).

Various satellite sensors have been used to perform this
investigation. For instance, using the MODIS satellite sensor, a
study by Shi et al. (2018) aimed to assess the dynamics of Secchi
disk depth in the shallow Lake Taihu of China. The study created
spectral indices (which were compared with field data) using
satellite data to see which one best estimates Secchi disk depth.
The index that showed the highest correlation with Secchi disk
depth was the MODIS-Aqua reflectance at 645 nm (Reflectance
data 645 nm) with a correlation coefficient of 0.76. This created
model was able to estimate high Secchi disk concentrations in
summer (June-August) and autumn (September-November)
compared to the spring (March-May) and winter (December-
February). Using high-resolution sensors, another study by
Bonansea et al. (2019) aimed to assess the sensitivity of
Landsat 8 and Sentinel-2A satellites for estimating and
mapping Secchi disk transparency (SDT) in a Cassaffousth
Reservoir (Córdoba, Argentina). The study combined ground
observation data with datasets from four Landsat-8 OLI and four
Sentinel-2A MSI images to develop and validate models for
estimating SDT. The results of the study revealed that
assessment of the SDT by both sensors was comparable at
R2 = 0.90 and their accuracy levels were R2 = 0.82, RMSE =
0.33 for OLI, and R2 = 0.83, RMSE = 0.35 for MSI.

The results also revealed that both sensors could estimate SDT
using a combination of the blue band and the ratios blue/near-
infrared, green/near-infrared for the OLI sensor, and green/near-
infrared for the MSI sensor. This capability stems from the way
suspended sediments enhance the radiance from the surface water in
the visible and near-infrared regions of the electromagnetic
spectrum. These studies (Shi et al., 2018; Bonansea et al., 2019)
reveal how satellite sensors (low and high-resolution) and retrieval
models have been successful in estimating Secchi disk depth in a
reservoir or lake. More studies (Liu et al., 2020; Maciel et al., 2021;
Yin et al., 2021) have shown that satellite sensors (with high
resolutions) can estimate Secchi disk depth but one common
aspect that these studies have is how they have looked at Secchi
disk depth in lakes (large and shallow lakes). This shows that more
studies need to be done in assessing Secchi disk depth
concentrations in other water bodies such as small rivers to
assess the sensitivity of satellite sensors (particularly high-
resolution sensors) in monitoring these parameters.

This section has demonstrated how various satellite sensors have
been used in some optically active water quality parameter
monitoring. The studies revealed the reflectance abilities of
contaminated water using remote sensing technology,
demonstrating that optically active water quality parameters are
more easily detected compared to non-optically active parameters
(Wang and Yang, 2019). However, it is also important to assess how
non-optically active water quality parameters have been monitored
as they can provide a more comprehensive view of water quality and
the overall health of a water body (Zhao et al., 2022).

3.7.2.2 Remote sensing for non-optically active water
quality parameters

Assessing non-optically active water quality parameters involves
the retrieval of optically active water quality parameters influenced
by them (E.g., excessive nitrogen means increased algae and
chlorophyll-a concentration). Furthermore, some studies have
also detected non-optically active water quality parameters using
machine learning algorithms (Leggesse et al., 2023). Using these
algorithms with multispectral and high-resolution sensors, such as
the MSI on Sentinel-2, in comparison to other low-resolution
sensors (Table 4), reveals the potential to provide more detailed
and accurate information for detecting water quality parameters.
Thus, to detect non-optically active water quality parameters,
satellite sensors detect and capture the spectral characteristics of
water bodies, and this information is used, along with ground-based
measurements and statistical analysis, to identify patterns that
correlate with nutrient levels (Guo et al., 2021). Non-optically
active components of water quality can also assist in identifying
and mapping pollution impacts and sources within water bodies.
However, these parameters are difficult to detect directly due to their
inability to be influenced by the electromagnetic spectrum but
various remote sensing studies have assessed them using indirect
methods (Dey and Vijay, 2020).

3.7.2.2.1 Nitrogen and phosphorus. Some of the most studied
non-optically active parameters are nitrogen and phosphorus. Dey
and Vijay (2020) mention that nitrogen and phosphorus, nutrients
found in algae and cyanobacteria, are strongly correlated with
chlorophyll-a, a pigment found in water bodies. Chlorophyll-a
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serves as an indirect indicator of nutrient presence in water bodies
(Fu et al., 2022; Kowe et al., 2023). Thus, satellite sensors can detect
the presence of nitrogen and phosphorus nutrients by analysing
chlorophyll-a concentrations in water. However, Xiong et al. (2019),
dispute this method of indirectly estimating non-optically active
water quality parameters. Using MODIS/Aqua data, they developed
algorithms for estimating total phosphorus in Lake Hongze in east
China, comparing direct and indirect methods. They agree that
phosphorus in waters has to be linked to optical substances such as
chlorophyll-a as well as the suspended particulate matter (SPM) but
point out that phosphorus concentration is influenced by various
factors, not just SPM, making indirect estimation less reliable. The
direct derivation algorithm based on 645 nm and 1,240 nmMODIS/
Aqua provided better results and accuracy (R2 = 0.75, RMSE =
0.029 mg/L, MRE = 39% for the training dataset, R2 = 0.68, RMSE =
0.033 mg/L, MRE = 47% for the validated dataset), which is better
than the indirect derivation algorithm.

Another study by Dong et al. (2020) developed an inversion
model using the reflectance of various band combinations from
Sentinel-2 images, along with water quality monitoring data for total
nitrogen (TN) and ammonia nitrogen (NH3-N) at sampling sites in
the Danjiangkou Reservoir. Between. 56 band combinations, the
correlation coefficient between Band 2 × Band 8 and the measured
TN concentration was 0.9301, the highest of all. The inversionmodel
estimated TN andNH3-N concentrations with R2 accuracy values of
0.782. These results, along with those from Xiong et al. (2019), show
how direct methods using satellite sensors and retrieval models
effectively estimate nutrients. Furthermore, other studies have
estimated these nutrients using machine learning. For instance,
Gao et al. (2024) used the Sentinel-2 MSI satellite sensor and
machine learning models to estimate total nitrogen and total
phosphorus in the southern wing of the Yangtze River Delta,
China. The study used Sentinel-2 MSI’s 10 m spatial resolution
and four machine learning algorithms to enhance estimation
accuracy. Results revealed positive correlations of total nitrogen
and total phosphorus with Bands 1 to 5 of the sensor.

Additionally, the Extreme Gradient Boosting (XGBoost)
performed fairly well in estimating total nitrogen with an R2

value of 0.45. The XGBoost did not perform well for total
phosphorus as it had an R2 value of 0.37 due to excessive input
parameter values. The study shows the need for further research on
retrieval models to optimise satellite sensor results. This highlights
the need for further research to optimise satellite sensor results and
demonstrates Sentinel-2 MSI’s ability to monitor seasonal
concentrations of non-optically active water quality parameters.
In South Africa, non-optically active water quality parameters
have also been estimated using retrieval models. For example, Ali
et al. (2022) used the Standard band ratio-based ocean colour model
to estimate total phosphorus in the Hartebeespoort Dam (South
Africa), using Landsat-8 OLI, Sentinel-2 MSI, and in situ data. The
study aimed to assess long-term water quality changes in the Dam
and to use the sensors for spatiotemporal assessment of Harmful
Algal Blooms (HABs) using chlorophyll-a as an index. The results
revealed a strong correlation between total phosphorus and
chlorophyll-a with a retrieval accuracy of R2 = 0.86 and an
RMSE of 5.56 μg/L using the model (incorporated with satellite
and in situ data). These results reveal that variations in total
phosphorus levels are closely linked to changes in chlorophyll-a

levels, which serve as an index for phytoplankton biomass and
HABs. This study shows how phosphorus has been studied
indirectly in a South African Dam, and as mentioned above,
other models such as machine learning need to be assessed in
their accuracy of estimations and applied in South African small
inland rivers using multispectral sensors.

3.7.2.2.2 Temperature. Monitoring water temperature
distribution is crucial to understanding the functioning of water
bodies and its influence on the movement and behaviour of
contaminants like nutrients (Lamaro et al., 2013). Surface water
temperature, in particular, is important because it directly affects the
exchange of energy between water and the atmosphere (Lamaro
et al., 2013). Temperature can vary due to seasonal shifts, depth, and
time of day, which underscores the importance of monitoring it to
understand the various physical and biochemical processes in water
(Gholizadeh et al., 2016). Ali et al. (2022) assessed water temperature
as it influences the productivity of nutrient levels, particularly when
total phosphorus levels are below a threshold of approximately
0.4 mg/L highlighting its significance in understanding reservoirs,
dams, and lakes. Studies such as Lamaro et al. (2013) have
mentioned how the use of satellite sensors such as the Landsat-7
Enhanced Thematic Mapper Plus (ETM+) with its thermal bands
has assisted in monitoring water temperatures in a medium-sized
reservoir (Argentina). The study applied and compared a single
channel generalised method (SCGM) with a Radiative Transfer
Method (RTM) to enhance the estimation and it concluded that
both methods adequately estimated water temperature with an R2 of
0.9498 and an R2 of 0.9584 respectively.

Another study by Kramer et al. (2023) aimed to use the Landsat-
8 Thermal Infrared Sensor (TIRS) with a developed linear regression
model to estimate water surface temperature within the Itaipu
Reservoir (Brazil). The study was a success as the model reached
an R2 of 0.90 (95% confidence), root mean square deviation (RMSD)
0.8°C, Willmott Index (d) = 0.97, and Nash–Sutcliffe efficiency
coefficient (NSE) = 0.89. Both these studies (Lamaro et al., 2013;
Kramer et al., 2023) reveal the success of water quality estimation
using the Landsat series with its thermal sensors. However, despite
their successes in the estimation of water temperature, the sensors of
the Landsat series have low temporal resolution and with the
continuously increasing temperatures due to climate change
satellite sensors with this characteristic may not be suited to
monitor temperature regularly. Mushore et al. (2023) make an
example of this issue where the satellite passes over an area that
may not align with the lowest or highest temperatures of the day. As
a result, some data may not capture thermal comfort patterns during
moments of temperature extremes effectively. Thus, more studies
must use satellite sensors with higher temporal resolutions to
estimate water temperature in water bodies.

A study by Zhu and Mao (2021) indirectly assessed temperature
concentrations in a freshwater lake in China by incorporating it as
an input variable in a model to estimate the trophic state index (TSI)
of urban water bodies. By considering temperature alongside other
environmental factors and Sentinel-2 data, the study developed a
model that accurately predicts TSI levels. This demonstrates how
temperature, along with other easily measurable factors, can be
utilised in remote sensing-based approaches to assess water quality
and trophic state. Non-optically active water quality parameters can,
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therefore, assist in identifying pollution sources and provide
information related to the concentration and retrieval of optically
active water quality parameters, displaying how they can vary
spatially and seasonally and how this variation affects their
optical properties (Sent et al., 2021).

3.7.2.3 Spatiotemporal variations of water quality
parameters

Spatiotemporal monitoring of water quality parameters is
crucial to understanding the impacts of urbanisation, intensive
land use and land cover (LULC) changes, and population growth
on water bodies. Satellite-measured water reflectance plays a
critical role in tracking these variations across different water
bodies (Chen et al., 2016). Wu et al. (2021) highlight how land use
patterns affect water quality differently across spatial and
temporal scales and the importance of understanding this. For
instance, Umwali et al. (2021) assessed spatial-seasonal
variations in water quality across different land use types in
Lake Muhazi, Rwanda. They assessed parameters including
dissolved oxygen, faecal coliforms (FC), pH, biochemical
oxygen demand (BOD), temperature, total phosphorus,
nitrate, turbidity, and total solids (TS), finding that turbidity
increases due to decaying vegetation and sediment runoff during
rainfall events, leading to lake discolouration. Thus, this study
displays the relationship between LULC, spatial-seasonal
changes, and water quality parameters. It reveals how future
studies should further investigate how anthropogenic and natural
variables interact with and influence water quality over time and
space (Gelsey et al., 2023).

Additionally, Omondi et al. (2023) mapped spatiotemporal
patterns of water quality parameters by assessing their
distribution and variability in the Chebara Dam of Kenya,
using the Sentinel-2 MSI and Landsat-8 OLI. The study
focused on parameters such as chlorophyll-a, suspended
particulate matter, and turbidity. Results indicated higher
reflectance of these parameters at sampling stations T2, T6,
T9, and T11, situated at the dam’s inflow edges with shallow
depths showing the settling of suspended particulate matter.
Chlorophyll-a and suspended particulate matter were
effectively retrieved using the visible and Near-Infrared bands,
which were recognised as optimal for estimating suspended
particulate matter. Thus, analysing spatial and temporal trends
helps identify specific locations with good or poor water quality,
and this information is valuable for resource allocation and to
prioritise water conservation efforts (Behmel et al., 2016). To
achieve this, the Sentinel-2 MSI’s high spatial resolution,
frequent revisit times, and spectral band configuration present
an opportunity to comprehensively assess spatial and seasonal
variations in water quality, making it an invaluable tool for
monitoring and understanding changes in water bodies over
time (Gelsey et al., 2023). This highlights the urgency for
stakeholders, including decision-makers, government
authorities, mining companies, and water management
departments, to update and implement effective water
management strategies (Behmel et al., 2016). To update these
water management strategies, the use of the Sentinel-2 MSI, with
in situ validation and water quality retrieval estimations using
machine learning, may be viable.

3.7.2.4 Retrieval techniques for water quality parameters
Machine learning algorithms have become essential for handling

spectral data used for assessing water quality parameters (Arias-
Rodriguez et al., 2023). These algorithms identify patterns and
relationships in complex datasets, capturing spatial and temporal
dynamics in satellite images (Tian et al., 2023; Arias-Rodriguez et al.,
2023). Machine learning algorithms like Regression Tree, Random
Forest, Boosted Regression Tree, Support Vector Regression, and
Artificial Neural Networks have been used to monitor water quality
parameters in remote sensing data (Li et al., 2022a). For instance,
Leggesse et al. (2023) used Landsat-8 imagery and six machine
learning algorithms to monitor water quality in Ethiopia’s Lake
Tana. The study found that the Extreme Gradient Boosting (XGB)
regression model was effective in predicting chlorophyll-a
concentration variations in the lake from March to June, while
Random Forest regression (RF) performed best in predicting total
dissolved solids concentrations during themain rainy season (July to
September). This highlights the effectiveness of these models in
predicting water quality parameters, even with limited in situ data,
enhancing the cost-effectiveness of monitoring efforts.

A study by Kupssinskü et al. (2020) also used Sentinel-2 MSI
data, limited field data, the Random Forest model, and Artificial
Neural Networks to estimate chlorophyll-a and total suspended
solids on a small lake and dam in Brazil. The results revealed that the
models achieved R2 values above 0.8. These studies (Kupssinskü
et al., 2020; Leggesse et al., 2023) show that machine learning
algorithms and remote sensing have been used for estimating
chlorophyll concentration in lakes and dams, but there is a need
for more studies focusing on small rivers. In South Africa, Mpakairi
et al. (2024) addressed the lack of satellite sensor and machine
learning model usage in certain areas by using the Random Forest
model to estimate chlorophyll concentration in Nandoni Reservoir.
Using the Landsat-8 OLI and Sentinel-2 MSI, they found that both
sensors performed similarly, but Sentinel-2 MSI achieved higher
accuracy with spectral bands alone. This study reveals the potential
of Sentinel-2 MSI and Random Forest for more precise chlorophyll-
a estimation, offering relevance in South African water quality
monitoring. Mpakairi et al. (2024) suggest that the method
applied in the study could be used in other regions or other
water bodies, such as contaminated rivers in South Africa.

Nevertheless, non-optically active components cannot be directly
retrieved using remote sensing due to their lack of influence over the
spectral response of water when dissolved (Arias-Rodriguez et al., 2023).
Yet, they remain crucial for water quality assessment, and
spatiotemporal assessment of water quality parameters and are often
detected indirectly from optically active components (Arias-Rodriguez
et al., 2023). Guo et al. (2021) also successfully predicted total
phosphorus (TP), total nitrogen (TN), and chemical oxygen demand
(COD) in a small urban lake using Random Forest Regression and
Neural Networks, together with the Sentinel-2 MSI and field data. The
study demonstrated a coefficient of determination (R2) of 0.94 for
Neural Networks, 0.88 for Random Forest Regression, and 0.86 for
support vector regression. The study shows that the retrieval
performances of non-optically active parameters were improved by
optimisedmachine-learningmodels and satellite data/imagery retrieval.
Another study by Yang and Jin (2023) used Neural Networks and
Random Forest Regression algorithms to explore the spatiotemporal,
evolution of non-optically active water quality parameters on the
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Yangtze River (assessing the upper, middle, and lower reaches), the
largest river in China.

Using these algorithms, Landsat-8 OLI images, and water
quality sampling, the study revealed that the Random Forest
model and the Neural Networks model both did well in
estimating total nitrogen (TN) and total phosphorus (TP)
concentrations (with an R2 0.658 and 0.67 for TN and 0.613 and
0.69 for TP, in the middle reaches the river). The neural networks
performed fairly better as compared to the random forest model but
results for both models show how machine learning models (when
combined with satellite data and field data) produce accurate results
in estimating non-optically active water quality parameters. The
study by Yang and Jin (2023), along with others like Guo et al.
(2021), showcases the effectiveness of machine learning algorithms
in estimating non-optically active parameters in both small lakes
and large rivers. These estimations facilitate the generation of
spatiotemporal distributions of water quality parameters. For
instance, Guo et al. (2021) mapped concentrations of total
phosphorous (TP), total nitrogen (TN), and chemical oxygen
demand (COD), revealing spatial variations and identifying
sources of these parameters within the lake. Studies such as Tian
et al. (2023) have shown that proxies (chlorophyll-a and suspended
sediment concentrations) can be used to indirectly estimate non-
optically active parameters. These estimates rely on observations of
optically active variables using satellite sensors.

Guo et al. (2021), Kupssinskü et al. (2020), Leggesse et al. (2023)
and Yang and Jin (2023) have collectively demonstrated the
effectiveness of Random Forest models in estimating water
quality parameters through remote sensing. Their studies indicate
the need for further assessments, particularly in small river
ecosystems, and the exploration of additional machine learning
algorithms like XGB. Accurate estimation of both optically and
non-optically active parameters has the potential to enhance
decision-making in managing their sources (Gholizadeh et al.,
2016). To enhance water management, it is, therefore, essential to
integrate satellite data, field data collection (such as water sampling),
and machine learning algorithms (Huang et al., 2020).

4 Summary and conclusion

The aim of this review was to explore and discuss existing trends
in the remote sensing of water quality parameters in inland water
bodies while also emphasizing the under exploration of water quality
monitoring in smaller water bodies. Publication trends reveal that
anthropogenic activities, particularly mining, agriculture, and
sewage works, significantly impact water body health. Traditional
methods of water quality monitoring have been used to address this
challenge; however, they are deemed labor-intensive, point-based,
and costly, among other limitations. Increasing publications on
remote sensing for water quality monitoring have revealed that
satellite sensors offer a better alternative. Remote sensing provides
the advantage of large-scale monitoring, cost-effectiveness, and near
real-time assessments. With high-resolution sensors, this method
can assess both optically active and non-optically active water
quality parameters. Publication trends in this review revealed that
low-resolution sensors like the widely used MODIS are suitable for
large water bodies such as ocean waters and larger inland water

bodies like lakes. Although MODIS is a multispectral sensor with a
high temporal resolution, it has limitations in monitoring small
inland water bodies such as rivers due to larger pixel sizes (lower
spatial resolution).

Studies reveal that higher-resolution sensors, like the Sentinel-2
MSI, are more suitable for monitoring water quality parameters in
these areas. These sensors can provide better accuracy in estimating
water quality parameters in small or narrow rivers due to finer
spatial resolution and the added advantage of high temporal
resolution. Publication trends also reveal a growing number of
studies that utilise the higher-resolution Landsat-8 OLI and the
Sentinel-2 MSI to monitor inland water bodies (including smaller
ones) between 2022 and 2024. This is attributed not only to their
high resolutions but also to their accessibility, even to developing
countries, particularly in Africa. Studies in this review, however,
highlight the limitation of satellite remote sensing in monitoring
non-optically active water quality parameters such as nitrogen,
phosphorus, and temperature, among others. Non-optically active
water quality parameters are revealed to lack optical signals that can
assist in their retrieval, causing their assessment to require solutions
that address complex relationships. Publication trends reveal an
increasing use of machine learning models to address this challenge
(together with in situ data), which has improved the accuracy and
efficiency of retrieving not only optically active water quality
parameters but also enhanced the retrieval of non-optically active
parameters with rigorous machine learning models.

Studies have used popular models such as random forest, neural
networks, and eXtreme Gradient Boosting, which is becoming a
popular choice for regression, classification, and ranking problems.
Future studies need to explore more underutilised machine learning
models to assess their accuracy in estimating non-optically active
parameters, particularly on lakes and dams. In relation to inversion
methods for remote sensing of water quality monitoring, this review
focused on empirical methods, particularly machine learning.
Publication trends have also shown increasing studies in this
topic. Therefore, future studies need to focus on more inversion
methods, including semi-empirical models and radiative transfer
models, to effectively monitor non-optically active water quality
parameters. This review has highlighted the increasing trends and
gaps in water quality monitoring of inland water bodies, with the
Sentinel-2MSI revealed to be a widely used satellite sensor for inland
water bodies considered small. The fact that it has a high spatial
resolution reaching 10 m provides an advantage for extensive water
quality monitoring. However, multispectral satellite sensors like the
Sentinel-2 MSI still face challenges in predicting water quality
parameters in water bodies with heterogeneous ecosystems, such
as those containing both green and blue-green algae with
comparable spectral profiles. This underscores the need for future
studies to further explore the use of hyperspectral sensors, which
have much finer spectral resolution, in water quality monitoring.
Hyperspectral sensors may be more suitable for assessing the quality
of complex small inland water bodies and can enhance remote
sensing-based water quality monitoring.

Atmospheric correction errors also still hinder the accuracy of
using satellite sensors for water quality monitoring. Studies reveal
that it is crucial to find a suitable algorithm for correcting
atmospheric errors on satellite sensor images tailored to specific
inland water bodies or study areas. For example, the iCOR

Frontiers in Environmental Science frontiersin.org18

Ngamile et al. 10.3389/fenvs.2025.1549301

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1549301


atmospheric correction algorithm can be used to perform
atmospheric correction on the Sentinel-2 MSI when it is used to
study inland water bodies. Thus, there is a need for future studies to
further explore these satellite remote sensing limitations. This
review, therefore, demonstrates that combining high-resolution
satellite data, field data, and machine learning algorithms can
enhance the accuracy of water quality assessments. Such
advancements can significantly improve decision-making
processes for South Africa’s water management policies and
contribute to the sustainable management of water resources.

Author contributions

SN: Conceptualization, Investigation, Methodology,
Writing–original draft. SM: Project administration, Supervision,
Writing–review and editing. MK: Funding acquisition, Project
administration, Resources, Supervision,Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This work
was supported by Water Research Commission (WRC) project:
Monitoring Surface Water Quality Using Remote Sensing
Technology (Project number: C2023/2024-01241).

Acknowledgments

The publication costs will be funded by the Earth Observation
division of the South African National Space Agency (SANSA).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Abbas, M.M., Melesse, A.M., Scinto, L. J., and Rehage, J. S. (2019). Satellite estimation
of chlorophyll-a using moderate resolution imaging spectroradiometer (MODIS) sensor
in shallow coastal water bodies: validation and improvement. WaterSwitzerl. 11, 1621.
doi:10.3390/w11081621

Abdelal, Q., Assaf, M. N., Al-Rawabdeh, A., Arabasi, S., and Rawashdeh, N. A. (2022).
Assessment of sentinel-2 and landsat-8 OLI for small-scale inland water quality
modeling and monitoring based on handheld hyperspectral ground truthing. J. Sens.
2022, 1–19. doi:10.1155/2022/4643924

Adjovu, G. E., Stephen, H., James, D., and Ahmad, S. (2023). Overview of the
application of remote sensing in effective monitoring of water quality parameters.
Remote Sens. (Basel) 15, 1938. doi:10.3390/rs15071938

Ahmed, T., Zounemat-Kermani, M., and Scholz, M. (2020). Climate change, water
quality and water-related challenges: a review with focus on Pakistan. Int. J. Environ.
Res. Public Health 17, 8518–8522. doi:10.3390/ijerph17228518

Ali, K., Abiye, T., and Adam, E. (2022). Integrating in situ and current generation
satellite data for temporal and spatial analysis of harmful algal blooms in the
hartbeespoort dam, crocodile River Basin, South Africa. Remote Sens. (Basel) 14,
4277. doi:10.3390/rs14174277

Al-Shaibah, B., Liu, X., Zhang, J., Tong, Z., Zhang, M., El-Zeiny, A., et al. (2021).
Modeling water quality parameters using landsat multispectral images: a case study of
erlong lake, northeast China. Remote Sens. (Basel) 13, 1603. doi:10.3390/rs13091603

Altenburger, R., Brack, W., Burgess, R. M., Busch, W., Escher, B. I., Focks, A., et al.
(2019). Future water quality monitoring: improving the balance between exposure and
toxicity assessments of real-world pollutant mixtures. Environ. Sci. Eur. 31, 12. doi:10.
1186/s12302-019-0193-1

Arabi, B., Salama, M. S., Pitarch, J., and Verhoef, W. (2020). Integration of in-situ and
multi-sensor satellite observations for long-term water quality monitoring in coastal
areas. Remote Sens. Environ. 239, 111632. doi:10.1016/j.rse.2020.111632

Arias-Rodriguez, L. F., Tüzün, U. F., Duan, Z., Huang, J., Tuo, Y., and Disse, M.
(2023). Global water quality of inland waters with harmonized landsat-8 and sentinel-2
using cloud-computed machine learning. Remote Sens. (Basel) 15, 1390. doi:10.3390/
rs15051390

Arora, M., Mudaliar, A., and Pateriya, B. (2022). Assessment and monitoring of
optically active water quality parameters on wetland ecosystems based on remote
sensing approach: a case study on Harike and keshopur wetland over Punjab region,
India. Eng. Proc. 27, 84. doi:10.3390/ecsa-9-13361

Attila, J., Kauppila, P., Kallio, K. Y., Alasalmi, H., Keto, V., Bruun, E., et al. (2018).
Applicability of Earth Observation chlorophyll-a data in assessment of water status via
MERIS — with implications for the use of OLCI sensors. Remote Sens. Environ. 212,
273–287. doi:10.1016/j.rse.2018.02.043

Bai, Y., Zhang, S., Mu, E., Zhao, Y., Cheng, L., Zhu, Y., et al. (2023). Characterizing the
spatiotemporal distribution of dissolved organic matter (DOM) in the Yongding River Basin:
insights from flow regulation. J. Environ. Manage 325, 116476. doi:10.1016/j.jenvman.2022.
116476

Bangira, T., Matongera, T. N., Mabhaudhi, T., and Mutanga, O. (2024). Remote sensing-
based water quality monitoring in African reservoirs, potential and limitations of sensors and
algorithms: a systematic review. Phys. Chem. Earth 134, 103536. doi:10.1016/j.pce.2023.103536

Barakat, A., El Baghdadi, M., Rais, J., Aghezzaf, B., and Slassi, M. (2016). Assessment
of spatial and seasonal water quality variation of Oum Er Rbia River (Morocco) using
multivariate statistical techniques. Int. Soil Water Conservation Res. 4, 284–292. doi:10.
1016/j.iswcr.2016.11.002

Behmel, S., Damour, M., Ludwig, R., and Rodriguez, M. J. (2016). Water quality
monitoring strategies — a review and future perspectives. Sci. Total Environ. 571,
1312–1329. doi:10.1016/j.scitotenv.2016.06.235

Bonansea, M., Ledesma, M., Rodriguez, C., and Pinotti, L. (2019). Using new remote
sensing satellites for assessing water quality in a reservoir. Hydrological Sci. J. 64, 34–44.
doi:10.1080/02626667.2018.1552001

Bramich, J., Bolch, C. J. S., and Fischer, A. (2021). Improved red-edge chlorophyll-a
detection for Sentinel 2. Ecol. Indic. 120, 106876. doi:10.1016/j.ecolind.2020.106876

Bresciani, M., Giardino, C., Stroppiana, D., Dessena, M. A., Buscarinu, P., Cabras, L.,
et al. (2019). Monitoring water quality in two dammed reservoirs from multispectral
satellite data. Eur. J. Remote Sens. 52, 113–122. doi:10.1080/22797254.2019.1686956

Caballero, I., Steinmetz, F., and Navarro, G. (2018). Evaluation of the first year of
operational Sentinel-2A data for retrieval of suspended solids in medium-to high-
turbiditywaters. Remote Sens. (Basel) 10, 982. doi:10.3390/rs10070982

Chathuranika, I. M., Sachinthanie, E., Zam, P., Gunathilake, M. B., Denkar, D., Muttil, N.,
et al. (2023). Assessing the water quality and status of water resources in urban and rural areas
of Bhutan. J. Hazard. Mater. Adv. 12, 100377. doi:10.1016/j.hazadv.2023.100377

Chavula, G., Brezonik, P., Thenkabail, P., Johnson, T., and Bauer, M. (2009).
Estimating chlorophyll concentration in Lake Malawi from MODIS satellite
imagery. Phys. Chem. Earth 34, 755–760. doi:10.1016/j.pce.2009.07.015

Frontiers in Environmental Science frontiersin.org19

Ngamile et al. 10.3389/fenvs.2025.1549301

https://doi.org/10.3390/w11081621
https://doi.org/10.1155/2022/4643924
https://doi.org/10.3390/rs15071938
https://doi.org/10.3390/ijerph17228518
https://doi.org/10.3390/rs14174277
https://doi.org/10.3390/rs13091603
https://doi.org/10.1186/s12302-019-0193-1
https://doi.org/10.1186/s12302-019-0193-1
https://doi.org/10.1016/j.rse.2020.111632
https://doi.org/10.3390/rs15051390
https://doi.org/10.3390/rs15051390
https://doi.org/10.3390/ecsa-9-13361
https://doi.org/10.1016/j.rse.2018.02.043
https://doi.org/10.1016/j.jenvman.2022.116476
https://doi.org/10.1016/j.jenvman.2022.116476
https://doi.org/10.1016/j.pce.2023.103536
https://doi.org/10.1016/j.iswcr.2016.11.002
https://doi.org/10.1016/j.iswcr.2016.11.002
https://doi.org/10.1016/j.scitotenv.2016.06.235
https://doi.org/10.1080/02626667.2018.1552001
https://doi.org/10.1016/j.ecolind.2020.106876
https://doi.org/10.1080/22797254.2019.1686956
https://doi.org/10.3390/rs10070982
https://doi.org/10.1016/j.hazadv.2023.100377
https://doi.org/10.1016/j.pce.2009.07.015
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1549301


Chebud, Y., Naja, G. M., Rivero, R. G., and Melesse, A. M. (2012). Water quality
monitoring using remote sensing and an artificial neural network.Water Air Soil Pollut.
223, 4875–4887. doi:10.1007/s11270-012-1243-0

Chen, H., Tan, C., Peng, H., Yang, W., and Li, L. (2024). A qualitative study of water
quality using landsat 8 and station water quality-monitoring data to support SDG
6.3.2 evaluations: a case study of deqing, China. WaterSwitzerl. 16, 1319. doi:10.3390/
w16101319

Chen, X., Zhou, W., Pickett, S. T. A., Li, W., and Han, L. (2016). Spatial-temporal
variations of water quality and its relationship to land use and land cover in Beijing,
China. Int. J. Environ. Res. Public Health 13, 449. doi:10.3390/ijerph13050449

Coraggio, E., Han, D., Gronow, C., and Tryfonas, T. (2022). Water quality sampling
frequency analysis of surface freshwater: a case study on bristol floating harbour. Front.
Sustain. Cities 3. doi:10.3389/frsc.2021.791595

Demetillo, A. T., Japitana, M. V., and Taboada, E. B. (2019). A system for monitoring
water quality in a large aquatic area using wireless sensor network technology. Sustain.
Environ. Res. 1, 12. doi:10.1186/s42834-019-0009-4

Deng, J., Chen, F., Hu,W., Lu, X., Xu, B., and Hamilton, D. P. (2019). Variations in the
distribution of chl-a and simulation using a multiple regression model. Int. J. Environ.
Res. Public Health 16, 4553. doi:10.3390/ijerph16224553

Dey, J., and Vijay, R. (2020). A critical and intensive review on assessment of water
quality parameters through geospatial techniques. doi:10.1007/s11356-021-14726-4/
Published

Dong, G., Hu, Z., Liu, X., Fu, Y., and Zhang, W. (2020). Spatio-temporal variation of
total nitrogen and ammonia nitrogen in the water source of the middle route of the
south-to-north water diversion project. WaterSwitzerl. 12, 2615. doi:10.3390/
W12092615

Duan, M., Qiu, Z., Li, R., Li, K., Yu, S., and Liu, D. (2024). Monitoring suspended
sediment transport in the lower Yellow River using landsat observations. Remote Sens.
(Basel) 16, 229. doi:10.3390/rs16020229

Dube, T., Mutanga, O., Seutloali, K., Adelabu, S., and Shoko, C. (2015). Water quality
monitoring in sub-Saharan African lakes: a review of remote sensing applications. Afr.
J. Aquat. Sci. 40, 1–7. doi:10.2989/16085914.2015.1014994

Edokpayi, J. N., Odiyo, J. O., and Durowoju, O. S. (2017). Impact of wastewater on
surface water quality in developing countries: a case study of South Africa.Water Qual.
(InTech). doi:10.5772/66561

Eon, R., Wenny, B. N., Poole, E., Eftekharzadeh Kay, S., Montanaro, M., Gerace, A.,
et al. (2024). Landsat 9 thermal infrared sensor-2 (TIRS-2) pre- and post-launch spatial
response performance. Remote Sens. (Basel) 16, 1065. doi:10.3390/rs16061065

Flemming, N. C., Vallerga, S., Pinardi, N., Behrens, H. W. A., Manzella, G., Prandle,
D., et al. (2002). The use of SeaWiFS for operational monitoring of water quality in the
North Sea, 481, 487. doi:10.1016/s0422-9894(02)80054-x

Frasson, R. P. M., Ardila, D. R., Pease, J., Hestir, E., Bright, C., Carter, N., et al. (2024).
The impact of spatial resolution on inland water quality monitoring from space.
Environ. Res. Commun. 6, 101003. doi:10.1088/2515-7620/ad7dd8

Fu, B., Lao, Z., Liang, Y., Sun, J., He, X., Deng, T., et al. (2022). Evaluating optically and
non-optically active water quality and its response relationship to hydro-meteorology
using multi-source data in Poyang Lake, China. Ecol. Indic. 145, 109675. doi:10.1016/j.
ecolind.2022.109675

Gao, L., Shangguan, Y., Sun, Z., Shen, Q., and Shi, Z. (2024). Estimation of non-
optically active water quality parameters in zhejiang province based on machine
learning. Remote Sens. (Basel) 16, 514. doi:10.3390/rs16030514

Gelsey, K., Chang, H., and Ramirez, D. (2023). Effects of landscape characteristics,
anthropogenic factors, and seasonality on water quality in Portland, Oregon. Environ.
Monit. Assess. 195, 219. doi:10.1007/s10661-022-10821-2

Ghasempour, F., Sekertekin, A., and Kutoglu, S. H. (2023). “How Landsat 9 is superior
to Landsat 8: Comparative assessment of land use land cover classification and land
surface temperature,” ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, X-4/W1-2022, 221–227. doi:10.5194/isprs-annals-X-4-W1-2022-
221-2023

Gholizadeh, M. H., Melesse, A. M., and Reddi, L. (2016). A comprehensive review on
water quality parameters estimation using remote sensing techniques. Sensors Switz. 16,
1298. doi:10.3390/s16081298

Goyens, C., Lavigne, H., Dille, A., and Vervaeren, H. (2022). Using hyperspectral
remote sensing to monitor water quality in drinking water reservoirs. Remote Sens.
(Basel) 14, 5607. doi:10.3390/rs14215607

Groom, S. B., Sathyendranath, S., Ban, Y., Bernard, S., Brewin, B., Brotas, V., et al.
(2019). Satellite ocean colour: current status and future perspective. Front. Mar. Sci. 6,
1–30. doi:10.3389/fmars.2019.00485

Guo, H., Huang, J. J., Chen, B., Guo, X., and Singh, V. P. (2021). A machine learning-
based strategy for estimating non-optically active water quality parameters using
Sentinel-2 imagery. Int. J. Remote Sens. 42, 1841–1866. doi:10.1080/01431161.2020.
1846222

Guo, J., Wang, X., Liu, B., Liu, K., Zhang, Y., and Wang, C. (2023). Remote-sensing
extraction of small water bodies on the loess plateau, Remote-Sensing Extr. Small Water
Bodies Loess Plateau 15. 866. doi:10.3390/w15050866

Gupta, A., and Singh, M. R. (2016). Water pollution-Sources,Effects and control.
Available at: https://www.researchgate.net/publication/321289637.

Hafeez, S., Wong, M. S., Ho, H. C., Nazeer, M., Nichol, J., Abbas, S., et al. (2019).
Comparison of machine learning algorithms for retrieval of water quality indicators in
case-ii waters: a case study of Hong Kong. Remote Sens. (Basel) 11, 617. doi:10.3390/
rs11060617

Harmel, R. D., Preisendanz, H. E., King, K. W., Busch, D., Birgand, F., and Sahoo,
D. (2023). A review of data quality and cost considerations for water quality
monitoring at the field scale and in small watersheds, A Rev. Data Qual. Cost
Considerations Water Qual. Monit. A. T. Field Scale Small Watersheds. 15. 3110.
doi:10.3390/w15173110

Hobbs, P. J. (2017). TDS load contribution from acid mine drainage to hartbeespoort
Dam, South Africa. Water sa. 43, 626–637. doi:10.4314/wsa.v43i4.10

Hou, X., Feng, L., Duan, H., Chen, X., Sun, D., and Shi, K. (2017). Fifteen-year
monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and
lower basin of the Yangtze River, China. Remote Sens. Environ. 190, 107–121. doi:10.
1016/j.rse.2016.12.006

Huang, J. J., Guo, H., Chen, B., Guo, X., and Singh, V. P. (2020). Retrieval of non-
optically active parameters for small scale urban waterbodies by a machine learning-
based strategy. doi:10.20944/preprints202004.0111.v1

IOCCG (2018). Earth Observations in support of Global water quality monitoring.

Jafarbiglu, H., and Pourreza, A. (2022). A comprehensive review of remote sensing
platforms, sensors, and applications in nut crops. Comput. Electron Agric. 197, 106844.
doi:10.1016/j.compag.2022.106844

Jaji, M. O., Bamgbose, O., Odukoya, O. O., and Arowolo, T. A. (2007). Water quality
assessment of ogun river, south west Nigeria. Environ. Monit. Assess. 133, 473–482.
doi:10.1007/s10661-006-9602-1

Jaywant, S. A., and Arif, K. M. (2024). Remote sensing techniques for water quality
monitoring: a review. Sensors 24, 8041. doi:10.3390/s24248041

Jiang, D., Scholze, J., Liu, X., Simis, S. G. H., Stelzer, K., Müller, D., et al. (2023). A
data-driven approach to flag land-affected signals in satellite derived water quality from
small lakes. Int. J. Appl. Earth Observation Geoinformation 117, 103188. doi:10.1016/j.
jag.2023.103188

Johansen, R., Beck, R., Nowosad, J., Nietch, C., Xu, M., Shu, S., et al. (2018). Evaluating
the portability of satellite derived chlorophyll-a algorithms for temperate inland lakes
using airborne hyperspectral imagery and dense surface observations. Harmful Algae
76, 35–46. doi:10.1016/j.hal.2018.05.001

Kalaitzidou, K., Ntona, M. M., Zavridou, E., Tzeletas, S., Patsialis, T., Kallioras, A.,
et al. (2023). Water quality evaluation of groundwater and dam reservoir water:
application of the water quality index to study sites in Greece. WaterSwitzerl. 15,
4170. doi:10.3390/w15234170

Kowe, P., Ncube, E., Magidi, J., Ndambuki, J. M., Rwasoka, D. T., Gumindoga, W.,
et al. (2023). Spatial-temporal variability analysis of water quality using remote sensing
data: a case study of Lake Manyame. Sci. Afr. 21, e01877. doi:10.1016/j.sciaf.2023.e01877

Kramer, G., Filho, W. P., de Carvalho, L. A. S., Trindade, P. M. P., da Rosa, C. N., and
Dezordi, R. (2023). Performance and validation of water surface temperature estimates
from landsat 8 of the Itaipu reservoir, state of paraná, Brazil. Environ. Monit. Assess. 195,
137. doi:10.1007/s10661-022-10677-6

Kratzer, S., Vinterhav, C., Kratzer, S., and Vinterhav, C. (2010). Improvement of
MERIS level 2 products in Baltic Sea coastal areas by applying the Improved Contrast
between Ocean and Land processor (ICOL)-data analysis and validation* MERIS full
resolution data Optical case 2 waters Adjacency effect Algorithm development MERIS
standard processor FUB processor C2R processor. Available at: http://www.iopan.gda.
pl/oceanologia/212.

Kumar, S., Kou, R., Hill, H., Lempges, J., Qian, E., and Jayaram, V. (2023). In-situ
Water quality monitoring in Oil and Gas operations. 26. doi:10.1117/12.2663076

Kupssinskü, L. S., Guimarães, T. T., De Souza, E. M., Zanotta, D. C., Veronez, M. R.,
Gonzaga, L., et al. (2020). A method for chlorophyll-a and suspended solids prediction
through remote sensing and machine learning. Sensors Switz. 20, 2125. doi:10.3390/
s20072125

Lal, K., Jaywant, S. A., and Arif, K. M. (2023). Electrochemical and optical sensors for
real-time detection of nitrate in water. Sensors 23, 7099. doi:10.3390/s23167099

Lamaro, A. A., Mariñelarena, A., Torrusio, S. E., and Sala, S. E. (2013). Water surface
temperature estimation from Landsat 7 ETM+ thermal infrared data using the
generalized single-channel method: Case study of Embalse del Río Tercero
(Córdoba, Argentina). Adv. Space Res. 51, 492–500. doi:10.1016/j.asr.2012.09.032

Leggesse, E. S., Zimale, F. A., Sultan, D., Enku, T., Srinivasan, R., and Tilahun, S. A.
(2023). Predicting optical water quality indicators from remote sensing using machine
learning algorithms in tropical highlands of Ethiopia. Hydrology 10, 110. doi:10.3390/
hydrology10050110

Li, J., Ma, R., Cao, Z., Xue, K., Xiong, J., Hu, M., et al. (2022a). Satellite detection of
surface water extent: a review of methodology. WaterSwitzerl. 14, 1148. doi:10.3390/
w14071148

Li, L., Gu, M., Gong, C., Hu, Y., Wang, X., Yang, Z., et al. (2023). An advanced remote
sensing retrieval method for urban non-optically active water quality parameters: an

Frontiers in Environmental Science frontiersin.org20

Ngamile et al. 10.3389/fenvs.2025.1549301

https://doi.org/10.1007/s11270-012-1243-0
https://doi.org/10.3390/w16101319
https://doi.org/10.3390/w16101319
https://doi.org/10.3390/ijerph13050449
https://doi.org/10.3389/frsc.2021.791595
https://doi.org/10.1186/s42834-019-0009-4
https://doi.org/10.3390/ijerph16224553
https://doi.org/10.1007/s11356-021-14726-4/Published
https://doi.org/10.1007/s11356-021-14726-4/Published
https://doi.org/10.3390/W12092615
https://doi.org/10.3390/W12092615
https://doi.org/10.3390/rs16020229
https://doi.org/10.2989/16085914.2015.1014994
https://doi.org/10.5772/66561
https://doi.org/10.3390/rs16061065
https://doi.org/10.1016/s0422-9894(02)80054-x
https://doi.org/10.1088/2515-7620/ad7dd8
https://doi.org/10.1016/j.ecolind.2022.109675
https://doi.org/10.1016/j.ecolind.2022.109675
https://doi.org/10.3390/rs16030514
https://doi.org/10.1007/s10661-022-10821-2
https://doi.org/10.5194/isprs-annals-X-4-W1-2022-221-2023
https://doi.org/10.5194/isprs-annals-X-4-W1-2022-221-2023
https://doi.org/10.3390/s16081298
https://doi.org/10.3390/rs14215607
https://doi.org/10.3389/fmars.2019.00485
https://doi.org/10.1080/01431161.2020.1846222
https://doi.org/10.1080/01431161.2020.1846222
https://doi.org/10.3390/w15050866
https://www.researchgate.net/publication/321289637
https://doi.org/10.3390/rs11060617
https://doi.org/10.3390/rs11060617
https://doi.org/10.3390/w15173110
https://doi.org/10.4314/wsa.v43i4.10
https://doi.org/10.1016/j.rse.2016.12.006
https://doi.org/10.1016/j.rse.2016.12.006
https://doi.org/10.20944/preprints202004.0111.v1
https://doi.org/10.1016/j.compag.2022.106844
https://doi.org/10.1007/s10661-006-9602-1
https://doi.org/10.3390/s24248041
https://doi.org/10.1016/j.jag.2023.103188
https://doi.org/10.1016/j.jag.2023.103188
https://doi.org/10.1016/j.hal.2018.05.001
https://doi.org/10.3390/w15234170
https://doi.org/10.1016/j.sciaf.2023.e01877
https://doi.org/10.1007/s10661-022-10677-6
http://www.iopan.gda.pl/oceanologia/212
http://www.iopan.gda.pl/oceanologia/212
https://doi.org/10.1117/12.2663076
https://doi.org/10.3390/s20072125
https://doi.org/10.3390/s20072125
https://doi.org/10.3390/s23167099
https://doi.org/10.1016/j.asr.2012.09.032
https://doi.org/10.3390/hydrology10050110
https://doi.org/10.3390/hydrology10050110
https://doi.org/10.3390/w14071148
https://doi.org/10.3390/w14071148
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1549301


example from Shanghai. Sci. Total Environ. 880, 163389. doi:10.1016/j.scitotenv.2023.
163389

Li, N., Ning, Z., Chen, M., Wu, D., Hao, C., Zhang, D., et al. (2022b). Satellite and
machine learning monitoring of optically inactive water quality variability in a tropical
river. Remote Sens. (Basel) 14, 5466. doi:10.3390/rs14215466

Liber, K., Goodfellow, W., Den Besten, P., Clements, W., Galloway, T., Gerhardt, A.,
et al. (2016). in Situ-based effects measures: considerations for improving methods and
approaches.

Liu, C., Zhang, F., Jim, C. Y., Oke, S. A., and Adam, E. (2024a). Evaluation of
atmospheric correction algorithms for salt lake water assessment: accuracy, band-
specific effects, and sensor consistency. PLoS One 19, e0315837. doi:10.1371/journal.
pone.0315837

Liu, D., Duan, H., Loiselle, S., Hu, C., Zhang, G., Li, J., et al. (2020). Observations of
water transparency in China’s lakes from space. Int. J. Appl. Earth Observation
Geoinformation 92, 102187. doi:10.1016/j.jag.2020.102187

Liu, M., Wang, L., and Qiu, F. (2022). Using MODIS data to track the long-term
variations of dissolved oxygen in Lake Taihu. Front. Environ. Sci. 10. doi:10.3389/fenvs.
2022.1096843

Liu, S., Kim, S., Glamore, W., Tamburic, B., and Johnson, F. (2024b). Remote sensing
of water colour in small southeastern Australian waterbodies. J. Environ. Manage 352,
120096. doi:10.1016/j.jenvman.2024.120096

Llodrà-Llabrés, J., Martínez-López, J., Postma, T., Pérez-Martínez, C., and Alcaraz-
Segura, D. (2023). Retrieving water chlorophyll-a concentration in inland waters from
Sentinel-2 imagery: review of operability, performance and ways forward. Int. J. Appl.
Earth Observation Geoinformation 125, 103605. doi:10.1016/j.jag.2023.103605

Long, C. M., and Pavelsky, T. M. (2013). Remote sensing of suspended sediment
concentration and hydrologic connectivity in a complex wetland environment. Remote
Sens. Environ. 129, 197–209. doi:10.1016/j.rse.2012.10.019

Lulla, K., Nellis, M. D., Rundquist, B., Srivastava, P. K., and Szabo, S. (2021). Mission
to earth: LANDSAT 9 will continue to view the world. Geocarto Int. 36, 2261–2263.
doi:10.1080/10106049.2021.1991634

Maciel, D. A., Barbosa, C. C. F., Novo, E. M. L. de M., Flores Júnior, R., and
Begliomini, F. N. (2021). Water clarity in Brazilian water assessed using Sentinel-2 and
machine learning methods. ISPRS J. Photogrammetry Remote Sens. 182, 134–152.
doi:10.1016/j.isprsjprs.2021.10.009

Majozi, N. P., Salama, M. S., Bernard, S., Harper, D. M., and Habte, M. G. (2014).
Remote sensing of euphotic depth in shallow tropical inland waters of Lake Naivasha
using MERIS data. Remote Sens. Environ. 148, 178–189. doi:10.1016/j.rse.2014.03.025

Mamun, M., Hasan, M., and An, K. G. (2024). Advancing reservoirs water quality
parameters estimation using Sentinel-2 and Landsat-8 satellite data with machine
learning approaches. Ecol. Inf. 81, 102608. doi:10.1016/j.ecoinf.2024.102608

Matthews, M. W., and Bernard, S. (2015). Eutrophication and cyanobacteria in South
Africa’s standing water bodies: a view from space. S Afr. J. Sci. 111, 1–8. doi:10.17159/
sajs.2015/20140193

McClain, C. R., Meister, G., and Monosmith, B. (2014). “Satellite ocean color sensor
design concepts and performance requirements,” in Experimental methods in the
physical sciences (Academic Press), 73–119. doi:10.1016/B978-0-12-417011-7.00005-2

Mpakairi, K. S., Muthivhi, F. F., Dondofema, F., Munyai, L. F., and Dalu, T. (2024).
Chlorophyll-a unveiled: unlocking reservoir insights through remote sensing in a
subtropical reservoir. Environ. Monit. Assess. 196, 401. doi:10.1007/s10661-024-
12554-w

Mujathel, A. M., El-Barky, W., Fayed, M., and Aly, S. A. (2022). Trihalomethane
evaluation in chlorinated treated drinking water sources in Saudi Arabia (Aseer region a
case study). Alexandria Eng. J. 61, 12699–12711. doi:10.1016/j.aej.2022.06.043

Munyai, L. F., Dondofema, F., Banda, K., Mutoti, M. I., and Gumbo, J. R. (2022).
Satellite derived estimation of chlorophyll-a on harmful algal blooms (HABs) in selected
dams of vhembe district, limpopo province. Int. J. Environ. Impacts 5, 362–374. doi:10.
2495/EI-V5-N4-362-374

Murray, C., Larson, A., Goodwill, J., Wang, Y., Cardace, D., and Akanda, A. S. (2022).
Water quality observations from space: a review of critical issues and challenges.
Environ. - MDPI 9 9, 125. doi:10.3390/environments9100125

Mushore, T. D., Odindi, J., Slotow, R., andMutanga, O. (2023). Remote sensing-based
outdoor thermal comfort assessment in local climate zones in the rural–urban
continuum of eThekwini municipality, South Africa. Remote Sens. (Basel) 15, 5461.
doi:10.3390/rs15235461

Myint, S. W., and Walker, N. D. (2002). Quantification of surface suspended
sediments along a river dominated coast with NOAA AVHRR and Sea WiFS
measurements: Louisiana, USA. Int. J. Remote Sens. 23, 3229–3249. doi:10.1080/
01431160110104700

Ndou, N. (2023). Geostatistical inference of Sentinel-2 spectral reflectance patterns to
water quality indicators in the Setumo dam, South Africa. Remote Sens. Appl. 30,
100945. doi:10.1016/j.rsase.2023.100945

Niroumand-Jadidi, M., Bovolo, F., Bresciani, M., Gege, P., and Giardino, C. (2022).
Water quality retrieval from landsat-9 (OLI-2) imagery and comparison to sentinel-2.
Remote Sens. (Basel) 14, 4596. doi:10.3390/rs14184596

Obaid, A. A., Ali, K. A., Abiye, T. A., and Adam, E. M. (2021). Assessing the utility of
using current generation high-resolution satellites (Sentinel 2 and Landsat 8) to monitor
large water supply dam in South Africa. Remote Sens. Appl. 22, 100521. doi:10.1016/j.
rsase.2021.100521

Odermatt, D., Heege, T., Nieke, J., Kneubühler, M., and Itten, K. (2008). Water quality
monitoring for lake constance with a physically based algorithm for MERIS data.
Sensors 8, 4582–4599. doi:10.3390/s8084582

Ogashawara, I., and Moreno-Madriñán, M. J. (2014). Improving inland water quality
monitoring through remote sensing techniques. ISPRS Int. J. Geoinf 3, 1234–1255.
doi:10.3390/ijgi3041234

Oliphant, T., Tsoeleng, L. T., Mhangara, P., and Malahlela, O. E. (2018). Mapping
chlorophyll-a concentrations in a cyanobacteria- and algae-impacted Vaal Dam using
Landsat 8 OLI data. S Afr. J. Sci. 114. doi:10.17159/sajs.2018/4841

Olmanson, L. G., Brezonik, P. L., and Bauer, M. E. (2011). Evaluation of medium to
low resolution satellite imagery for regional lake water quality assessments. Water
Resour. Res. 47. doi:10.1029/2011WR011005

Omondi, A. N., Ouma, Y., Kosgei, J. R., Kongo, V., Kemboi, E. J., Njoroge, S. M., et al.
(2023). Estimation and mapping of water quality parameters using satellite images: a
case study of Two Rivers Dam, Kenya.Water Pract. Technol. 18, 428–443. doi:10.2166/
wpt.2023.010

Osman, S. O., Mohamed, M. Z., Suliman, A. M., and Mohammed, A. A. (2018).
“Design and implementation of a low-cost real-time in-situ drinking water quality
monitoring system using Arduino,” in 2018 International Conference on Computer,
Control, Electrical, and Electronics Engineering (ICCCEEE 2018), Khartoum, Sudan.
Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ICCCEEE.2018.
8515886

Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D.,
et al. (2021). PRISMA 2020 explanation and elaboration: updated guidance and
exemplars for reporting systematic reviews. BMJ 372, n160. doi:10.1136/bmj.n160

Park, E., and Latrubesse, E. M. (2014). Modeling suspended sediment distribution
patterns of the Amazon River using MODIS data. Remote Sens. Environ. 147, 232–242.
doi:10.1016/j.rse.2014.03.013

Parris, K. (2011). Impact of agriculture on water pollution in OECD countries: recent
trends and future prospects. Int. J. Water Resour. Dev. 27, 33–52. doi:10.1080/07900627.
2010.531898

Pizani, F. M. C., Maillard, P., Ferreira, A. F. F., and De Amorim, C. C. (2020).
“Estimation of water quality in a reservoir from sentinel-2 msi and landsat-8 oli sensors
ISPRS Annals of the Photogrammetry,” in Remote Sensing and spatial information
sciences, (copernicus GmbH), 401–408. doi:10.5194/isprs-Annals-V-3-2020-401-2020

Randhawa, S., Sandha, S. S., and Srivastava, B. (2016). A multi-sensor process for in-
situmonitoring of water pollution in rivers or lakes for high-resolution quantitative and
qualitative water quality data. , 122, 129. doi:10.1109/cse-euc-dcabes.2016.171

Reinart, A. (2005). Water quality monitoring of large european lakes using meris full
resolution data. Available at: http://envisat.esa.int/services/beam/.

Reinart, A., and Pierson, D. (2014). Water quality monitoring of large european lakes
using meris full resolution data. water quality monitoring of large european lakes using
meris full resolution data. Available at: http://envisat.esa.int/services/beam/.

Rocha, F. C., Andrade, E. M., and Lopes, F. B. (2015). Water quality index calculated
from biological, physical and chemical attributes. Environ. Monit. Assess. 187, 4163.
doi:10.1007/s10661-014-4163-1

Rodrigues, G., Potes, M., Penha, A. M., Costa, M. J., and Morais, M. M. (2022). The
use of sentinel-3/OLCI for monitoring the water quality and optical water types in the
largest Portuguese reservoir. Remote Sens. (Basel) 14, 2172. doi:10.3390/rs14092172

Ryu, J. H., Han, H. J., Cho, S., Park, Y. J., and Ahn, Y. H. (2012). Overview of
geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS).
Ocean Sci. J. 47, 223–233. doi:10.1007/s12601-012-0024-4

Saberioon, M., Brom, J., Nedbal, V., Souc�ek, P., and Císar�, P. (2020). Chlorophyll-a
and total suspended solids retrieval and mapping using Sentinel-2A and machine
learning for inland waters. Ecol. Indic. 113, 106236. doi:10.1016/j.ecolind.2020.106236

Sagan, V., Peterson, K. T., Maimaitijiang, M., Sidike, P., Sloan, J., Greeling, B. A., et al.
(2020). Monitoring inland water quality using remote sensing: potential and limitations
of spectral indices, bio-optical simulations, machine learning, and cloud computing.
Earth Sci. Rev. 205, 103187. doi:10.1016/j.earscirev.2020.103187

Sent, G., Biguino, B., Favareto, L., Cruz, J., Sá, C., Dogliotti, A. I., et al. (2021). Deriving
water quality parameters using sentinel-2 imagery: a case study in the Sado Estuary,
Portugal. Remote Sens. (Basel) 13, 1043–1130. doi:10.3390/rs13051043

Shi, K., Zhang, Y., Zhu, G., Qin, B., and Pan, D. (2018). Deteriorating water clarity in
shallow waters: evidence from long term MODIS and in-situ observations. Int. J. Appl.
Earth Observation Geoinformation 68, 287–297. doi:10.1016/j.jag.2017.12.015

Sigopi, M., Shoko, C., and Dube, T. (2024). Advancements in remote sensing
technologies for accurate monitoring and management of surface water resources in
Africa: an overview, limitations, and future directions. Geocarto Int. 39. doi:10.1080/
10106049.2024.2347935

Sivakumar, M. V. K., Roy, P. S., Harmsen, K., and Saha, S. K. (Editors) (2004).
“Satellite remote sensing and GIS applications in agricultural meteorology,” in

Frontiers in Environmental Science frontiersin.org21

Ngamile et al. 10.3389/fenvs.2025.1549301

https://doi.org/10.1016/j.scitotenv.2023.163389
https://doi.org/10.1016/j.scitotenv.2023.163389
https://doi.org/10.3390/rs14215466
https://doi.org/10.1371/journal.pone.0315837
https://doi.org/10.1371/journal.pone.0315837
https://doi.org/10.1016/j.jag.2020.102187
https://doi.org/10.3389/fenvs.2022.1096843
https://doi.org/10.3389/fenvs.2022.1096843
https://doi.org/10.1016/j.jenvman.2024.120096
https://doi.org/10.1016/j.jag.2023.103605
https://doi.org/10.1016/j.rse.2012.10.019
https://doi.org/10.1080/10106049.2021.1991634
https://doi.org/10.1016/j.isprsjprs.2021.10.009
https://doi.org/10.1016/j.rse.2014.03.025
https://doi.org/10.1016/j.ecoinf.2024.102608
https://doi.org/10.17159/sajs.2015/20140193
https://doi.org/10.17159/sajs.2015/20140193
https://doi.org/10.1016/B978-0-12-417011-7.00005-2
https://doi.org/10.1007/s10661-024-12554-w
https://doi.org/10.1007/s10661-024-12554-w
https://doi.org/10.1016/j.aej.2022.06.043
https://doi.org/10.2495/EI-V5-N4-362-374
https://doi.org/10.2495/EI-V5-N4-362-374
https://doi.org/10.3390/environments9100125
https://doi.org/10.3390/rs15235461
https://doi.org/10.1080/01431160110104700
https://doi.org/10.1080/01431160110104700
https://doi.org/10.1016/j.rsase.2023.100945
https://doi.org/10.3390/rs14184596
https://doi.org/10.1016/j.rsase.2021.100521
https://doi.org/10.1016/j.rsase.2021.100521
https://doi.org/10.3390/s8084582
https://doi.org/10.3390/ijgi3041234
https://doi.org/10.17159/sajs.2018/4841
https://doi.org/10.1029/2011WR011005
https://doi.org/10.2166/wpt.2023.010
https://doi.org/10.2166/wpt.2023.010
https://doi.org/10.1109/ICCCEEE.2018.8515886
https://doi.org/10.1109/ICCCEEE.2018.8515886
https://doi.org/10.1136/bmj.n160
https://doi.org/10.1016/j.rse.2014.03.013
https://doi.org/10.1080/07900627.2010.531898
https://doi.org/10.1080/07900627.2010.531898
https://doi.org/10.5194/isprs-Annals-V-3-2020-401-2020
https://doi.org/10.1109/cse-euc-dcabes.2016.171
http://envisat.esa.int/services/beam/
http://envisat.esa.int/services/beam/
https://doi.org/10.1007/s10661-014-4163-1
https://doi.org/10.3390/rs14092172
https://doi.org/10.1007/s12601-012-0024-4
https://doi.org/10.1016/j.ecolind.2020.106236
https://doi.org/10.1016/j.earscirev.2020.103187
https://doi.org/10.3390/rs13051043
https://doi.org/10.1016/j.jag.2017.12.015
https://doi.org/10.1080/10106049.2024.2347935
https://doi.org/10.1080/10106049.2024.2347935
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1549301


Proceedings of the training workshop, Dehra Dun, India, July 7–11, 2003. (WMO/TD
No. 1182) (World Meteorological Organization). Available at: https://www.unisdr.org/
files/1682_9970.pdf.

Soomets, T., Uudeberg, K., Jakovels, D., Brauns, A., Zagars, M., and Kutser, T.
(2020). Validation and comparison of water quality products in baltic lakes using
sentinel-2 msi and sentinel-3 OLCI data. Sensors Switz. 20, 742. doi:10.3390/
s20030742

Sultana, M. S., and Dewan, A. (2021). A reflectance-based water quality index and its
application to examine degradation of river water quality in a rapidly urbanising
megacity. Environ. Adv. 5, 100097. doi:10.1016/j.envadv.2021.100097

Sun, Y., Wang, D., Li, L., Ning, R., Yu, S., and Gao, N. (2024). Application of remote
sensing technology in water quality monitoring: from traditional approaches to artificial
intelligence. Water Res. 267, 122546. doi:10.1016/j.watres.2024.122546

Swain, R., and Sahoo, B. (2017). Improving river water quality monitoring using
satellite data products and a genetic algorithm processing approach. Sustain. Water
Qual. Ecol. 9–10, 88–114. doi:10.1016/j.swaqe.2017.09.001

Tesfaye, A. (2024). Remote sensing-based water quality parameters retrieval methods:
a review. East Afr. J. Environ. Nat. Resour. 7, 80–97. doi:10.37284/eajenr.7.1.1753

Tian, S., Guo, H., Xu, W., Zhu, X., Wang, B., Zeng, Q., et al. (2023). Remote sensing
retrieval of inland water quality parameters using Sentinel-2 and multiple machine
learning algorithms. Environ. Sci. Pollut. Res. 30, 18617–18630. doi:10.1007/s11356-
022-23431-9

Topp, S. N., Pavelsky, T. M., Jensen, D., Simard, M., and Ross, M. R. V. (2020).
Research trends in the use of remote sensing for inland water quality science: moving
towards multidisciplinary applications.WaterSwitzerl. 12, 169. doi:10.3390/w12010169

Trevisiol, F., Mandanici, E., Pagliarani, A., and Bitelli, G. (2024). Evaluation of
Landsat-9 interoperability with Sentinel-2 and Landsat-8 over Europe and local
comparison with field surveys. ISPRS J. Photogrammetry Remote Sens. 210, 55–68.
doi:10.1016/j.isprsjprs.2024.02.021

Umwali, E. D., Kurban, A., Isabwe, A., Mind’je, R., Azadi, H., Guo, Z., et al. (2021).
Spatio-seasonal variation of water quality influenced by land use and land cover in Lake
Muhazi. Sci. Rep. 11, 17376. doi:10.1038/s41598-021-96633-9

Usali, N., and Hasmadi Ismail, M. (2010). Use of remote sensing and GIS in
monitoring water quality. J. Sustain Dev. 3. doi:10.5539/jsd.v3n3p228

Wang, D., Tang, B. H., and Li, Z. L. (2024). Evaluation of five atmospheric correction
algorithms for multispectral remote sensing data over plateau lake. Ecol. Inf. 82, 102666.
doi:10.1016/j.ecoinf.2024.102666

Wang, M., Li, M., Zhang, Z., Hu, T., He, G., Zhang, Z., et al. (2023). Land surface
temperature retrieval from landsat 9 TIRS-2 data using radiance-based split-window
algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 16, 1100–1112. doi:10.1109/
JSTARS.2022.3232621

Wang, X., and Yang, W. (2019). Water quality monitoring and evaluation using
remote-sensing techniques in China: a systematic review. Ecosyst. Health Sustain. 5,
47–56. doi:10.1080/20964129.2019.1571443

Wen, X., Chen, F., Lin, Y., Zhu, H., Yuan, F., Kuang, D., et al. (2020). Microbial
indicators and their use for monitoring drinkingwater quality-A review. Sustain. Switz.
12, 2249. doi:10.3390/su12062249

Wilkinson, G. M., and Johnson, R. A. (2024). “Eutrophication of freshwater and
coastal ecosystems,” in Encyclopedia of sustainable technologies (Elsevier), 710–721.
doi:10.1016/b978-0-323-90386-8.00099-1

Wu, J., Zeng, S., Yang, L., Ren, Y., and Xia, J. (2021). Spatiotemporal characteristics of
the water quality and its multiscale relationship with land use in the yangtze river basin.
Remote Sens. (Basel) 13, 3309. doi:10.3390/rs13163309

Wu, Z., Wang, X., Chen, Y., Cai, Y., and Deng, J. (2018). Assessing river water quality
using water quality index in Lake Taihu Basin, China. Sci. Total Environ. 612, 914–922.
doi:10.1016/j.scitotenv.2017.08.293

Xiong, J., Lin, C., Ma, R., and Cao, Z. (2019). Remote sensing estimation of lake total
phosphorus concentration based on MODIS: a case study of Lake Hongze. Remote Sens.
(Basel) 11, 2068. doi:10.3390/rs11172068

Xu, H., Gao, Q., and Yuan, B. (2022). Analysis and identification of pollution sources
of comprehensive river water quality: evidence from two river basins in China. Ecol.
Indic. 135, 108561. doi:10.1016/j.ecolind.2022.108561

Yang, H., Kong, J., Hu, H., Du, Y., Gao, M., and Chen, F. (2022). A review of remote
sensing for water quality retrieval: progress and challenges. Remote Sens. (Basel) 14,
1770. doi:10.3390/rs14081770

Yang, Y., and Jin, S. (2023). Long-time water quality variations in the Yangtze River
from landsat-8 and sentinel-2 images based on neural networks. WaterSwitzerl. 15,
3802. doi:10.3390/w15213802

Yin, Z., Li, J., Liu, Y., Xie, Y., Zhang, F.,Wang, S., et al. (2021).Water clarity changes in
Lake Taihu over 36 years based on Landsat TM and OLI observations. Int. J. Appl. Earth
Observation Geoinformation 102, 102457. doi:10.1016/j.jag.2021.102457

Zainurin, S. N., Wan Ismail, W. Z., Mahamud, S. N. I., Ismail, I., Jamaludin, J., Ariffin,
K. N. Z., et al. (2022). Advancements in monitoring water quality based on various
sensing methods: a systematic review. Int. J. Environ. Res. Public Health 19, 14080.
doi:10.3390/ijerph192114080

Zainurin, S. N., Wan Ismail, W. Z., Wan Azlan, W. A. N., Zainul Ariffin, K. N., and Wan
Ahmad Kamil, W. M. (2023). Developing a portable spectrometer to detect chemical
contaminants in irrigation water. Agric. Switz. 13, 1202. doi:10.3390/agriculture13061202

Zhang, H., Yan, D., Zhang, B., Fu, Z., Li, B., and Zhang, S. (2022a). An operational
atmospheric correction framework for multi-source medium-high-resolution remote
sensing data of China. Remote Sens. (Basel) 14, 5590. doi:10.3390/rs14215590

Zhang, H., Yao, B., Wang, S., and Huang, Y. (2022b). Understanding the changes of
optically active substances (OACs) inHulun Lake in the past 35 years and its indication to the
degradation of aquatic ecology. J. Clean. Prod. 377, 134286. doi:10.1016/j.jclepro.2022.134286

Zhang, Y., Zhang, Y., Shi, K., Zhou, Y., and Li, N. (2021). Remote sensing estimation
of water clarity for various lakes in China.Water Res. 192, 116844. doi:10.1016/j.watres.
2021.116844

Zhang, Z. M., Zhang, F., Du, J. L., and Chen, D. C. (2022c). Surface water quality
assessment and contamination source identification using multivariate statistical
techniques: a case study of the Nanxi River in the Taihu watershed, China.
WaterSwitzerl. 14, 778. doi:10.3390/w14050778

Zhao, Y., Yu, T., Hu, B., Zhang, Z., Liu, Y., Liu, X., et al. (2022). Retrieval of water
quality parameters based on near-surface remote sensing and machine learning
algorithm. Remote Sens. (Basel) 14, 5305. doi:10.3390/rs14215305

Zhu, S., and Mao, J. (2021). A machine learning approach for estimating the trophic
state of urban waters based on remote sensing and environmental factors. Remote Sens.
(Basel) 13, 2498. doi:10.3390/rs13132498

Zhu, W., Dai, Z., Gu, H., and Zhu, X. (2021). Water extraction method based on
multi-texture feature fusion of synthetic aperture radar images. Sensors 21, 4945. doi:10.
3390/s21144945

Frontiers in Environmental Science frontiersin.org22

Ngamile et al. 10.3389/fenvs.2025.1549301

https://www.unisdr.org/files/1682_9970.pdf
https://www.unisdr.org/files/1682_9970.pdf
https://doi.org/10.3390/s20030742
https://doi.org/10.3390/s20030742
https://doi.org/10.1016/j.envadv.2021.100097
https://doi.org/10.1016/j.watres.2024.122546
https://doi.org/10.1016/j.swaqe.2017.09.001
https://doi.org/10.37284/eajenr.7.1.1753
https://doi.org/10.1007/s11356-022-23431-9
https://doi.org/10.1007/s11356-022-23431-9
https://doi.org/10.3390/w12010169
https://doi.org/10.1016/j.isprsjprs.2024.02.021
https://doi.org/10.1038/s41598-021-96633-9
https://doi.org/10.5539/jsd.v3n3p228
https://doi.org/10.1016/j.ecoinf.2024.102666
https://doi.org/10.1109/JSTARS.2022.3232621
https://doi.org/10.1109/JSTARS.2022.3232621
https://doi.org/10.1080/20964129.2019.1571443
https://doi.org/10.3390/su12062249
https://doi.org/10.1016/b978-0-323-90386-8.00099-1
https://doi.org/10.3390/rs13163309
https://doi.org/10.1016/j.scitotenv.2017.08.293
https://doi.org/10.3390/rs11172068
https://doi.org/10.1016/j.ecolind.2022.108561
https://doi.org/10.3390/rs14081770
https://doi.org/10.3390/w15213802
https://doi.org/10.1016/j.jag.2021.102457
https://doi.org/10.3390/ijerph192114080
https://doi.org/10.3390/agriculture13061202
https://doi.org/10.3390/rs14215590
https://doi.org/10.1016/j.jclepro.2022.134286
https://doi.org/10.1016/j.watres.2021.116844
https://doi.org/10.1016/j.watres.2021.116844
https://doi.org/10.3390/w14050778
https://doi.org/10.3390/rs14215305
https://doi.org/10.3390/rs13132498
https://doi.org/10.3390/s21144945
https://doi.org/10.3390/s21144945
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1549301

	Trends in remote sensing of water quality parameters in inland water bodies: a systematic review
	1 Introduction
	2 Methods
	2.1 Literature search and data extraction

	3 Results
	3.1 Searched literature traits: published trends
	3.2 Trends in journal publications for water quality
	3.3 Geographic distribution and publication trends
	3.4 Keyword analysis
	3.5 Sources and impacts of water pollution
	3.6 Traditional methods for water quality assessment
	3.7 Remote sensing for water quality
	3.7.1 Advantages and disadvantages on remote sensing for water monitoring in inland water bodies
	3.7.2 Remote sensing for water quality assessments
	3.7.2.1 Remote sensing for optically active water quality parameters
	3.7.2.2 Remote sensing for non-optically active water quality parameters
	3.7.2.3 Spatiotemporal variations of water quality parameters
	3.7.2.4 Retrieval techniques for water quality parameters


	4 Summary and conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


