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Introduction: With the rapid advancement of industrialization and the prevalent
occurrence of haze weather, PM2.5 contamination has emerged asa significant
threat to public health and environmental sustainability. The concentration of
PM2.5 exhibits intricate dynamic attributes and is profoundly correlated with
meteorological conditions as well as the concentrations of other pollutants,
thereby substantially augmenting the complexity of predictive endeavors.

Methods: A novel predictive methodology has been developed. It integrates time
seriesfrequency domain analysis with the decomposition of deep learning
models. This approach facilitates the capture of interdependencies among
high - dimensional features through time series decomposition, employs
Fourier Transform to mitigate noise interference, and incorporates sparse
attention mechanisms to selectively filter critical frequency components,
thereby enhancing time - dependent modeling. Importantly, this technique
effectively reduces computational complexity from O(L2) to O(L log L).
Results: Empirical findings substantiate that this methodology yields notably
superior predictive accuracy relative to conventional models across a diverse
array of real-world datasets.

Discussion: This advancement not only offers an efficacious resolution for PM2.5

prediction tasks but also paves the way for innovative research and application
prospects in the realm of complex time series modeling.
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1 Introduction

Over the past several decades, the rapid pace of industrialization has precipitated the
frequent occurrence of smog, thereby intensifying environmental pollution. Fine particulate
matter (PM2.5), characterized by particles with a diameter of 2.5 μm or less, has emerged as
a pivotal pollutant that poses considerable risks to human health. As indicated by theWorld
Health Organization (WHO), nearly 90% of the global populace inhales air that surpasses its
quality standards, rendering PM2.5 a primary contributor to respiratory ailments (Ailshire
and Crimmins, 2014; Pöschl, 2005). Additionally, short-term exposure to PM2.5 (spanning
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from hours to weeks) has been associated with cardiovascular-
related mortality and other health sequelae (Du et al., 2016).
Beyond its ramifications for public health, deteriorating air
quality imposes substantial economic burdens. A report by the
Organization for Economic Cooperation and Development
(OECD) (Lanzi, 2016) underscores that air pollution could lead
to global GDP losses of up to 1%.

Developing an efficient air pollution monitoring and prediction
system is, consequently, imperative for safeguarding human health
and alleviating economic losses. Nonetheless, the formation
mechanism of PM2.5 is exceptionally intricate(Lu et al., 2021),
encompassing complex interactions among various external
pollutants, which markedly complicates the prediction process.
Furthermore, air quality data exhibit a strong temporal
dependence, constituting a prototypical time-series dataset with
distinct periodic features. Predicting PM2.5 concentrations
constitutes a formidable task, necessitating the incorporation of
meteorological factors (e.g., precipitation and temperature) and
historical data (e.g., PM10, SO2) into time-series modeling.
Extensive research has shown that these factors are highly
correlated and have complex relationships in the formation of air
pollution (Rakholia et al., 2024; He et al., 2017; Luo et al., 2020;
Neiburger, 1969). Consequently, effectively discerning these
complex interactions and integrating them into pollutant
prediction models has emerged as a pivotal aspect in
comprehending pollution mechanisms and improving prediction
accuracy (Deng et al., 2024). To tackle the dynamic variations in
pollutant concentrations and their intricate feature relationships, a
plethora of modeling approaches have been suggested. Conventional

statistical methods were extensively utilized in the initial phases of
air quality prediction research. These methods predominantly
depend on historical data for model training, employing
frequently used techniques such as Autoregressive Moving
Average (ARMA) (Liu and Yang, 2021) models and
Autoregressive Integrated Moving Average (ARIMA) (Liu and
Yang, 2021) models. However, as the volume and complexity of
data have escalated, these methods have encountered difficulties in
meeting the practical demands of real-time forecasting of pollutant
concentrations due to prolonged training times and limited
scalability.

The advent of deep learning technologies has led to the
emergence of Transformer-based deep learning models as
innovative solutions for tackling complex problems and
enhancing performance. These models are particularly efficacious
as they account for the temporal correlations inherent in pollutant
concentration sequences. To date, deep learning models have
demonstrated state-of-the-art capabilities in time-series prediction
tasks. By capitalizing on the neural networks’ ability to extract
temporal features from time-series data, the precision of
pollutant concentration predictions can be substantially
improved. Empirical studies on air pollutant prediction have
shown that deep learning models surpass traditional methods,
including classical machine learning algorithms, by more
effectively capturing high-dimensional feature dependencies and
temporal patterns (Panneerselvam and Thiagarajan 2024).
Nevertheless, conventional Transformer models encounter several
challenges, particularly their substantial computational cost, which
is especially significant when dealing with large-scale environmental

FIGURE 1
Schematic overview of the proposed SFDformer method. Initially, the Sparse Frequency Decomposition Attention module (Frequency-Sparse
Attention, blue block) is designed to perform frequency transformation and reduce model parameters by leveraging Fourier transform and sparse
attention mechanisms. More specifically, the Fourier transform converts time-domain data into the frequency domain to reduce the impact of noise,
while sparse attention is employed to filter the critical frequency weight matrices. After that, the time series pooling decomposition (TSP Decomp,
yellow block) method is utilized to extract seasonal and trend patterns from the input time series data.
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datasets. The temporal continuity, dynamic fluctuations, and
complex intercorrelations within pollutant concentration time-
series data further complicate accurate prediction and analysis.
Moreover, challenges such as noise, nonlinearity, and high-
dimensional complexity inherent in environmental big data pose
considerable obstacles for extracting temporal correlation
information between pollutant concentrations and meteorological
factors (Chen et al., 2024).

To tackle these challenges, this study introduces an end-to-end
framework named Sparse Frequency Decomposition Transformer
(SFDformer) for predicting the time series of pollutant
concentrations. Figure 1 illustrates an overview of the proposed
method. This approach uses time-series decomposition to capture
the interdependencies among high-dimensional features and
employs Fourier Transform to convert the data into the
frequency domain, effectively reducing noise interference. The
SFDformer integrates a sparse attention mechanism that
selectively allocates weights to key frequency components,
reducing the computational complexity from quadratic to linear
time complexity. This design enhances computational efficiency
while accurately extracting crucial features, providing a more
accurate and efficient solution for forecasting pollutant
concentrations. In summary, the main contributions of this paper
are as follows.

• By fully considering the temporal dependencies in the time
domain and the characteristic information in the
frequency domain, a dual-domain modeling approach is
used to accurately extract the complex correlation features
between pollutant concentrations and
meteorological data.

• We have introduced a frequency sparse attention mechanism
based on Fourier transform, which combines sparse attention
with Fourier transform to reduce the computational cost of
self-attention layers and the impact of noise during the
prediction process.

• In the issue of air pollution prediction, extensive experiments
on eight real datasets have demonstrated the practicality and
feasibility of the proposed model in PM2.5 concentration
forecasting. Furthermore, the results obtained in this work

outperform other deep learning models reported in the
literature.

2 Related work

The prediction of air pollutant concentrations is currently
accomplished through two primary methodologies:
physicochemical approaches and data-driven approaches.
Physicochemical approaches entail the simulation and analysis of
the physical and chemical processes that regulate air pollutants,
employing fundamental physical and chemical principles to forecast
pollutant behavior across diverse spatial and temporal scales
(Thongthammachart et al., 2021; Kang et al., 2018; Hofman
et al., 2022). Although these approaches can yield high prediction
accuracy, they typically necessitate intricate model configurations
and extensive parameter tuning, which may result in limited model
generalization and diminished robustness in practical applications
(Wang et al., 2020).

Emergence of meteorological stations and analogous monitoring
devices, air quality monitoring stations, and meteorological satellites
has enabled the gathering of data on air pollutant concentrations
and meteorological conditions. This data provides strong support
for research on air quality prediction (Gu et al., 2021; Kim et al.,
2022). Data-driven methodologies have been increasingly employed
to forecast air pollutant concentrations. In the nascent stages of air
pollution prediction research, conventional machine learning
models such as ARIMA and SARIMA were extensively utilized.
These models forecast pollutant concentrations by examining the
historical trends and periodic characteristics of time series data
(Marvin et al., 2022). While these methods excel in modeling
stationary time series and capturing short-term dependencies,
they exhibit notable limitations when addressing complex
nonlinear relationships and long-term sequence dependencies
(Zhou et al., 2018). Specifically, the omission of high-frequency
information in traditional machine models results in the loss of
critical data, thereby constraining prediction accuracy and
applicability. Furthermore, these methods encounter difficulties in
leveraging multidimensional data (such as meteorological features
and concentrations of other pollutants) to delineate more

FIGURE 2
Time series pooling decomposition module.
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comprehensive pollutant characteristics (Tagliabue et al., 2021).
With advancements in data scale and computational power,
machine learning methodologies have progressively emerged as
more versatile options. Models such as Support Vector
Regression (SVR), Random Forest (RF), and Multi-Layer
Perceptron (MLP) have gained widespread adoption due to their
efficacy in managing nonlinear relationships (Haq and Ahmad
Khan, 2022; Rybarczyk and Zalakeviciute, 2018). These
methodologies demonstrate superior predictive performance
compared to traditional statistical methods by utilizing
multidimensional data for modeling (Ma X. et al., 2023; Pan
et al., 2023). However, they depend on manually crafted feature
engineering, and their capacity to model the interdependencies of
other multidimensional data influencing air pollutant
concentrations remains limited (Zaini et al., 2022). Nonetheless,
these methodologies have furnished valuable insights into air
pollution prediction and established a foundation for
investigating hybrid models that integrate traditional methods
with deep learning technologies (Kshirsagar and Shah, 2022;
Méndez et al., 2023).

The rapid advancement of deep learning technologies has led to
significant breakthroughs in their application to time series
forecasting, especially in the realm of air pollution prediction. In
comparison to traditional statistical methods and classical machine
learning techniques, deep learning models exhibit considerable
advantages due to their robust ability to model non-linearity and
precisely capture temporal dependencies. Recurrent Neural
Networks (RNNs) and their sophisticated variants, such as Long
Short-Term Memory Networks [LSTMs Han et al. (2023)] and

Gated Recurrent Units (GRUs), have been extensively utilized to
process time series data (Espinosa et al., 2021). These models adeptly
capture long-term dependencies through memory units, effectively
mitigating the challenges of vanishing and exploding gradients
(Athira et al., 2018; Faraji et al., 2022). Nonetheless, individual
models still possess certain limitations in modeling high-
dimensional features (Sarkar et al., 2022). To further enhance the
performance of air pollution time series forecasting, researchers
have devised hybrid architectures, such as LSTM-CNN (Ghimire
et al., 2019), LSTM-RNN (Ozcanli et al., 2020), and CNN-LSTM-
RNN (Ko and Jung, 2022). These models amalgamate the strengths
of distinct neural networks: LSTM-CNN extracts intricate features
via CNNs while LSTM captures temporal dependencies, rendering it
suitable for managing complex time series data; LSTM-RNN
integrates RNN’s capability to handle short-term dependencies
with LSTM’s capacity to capture long-term trends, making it
ideal for data exhibiting both short-term fluctuations and long-
term patterns; CNN-LSTM-RNN consolidates the advantages of
CNNs, LSTMs, and RNNs, enabling it to process more intricate air
pollution data scenarios. Despite these hybridmodels demonstrating
substantial performance improvements, they are accompanied by
several limitations, such as elevated model complexity, extended
training times, substantial hardware resource demands, and
difficulties in hyperparameter tuning, which escalate optimization
costs. Furthermore, the intricacy of these models often results in
overfitting, particularly when data is limited or of inferior quality
(Wang et al., 2022; Yuan et al., 2020).

To address these challenges, Transformer-based models have
demonstrated exceptional performance in tackling the intricacies of

FIGURE 3
Geographical locations of cities.
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feature modeling, primarily due to their attention mechanism
(Zhang and Zhang, 2023). However, conventional Transformer
models typically exhibit high computational complexity and are
susceptible to noise when managing high-dimensional
dependencies (Guo and Mao, 2023). To alleviate these issues,
researchers have introduced sparse attention mechanisms that
concentrate on crucial dependencies, substantially reducing
computational complexity to linear levels while maintaining
robust global modeling capabilities (Al-qaness et al., 2023; Ma
Z. et al., 2023). Considering that air pollutant concentrations
frequently display significant seasonal variations influenced by
meteorological factors, integrating time series decomposition and
autocorrelation mechanisms can aid the model in better grasping
the complex interdependencies among various features in the
time series. Furthermore, frequency-domain enhancement
techniques have substantially improved the overall
performance and efficiency of the models by diminishing noise
interference in long-term dependencies (Zeng et al., 2023).
Inspired by these advancements, we propose the SFDformer
method. This approach employs time series decomposition
techniques to segregate the data into seasonal and trend
components, effectively capturing factors such as air pollution,
which are subject to seasonal fluctuations and trend variations.
By employing Fourier transforms to transform time-domain data
into frequency-domain data, we mitigate noise interference. The
sparse attention mechanism further prioritizes essential
frequency components and assigns them higher weights,
enabling the model to capture critical short-term alterations
while preserving vital long-term traits. This enhancement not
only significantly boosts computational efficiency but also
bolsters the model’s stability and robustness in capturing the
dependencies between high-dimensional features of air pollution
concentrations, offering a more efficient and precise solution for
intricate air pollution forecasting tasks.

3 Methodology

3.1 Background

The air pollution forecasting problem can be defined in a rolling
prediction setting, where the future air quality over a given time
horizon is predicted based on historical observations within a fixed-
size window. At each time point t, the input sequence X t �
{xt

1, . . . , x
t
Lx
} consists of observed values across multiple feature

dimensions. The output sequence Yt � {yt
1, . . . , y

t
Ly
} predicts air

quality indicators, such as concentrations ofPM2.5, PM10,NO2, etc.,
over several future time points. This setup enables the model to
predict multiple pollutants simultaneously, making it highly suitable
for air quality monitoring and management applications. By
providing such predictions, relevant authorities can take
proactive measures to mitigate the impact of air pollution,
thereby enhancing the quality of life for urban residents.

3.2 Time series pooling
decomposition module

In real-world air pollution time series data, intricate seasonal
patterns often intertwine with trend components, making them
difficult to disentangle. Traditional fixed-window average pooling
methods struggle to effectively capture such diverse temporal
characteristics. To address this challenge, as depicted in Figure 2,
we introduce a Time Series Pooling Decomposition Module (TSP
Decomp), meticulously designed to tackle the complexities inherent
in environmental time series forecasting.

This module incorporates a variety of average pooling filters
with differing window sizes, allowing for the adaptable extraction of
multiple trend components from the input signal. Furthermore, a
dynamic weighting mechanism, based on the attributes of the input

TABLE 1 Characteristic indicators of air pollution time prediction dataset. We utilize Indicator to represent various features within the air pollution dataset.
The Indicator Definition elucidates the meaning of each feature, while the Corresponding Characteristics describe the specific attributes associated with
these features.

Indicator Indicator definition Corresponding characteristics

Date Air Quality Measurement Day Temporal Characteristics

Quality Level Air Quality Index Assessment Assessment Characteristic

AQI Pollutant Composite Index Quality Characteristic

Daily AQI Ranking Air Quality Trend

PM10 Air Pollutants Harmful Substances in the Air

SO2

NO2

CO

O3

PM2.5

Temperature Meteorological Factors Meteorological Characteristic

Wind speed

Precipitation
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data, combines these trend components into a comprehensive final
trend depiction. As shown in Equations 1, 2:

Xtrend � Sof tmax T x( )( ) · P x( ) (1)
Xseason � X −Xtrend (2)

In these two formulas, P(·) denotes a set of average pooling
filters, crafted to capture trends across diverse temporal scales.
Furthermore, Softmax(T(x)) acts as a data-dependent weight
allocation function, effectively combining these identified
trends into a cohesive final trend representation.

3.3 Themutual conversion between the time
domain and the frequency domain

In the scholarly domain of air pollution time series
forecasting, the Discrete Fourier Transform (DFT) and its
counterpart, the Inverse Discrete Fourier Transform (IDFT),
are instrumental in scrutinizing complex periodicity and
trend variation patterns. This is accomplished by enabling
the transition of time series data between the temporal
and frequency domains. The DFT decomposes the time
series into long-term trends and periodic components,
which facilitates the identification of significant periodic
features and the elimination of random noise. Subsequently,
the IDFT reconstructs the processed signal back into the
time domain.

For a time series x[n] ∈ RN with a specific length, the DFT is
given by Equation 3 as follows:

X k[ ] � ∑N−1

n�0
x n[ ] · e−i2πN kn, k � 0, 1, . . . , N − 1 (3)

The IDFT uses Equation 4 to restore the frequency-domain data to
the time domain:

x n[ ] � 1
N

∑N−1

k�0
X k[ ] · ei2πN kn, n � 0, 1, . . . , N − 1 (4)

In DFT, determines series length and frequency resolution,
indexes frequency components, and e−i2πN kn extracts sinusoidal
elements, enabling frequency-domain decomposition. In IDFT,
these parameters reconstruct the time-domain signal, with
providing amplitude and phase, and ei

2π
N kn synthesizing the signal.

Together, DFT and IDFT support feature extraction, periodic
pattern recognition, trend analysis, and noise reduction.
Additionally, represents frequency-domain coefficients, where low
frequencies indicate trends, and high frequencies reflect noise or
rapid fluctuations.

3.4 Frequency-sparse attention mechanism
with fourier transform

3.4.1 Traditional attention mechanisms with
quadratic complexity

The conventional attention mechanisms utilize three inputs: Q
(the query), K (the key), and V (the value) matrices. These
mechanisms compute scaled dot-product attention. This is
determined by Equation 5:

Attention Q,K, V( ) � Softmax
QKT��
d

√( )V (5)

In the formulas, the matrices Q ∈ RLq×d, K ∈ RLk×d, and
V ∈ RLv×d are defined, with d representing the dimensionality of
the input data. When examining the traditional attention

FIGURE 4
PM2.5 concentrations in various cities.
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TABLE 2 Multivariate results with different prediction lengths O ∈ {12,36,58,96} for eight different datasets when I � 96. MSE Reduction refers to the percentage decrease in MSE of SFDformer compared to other
models. The best average results are in bold, while the second-best results are underlined.

Model SFDformer FiLM Autoformer Informer Reformer Pyraformer

Metric MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE

Baoding 12 0.294 0.368 0.542 0.397 0.440 0.630 0.390 0.448 0.624 0.321 0.395 0.567 0.310 0.388 0.557 0.299 0.373 0.547

36 0.328 0.376 0.573 0.341 0.387 0.584 0.474 0.502 0.688 0.352 0.421 0.593 0.366 0.420 0.605 0.338 0.406 0.581

58 0.325 0.401 0.570 0.449 0.448 0.670 0.429 0.465 0.655 0.361 0.416 0.601 0.446 0.495 0.668 0.328 0.405 0.573

96 0.362 0.442 0.602 0.493 0.475 0.702 0.420 0.463 0.648 0.372 0.447 0.610 0.518 0.599 0.720 0.510 0.575 0.714

Handan 12 0.402 0.424 0.634 0.521 0.515 0.722 0.470 0.475 0.686 0.406 0.437 0.637 0.403 0.433 0.635 0.405 0.432 0.636

36 0.421 0.436 0.649 0.447 0.446 0.669 0.475 0.489 0.689 0.427 0.444 0.653 0.465 0.492 0.682 0.469 0.483 0.685

58 0.463 0.487 0.680 0.564 0.502 0.751 0.510 0.514 0.714 0.507 0.509 0.712 0.550 0.557 0.742 0.471 0.492 0.686

96 0.537 0.514 0.733 0.618 0.534 0.786 0.542 0.516 0.736 0.745 0.662 0.863 0.649 0.650 0.806 0.619 0.586 0.787

Shijiazhuang 12 0.329 0.388 0.574 0.412 0.450 0.642 0.403 0.455 0.655 0.353 0.429 0.594 0.327 0.407 0.572 0.338 0.394 0.581

36 0.372 0.402 0.610 0.352 0.400 0.593 0.444 0.491 0.666 0.427 0.475 0.653 0.373 0.439 0.611 0.382 0.446 0.618

58 0.368 0.445 0.607 0.452 0.452 0.672 0.413 0.456 0.643 0.515 0.530 0.718 0.466 0.501 0.683 0.375 0.447 0.612

96 0.470 0.465 0.686 0.496 0.477 0.704 0.441 0.472 0.664 0.592 0.581 0.709 0.541 0.604 0.736 0.560 0.602 0.748

Xingtai 12 0.376 0.422 0.613 0.487 0.486 0.698 0.429 0.461 0.655 0.382 0.424 0.618 0.398 0.447 0.631 0.408 0.434 0.639

36 0.417 0.426 0.646 0.421 0.431 0.649 0.481 0.493 0.694 0.452 0.480 0.672 0.443 0.480 0.666 0.488 0.508 0.699

58 0.436 0.439 0.660 0.527 0.481 0.726 0.462 0.470 0.680 0.443 0.464 0.666 0.499 0.524 0.706 0.451 0.485 0.672

96 0.503 0.489 0.709 0.571 0.508 0.756 0.511 0.497 0.715 0.691 0.638 0.831 0.584 0.610 0.764 0.651 0.632 0.807

Yulin 12 0.764 0.517 0.874 1.102 0.703 1.050 0.861 0.581 0.928 0.773 0.516 0.879 0.812 0.522 0.901 0.768 0.523 0.876

36 0.758 0.517 0.871 0.910 0.565 0.954 0.762 0.565 0.873 0.813 0.525 0.902 0.832 0.534 0.912 0.818 0.530 0.904

58 0.757 0.503 0.870 1.076 0.625 1.037 0.763 0.579 0.873 0.788 0.559 0.888 0.890 0.596 0.943 0.796 0.519 0.892

96 0.771 0.524 0.878 1.149 0.664 1.072 0.962 0.655 0.981 0.784 0.533 0.885 0.890 0.606 0.943 0.822 0.541 0.907

Lishui 12 0.532 0.488 0.729 0.565 0.537 0.752 0.551 0.523 0.742 0.645 0.549 0.803 0.570 0.500 0.755 0.540 0.530 0.735

36 0.556 0.532 0.746 0.587 0.543 0.766 0.599 0.541 0.774 0.645 0.568 0.803 0.667 0.587 0.817 0.616 0.580 0.785

58 0.588 0.550 0.767 0.786 0.622 0.887 0.601 0.533 0.775 0.625 0.573 0.791 0.650 0.568 0.806 0.666 0.601 0.816

96 0.644 0.565 0.802 0.852 0.653 0.923 0.786 0.678 0.887 0.658 0.566 0.811 0.679 0.589 0.824 0.770 0.650 0.877

Urumqi 12 0.290 0.379 0.539 0.385 0.431 0.620 0.347 0.439 0.589 0.347 0.422 0.589 0.304 0.389 0.551 0.395 0.463 0.628
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TABLE 2 (Continued) Multivariate results with different prediction lengthsO∈A12,36, 58,96A for eight different datasets when I � 96. MSE Reduction refers to the percentage decrease inMSE of SFDformer compared
to other models. The best average results are in bold, while the second-best results are underlined.

Model SFDformer FiLM Autoformer Informer Reformer Pyraformer

Metric MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE

36 0.320 0.410 0.566 0.408 0.450 0.639 0.394 0.462 0.628 0.335 0.414 0.579 0.333 0.415 0.577 0.437 0.486 0.661

58 0.336 0.415 0.580 0.661 0.601 0.813 0.493 0.525 0.702 0.364 0.435 0.603 0.364 0.444 0.603 0.576 0.570 0.759

96 0.353 0.423 0.594 0.812 0.664 0.901 0.511 0.541 0.715 0.376 0.434 0.613 0.415 0.484 0.644 0.789 0.670 0.888

Jingzhou 12 0.661 0.514 0.813 0.844 0.605 0.919 0.761 0.577 0.872 0.712 0.552 0.844 0.678 0.529 0.823 0.794 0.587 0.891

36 0.727 0.556 0.853 0.806 0.585 0.898 0.859 0.63 0.927 0.782 0.593 0.884 0.742 0.569 0.861 0.887 0.642 0.942

58 0.770 0.578 0.877 1.069 0.701 1.034 0.896 0.645 0.947 0.895 0.648 0.946 0.823 0.610 0.907 0.982 0.695 0.991

96 0.862 0.629 0.928 1.194 0.74 1.093 0.969 0.674 0.984 0.988 0.683 0.994 0.878 0.644 0.937 0.996 0.749 0.998

Count 29 29 29 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0

MSE reduction ——— 22.46 12.58 9.97 9.92 14.14
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TABLE 3 Univariate results with different prediction lengths O ∈ {12,36, 58,96} for eight different datasets when I � 96. MAE Reduction refers to the percentage decrease in MAE of SFDformer compared to other
models. The best average results are in bold, while the second-best results are in underlined.

Model SFDformer FEDformer Autoformer Informer Reformer LightTS

Metric MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE

Baoding 12 0.220 0.335 0.469 0.244 0.339 0.494 0.305 0.406 0.552 0.254 0.391 0.504 0.225 0.351 0.474 0.256 0.404 0.506

36 0.208 0.315 0.456 0.219 0.325 0.468 0.299 0.390 0.547 0.212 0.333 0.460 0.213 0.317 0.462 0.237 0.391 0.487

58 0.223 0.335 0.472 0.244 0.339 0.494 0.305 0.406 0.552 0.255 0.391 0.505 0.225 0.350 0.474 0.256 0.404 0.506

96 0.212 0.330 0.460 0.215 0.333 0.464 0.294 0.388 0.542 0.246 0.363 0.496 0.244 0.360 0.494 0.360 0.499 0.600

Handan 12 0.314 0.401 0.560 0.319 0.415 0.565 0.328 0.404 0.573 0.374 0.457 0.612 0.344 0.410 0.587 0.386 0.479 0.621

36 0.304 0.387 0.551 0.325 0.412 0.570 0.312 0.393 0.559 0.333 0.403 0.577 0.326 0.443 0.571 0.357 0.466 0.597

58 0.313 0.402 0.559 0.319 0.415 0.565 0.328 0.404 0.573 0.370 0.452 0.608 0.345 0.411 0.587 0.386 0.479 0.621

96 0.329 0.386 0.574 0.335 0.391 0.579 0.355 0.405 0.596 0.346 0.436 0.588 0.350 0.443 0.592 0.520 0.586 0.721

Shijiazhuang 12 0.181 0.313 0.425 0.216 0.320 0.465 0.247 0.359 0.497 0.185 0.325 0.430 0.189 0.324 0.435 0.227 0.385 0.476

36 0.171 0.293 0.414 0.199 0.312 0.446 0.256 0.370 0.506 0.174 0.298 0.417 0.185 0.314 0.430 0.214 0.375 0.463

58 0.182 0.314 0.427 0.216 0.320 0.465 0.247 0.359 0.497 0.188 0.329 0.434 0.189 0.323 0.435 0.227 0.385 0.476

96 0.192 0.310 0.438 0.209 0.321 0.457 0.229 0.356 0.479 0.202 0.341 0.449 0.210 0.345 0.458 0.317 0.467 0.563

Xingtai 12 0.231 0.342 0.481 0.258 0.344 0.508 0.279 0.382 0.528 0.242 0.350 0.492 0.235 0.345 0.485 0.288 0.419 0.537

36 0.218 0.332 0.467 0.244 0.341 0.494 0.269 0.375 0.519 0.224 0.338 0.473 0.236 0.347 0.486 0.265 0.403 0.515

58 0.230 0.340 0.480 0.258 0.344 0.508 0.279 0.382 0.528 0.242 0.351 0.492 0.234 0.343 0.484 0.288 0.419 0.537

96 0.235 0.347 0.485 0.261 0.353 0.511 0.270 0.381 0.520 0.242 0.356 0.492 0.247 0.362 0.497 0.391 0.509 0.625

Yulin 12 1.034 0.545 1.017 1.079 0.581 1.039 1.134 0.597 1.065 1.042 0.553 1.021 1.100 0.551 1.049 1.298 0.689 1.139

36 1.057 0.539 1.028 1.107 0.592 1.052 1.091 0.582 1.045 1.063 0.544 1.031 1.102 0.591 1.050 1.192 0.641 1.092

58 1.039 0.547 1.019 1.079 0.581 1.039 1.133 0.596 1.064 1.041 0.551 1.020 1.101 0.551 1.049 1.298 0.689 1.139

96 1.079 0.572 1.039 1.135 0.606 1.065 1.137 0.595 1.066 1.069 0.546 1.034 1.114 0.574 1.055 1.472 0.763 1.213

Lishui 12 0.164 0.315 0.405 0.202 0.353 0.449 0.178 0.321 0.422 0.172 0.323 0.415 0.174 0.318 0.417 0.220 0.368 0.469

36 0.169 0.317 0.411 0.192 0.337 0.438 0.190 0.340 0.436 0.197 0.347 0.444 0.215 0.351 0.464 0.265 0.418 0.515

58 0.182 0.333 0.427 0.245 0.379 0.495 0.201 0.336 0.448 0.219 0.362 0.468 0.237 0.388 0.487 0.331 0.473 0.575

96 0.252 0.397 0.502 0.291 0.413 0.539 0.299 0.424 0.547 0.310 0.463 0.557 0.411 0.560 0.641 0.486 0.593 0.697

Urumqi 12 0.155 0.240 0.394 0.254 0.323 0.504 0.225 0.345 0.474 0.193 0.301 0.439 0.187 0.255 0.432 0.221 0.314 0.470

(Continued on following page)
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TABLE 3 (Continued) Univariate results with different prediction lengthsO∈A12,36, 58,96A for eight different datasets when I � 96. MAE Reduction refers to the percentage decrease in MAE of SFDformer compared
to other models. The best average results are in bold, while the second-best results are in underlined.

Model SFDformer FEDformer Autoformer Informer Reformer LightTS

Metric MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE

36 0.180 0.248 0.424 0.349 0.378 0.591 0.296 0.364 0.544 0.237 0.341 0.487 0.197 0.296 0.444 0.316 0.404 0.562

58 0.237 0.326 0.487 0.409 0.420 0.640 0.327 0.391 0.572 0.291 0.357 0.539 0.288 0.380 0.537 0.375 0.427 0.612

96 0.288 0.333 0.537 0.614 0.550 0.784 0.444 0.465 0.666 0.359 0.419 0.599 0.349 0.457 0.591 0.647 0.686 0.804

Jingzhou 12 0.381 0.434 0.617 0.421 0.456 0.649 0.414 0.454 0.643 0.530 0.536 0.728 0.445 0.484 0.667 0.439 0.513 0.663

36 0.396 0.439 0.629 0.472 0.482 0.687 0.473 0.493 0.688 0.489 0.503 0.699 0.415 0.476 0.644 0.533 0.581 0.730

58 0.426 0.458 0.653 0.525 0.517 0.725 0.489 0.496 0.699 0.522 0.546 0.722 0.517 0.547 0.719 0.611 0.632 0.782

96 0.485 0.477 0.696 0.562 0.531 0.750 0.545 0.533 0.738 0.914 0.791 0.956 0.497 0.548 0.705 0.804 0.755 0.897

Count 31 31 31 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

MAE reduction ——— 8.54 11.04 10.40 8.48 25.06
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TABLE 4 Ablation study results with different prediction lengthsO ∈ {12,36,58,96} for eight different datasets when I � 96. MSE Reduction refers to the percentage decrease in MSE of SFDformer compared to other
models. The best average results are shown in bold, and the second-best in underlined.

Model SFDformer SFDformerV1 SFDformerV2 Informer Reformer Transformer

Self-att SFDAtt AutoAtt AutoAtt ProbAtt ReAtt FullAtt

Cross-att SFDAtt SFDAtt AutoAtt ProbAtt ReAtt FullAtt

Metric MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE

Baoding 12 0.294 0.368 0.542 0.337 0.406 0.581 0.362 0.445 0.602 0.321 0.395 0.567 0.310 0.388 0.557 0.303 0.379 0.550

36 0.328 0.376 0.573 0.371 0.437 0.609 0.353 0.428 0.594 0.352 0.421 0.593 0.366 0.420 0.605 0.323 0.389 0.568

58 0.325 0.401 0.570 0.396 0.446 0.629 0.410 0.484 0.640 0.361 0.416 0.601 0.446 0.495 0.668 0.333 0.390 0.577

96 0.362 0.442 0.602 0.390 0.443 0.624 0.436 0.488 0.660 0.372 0.447 0.610 0.518 0.599 0.720 0.368 0.446 0.607

Handan 12 0.402 0.424 0.634 0.444 0.468 0.666 0.465 0.485 0.682 0.406 0.437 0.637 0.403 0.433 0.635 0.451 0.478 0.672

36 0.421 0.436 0.649 0.480 0.491 0.693 0.496 0.499 0.704 0.427 0.444 0.653 0.465 0.492 0.682 0.494 0.503 0.703

58 0.463 0.487 0.680 0.508 0.511 0.713 0.546 0.541 0.739 0.507 0.509 0.712 0.550 0.557 0.742 0.518 0.523 0.720

96 0.537 0.514 0.733 0.533 0.540 0.730 0.536 0.532 0.732 0.745 0.662 0.863 0.649 0.650 0.806 0.542 0.545 0.736

ShiJiazhuang 12 0.329 0.388 0.574 0.447 0.475 0.669 0.463 0.477 0.680 0.353 0.429 0.594 0.327 0.402 0.572 0.332 0.390 0.573

36 0.372 0.402 0.610 0.468 0.482 0.684 0.473 0.490 0.688 0.427 0.475 0.653 0.373 0.439 0.611 0.376 0.419 0.613

58 0.368 0.445 0.607 0.512 0.512 0.716 0.524 0.528 0.724 0.515 0.530 0.718 0.466 0.501 0.683 0.400 0.454 0.632

96 0.470 0.465 0.686 0.532 0.505 0.729 0.512 0.517 0.716 0.592 0.581 0.769 0.541 0.604 0.736 0.515 0.541 0.718

Xingtai 12 0.376 0.422 0.613 0.428 0.460 0.783 0.445 0.469 0.667 0.382 0.424 0.618 0.398 0.447 0.631 0.379 0.423 0.616

36 0.417 0.426 0.646 0.471 0.489 0.804 0.444 0.478 0.666 0.452 0.480 0.672 0.443 0.48 0.666 0.431 0.433 0.657

58 0.436 0.439 0.660 0.498 0.509 0.813 0.534 0.534 0.731 0.443 0.464 0.666 0.499 0.524 0.706 0.448 0.463 0.669

96 0.503 0.489 0.709 0.523 0.529 0.842 0.531 0.536 0.729 0.691 0.638 0.831 0.584 0.610 0.764 0.519 0.498 0.720

Yulin 12 0.764 0.517 0.874 0.806 0.551 0.898 0.835 0.584 0.914 0.773 0.516 0.879 0.812 0.522 0.901 0.784 0.542 0.885

36 0.758 0.517 0.871 0.917 0.592 0.958 0.919 0.599 0.959 0.813 0.525 0.902 0.832 0.534 0.912 0.902 0.581 0.950

58 0.757 0.503 0.870 0.947 0.608 0.973 0.941 0.609 0.970 0.788 0.559 0.888 0.890 0.596 0.943 0.929 0.582 0.964

96 0.771 0.524 0.878 0.972 0.626 0.986 0.959 0.658 0.979 0.784 0.533 0.885 0.890 0.606 0.943 0.938 0.632 0.969

Lishui 12 0.532 0.488 0.729 0.542 0.512 0.736 0.554 0.519 0.744 0.645 0.549 0.803 0.570 0.500 0.755 0.584 0.510 0.764

36 0.556 0.532 0.746 0.572 0.557 0.756 0.581 0.564 0.762 0.645 0.568 0.803 0.667 0.587 0.817 0.650 0.563 0.806

58 0.588 0.550 0.767 0.613 0.551 0.783 0.624 0.58 0.790 0.625 0.573 0.791 0.660 0.568 0.806 0.617 0.537 0.785

(Continued on following page)

Fro
n
tie

rs
in

E
n
viro

n
m
e
n
tal

Scie
n
ce

fro
n
tie

rsin
.o
rg

11

Q
in

e
t
al.

10
.3
3
8
9
/fe

n
vs.2

0
2
5
.15

4
9
2
0
9

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1549209


TABLE 4 (Continued) Ablation study results with different prediction lengths O∈A12,36,58,96A for eight different datasets when I � 96. MSE Reduction refers to the percentage decrease in MSE of SFDformer
compared to other models. The best average results are shown in bold, and the second-best in underlined.

Model SFDformer SFDformerV1 SFDformerV2 Informer Reformer Transformer

Self-att SFDAtt AutoAtt AutoAtt ProbAtt ReAtt FullAtt

Cross-att SFDAtt SFDAtt AutoAtt ProbAtt ReAtt FullAtt

Metric MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE

96 0.644 0.565 0.802 0.682 0.578 0.826 0.793 0.661 0.891 0.658 0.566 0.811 0.679 0.589 0.824 0.675 0.577 0.822

Urumqi 12 0.29 0.379 0.539 0.316 0.394 0.562 0.324 0.405 0.569 0.347 0.422 0.589 0.304 0.389 0.551 0.334 0.411 0.578

36 0.320 0.410 0.566 0.327 0.421 0.572 0.332 0.438 0.576 0.335 0.414 0.579 0.333 0.415 0.577 0.326 0.417 0.571

58 0.336 0.415 0.580 0.343 0.436 0.586 0.349 0.443 0.591 0.364 0.435 0.603 0.364 0.444 0.603 0.356 0.424 0.597

96 0.353 0.423 0.594 0.444 0.465 0.666 0.457 0.473 0.676 0.376 0.434 0.613 0.415 0.484 0.644 0.373 0.442 0.611

Jingzhou 12 0.661 0.514 0.813 0.749 0.568 0.865 0.777 0.587 0.881 0.712 0.552 0.844 0.678 0.529 0.823 0.859 0.625 0.927

36 0.727 0.556 0.853 0.804 0.599 0.897 0.801 0.597 0.895 0.782 0.593 0.884 0.742 0.569 0.861 0.850 0.624 0.922

58 0.770 0.578 0.877 0.97 0.675 0.985 0.982 0.685 0.991 0.895 0.648 0.946 0.823 0.610 0.907 0.885 0.653 0.941

96 0.862 0.629 0.928 1.038 0.698 1.019 1.056 0.704 1.028 0.988 0.683 0.994 0.878 0.644 0.937 1.133 0.768 1.064

Count 30 30 30 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0

MSE reduction ——— 12.44 14.46 9.97 9.92 10.21
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mechanisms, particular attention is paid to the distribution of
attention for the i-th query, referred to as qi. This distribution is
calculated using an asymmetric kernel smoother, which yields the
attention associated with the i-th query, as shown in Equation 6:

Attention qi, K, V( ) � ∑
j

k qi, kj( )∑jk qi, kj( )vj − Ep kj |qi( ) vj[ ] (6)

The probability p(kj|qi) is calculated as k(qi ,kj)∑j
k(qi,kj), where k(qi, kj)

represents the asymmetric exponential kernel, expressed

mathematically as exp(qik
T
j�
d

√ ). This computation entails quadratic

dot-product operations, resulting in a computational complexity
ofO(LqLk). This complexity poses a considerable challenge in terms

of memory usage for models designed to improve predictive
performance.

3.4.2 Query sparsity measurement
In the traditional attention mechanisms, the attention

distribution p(Ki|Qi) for ith query is represented as a weighted
aggregation over all keys. High dot products between queries and
keys lead to uneven attention distributions, potentially reducing the
significance of individual values. In order to tackle this issue, a
mechanism grounded in KL divergence is proposed to assess the

resemblance between the attention distribution and a predefined
baseline. The degree of similarity is determined by using Equation 7:

KL(Q‖p) � −ln 1
Ln

∑Ln
j�1

e
QiK

T
j�

d
√⎛⎝ ⎞⎠ + ln LK − 1

Ln
∑Ln
j�1

QiK
T
j��
d

√ (7)

In the above formula, Ln represents the number of keys, QiKT
j

indicates the dot product between the query and the key, and d is the
dimensionality of the features. The distillation measure, denoted as
M(Qi, K), is defined by Equation 8 as follows:

M(Qi,K) � −ln ∑Ln
j�1

e
QiK

T
j�

d
√⎛⎝ ⎞⎠ + 1

Ln
∑Ln
j�1

QiK
T
j��
d

√ (8)

A higher M(Qi,K) value indicates a more diverse attention
distribution for the ith query, potentially focusing on dominant
query-key pairs in the tail of the self-attention output. This approach
allows the model to prioritize influential query-key pairs, thereby
enhancing the overall effectiveness of the knowledge
extraction process.

3.4.3 Frequency-sparse attention mechanism
We apply the Discrete Fourier Transform (DFT) to transform

the queries q, keys k, and values v. Subsequently, we execute a

FIGURE 5
Experiment for evaluating computational efficiency and performance. The input length was fixed at l � 96, with prediction lengths set to
O ∈ {12,36, 58,96}. Computational efficiency was measured by the time (in seconds) required for each model to complete one hundred epochs.
Performance was assessed using Mean Squared Error (MSE) and Mean Absolute Error (MAE) as the key metrics.
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comparable attention mechanism in the frequency domain by
choosing the Top u weight matrix patterns. The versions of the
queries, keys, and values after the DFT transformation are
represented as ~Q ∈ CM×D, ~K ∈ CM×D, and ~V ∈ CM×D. The
Frequency Sparse Attention Mechanism incorporating Fourier
Transform(SFD) is outlined as follows in Equations 9–12:

~Q � Topu F q( )( ) (9)
~K � Topu F k( )( ) (10)
~V � Topu F v( )( ) (11)

SFDAttention q, k, v( ) � F−1 Padding σ ~Q · ~KT( ) · ~V( )( ) (12)

In the above formula, σ represents an activation function. We
utilize either softmax or tanh as the activation function, since their
convergence performance differs among various datasets. Let Y be
defined as Y � σ( ~Q · ~KT) · ~V, where Y ∈ CM×D. The structure of the
Frequency Sparse Attention Mechanism with Fourier Transform
(SFD) is depicted in Figure 1.

At the screening frequency, it is sufficient to randomly sample
u � LK ln LQ dot-product pairs for the computation of M(Qi,K),
with the remaining pairs being effectively filled with zeros. From
these sampled pairs, the sparse Topu is selected as Q. The maximum
operator in M(Qi, K) exhibits reduced sensitivity to zero values,
thereby ensuring numerical stability. In practical applications, the
input lengths of queries and keys are typically equivalent in self-

attention computations, i.e., LQ � LK � L. Consequently, the overall
time complexity and space complexity of the SFDAttention
mechanism are O(L logL).

4 Experiment

4.1 Data description

This research employed historical data on pollutant
concentrations and meteorological conditions, gathered from
monitoring stations situated in eight different cities throughout
China. The dataset spans the timeframe from 28 October 2013,
to 31 May2021. The experimental data in this study is based on a
city-level perspective, where daily sample data for each city is
represented as a one-dimensional feature vector, with feature
elements consisting of pollutants and meteorological factors. The
eight selected cities are Baoding, Handan, Jingzhou, Shijiazhuang,
Xingtai, Yulin, Lishui, Urumqi,Jingzhou are among the selected
cities, each exhibiting unique economic development characteristics
within China. These cities are strategically positioned across various
geographical regions of the country(see Figure 3). In the analysis, six
distinct types of pollutants were considered, alongside three
indicators for evaluating pollution levels and three meteorological
factors that influence pollutant concentrations. each of which has
distinctive characteristics in terms of economic development in

TABLE 5 Comparison of accuracy and efficiency metrics for different methods.

Methods SFDformer Autoformer Informer LogTrans Transformer LSTM

Training Time O(L log L) O(L log L) O(L log L) O(L log L) O(L2) O(L)

Memory O(L log L) O(L log L) O(L log L) O(L2) O(L2) O(L)

Testing Steps 1 1 1 1 L L

FIGURE 6
PM2.5 Concentration Prediction Results for Handan and Xintai Datasets. The prediction results of the SFDformermodel are indicated by a red line, the
SFDformer-ND model is represented by a blue line, and the performance of the SFDformer-NFD model is depicted by a yellow line.
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China. The selected cities are strategically located across diverse
geographical regions within the nation, each presenting distinct
pollution characteristics. (refer to Table 1 for details): air quality
grade, AQI index, daily AQI ranking, O3, PM10, So2, No2, CO,
PM2.5, Temperature, Wind speed, and Precipitation. In Figure 4, we
present the daily PM2.5 concentration for each city segment in the
dataset from 28 October 2020, to 31 May 2021. In accordance with
established procedures, the entirety of the compiled datasets was
methodically divided into training, validation, and test subsets,
arranged sequentially over time, and following a specified
allocation ratio of 7:1:2 (Hua et al., 2019).

4.2 Implementation details

Harnessing the benefits of Transformer architectures in
managing time series information, we integrated residual
connections into our model, embedding them within

decomposition blocks (Yu et al., 2024). These blocks incorporate
functionalities like moving averages, which assist in evening out
periodic oscillations and highlighting long-term tendencies within
the time series data. As a result, residual connections significantly
improve the model’s ability to perceive and assimilate complex
patterns inherent in time series, thereby significantly boosting its
proficiency in long-term projections. To further enhance the self-
attention mechanism, we subjected the input features to nonlinear
transformations and dimensional alterations via a Multi-Layer
Perceptron (MLP), resulting in innovative feature renditions.
This tactic allows the model to more precisely detect intricate
patterns and profound interconnections embedded in the time
series information, ultimately refining its overall predictive
capabilities. Our training methodology utilizes L2 loss along with
the ADAM optimizer (Kingma and Ba, 2015), initiated with a
learning rate of 0.0001 and a batch size of 32. The attention
factor is established at 3, and weight decay is set to 0.1. Training
concludes prematurely after 10 epochs. Every experiment was

FIGURE 7
Prediction results for SO2,O3, PM10, and CO concentrations. The red areas represent the SFDformermodel, the blue areas represent the Autoformer
model, the green areas represent the LightTS model, and the purple areas represent the Film model.
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replicated thrice and executed using PyTorch (Paszke et al., 2019),
facilitated on a solitary NVIDIA Tesla V100 32 GB GPU (Markidis
et al., 2018).

In this study, we utilize Mean Squared Error (MSE), Mean
Absolute Error (MAE), and Root Mean Squared Error (RMSE) as
three essential criteria to assess the predictive accuracy of the
SFDformer model. The detailed explanations for calculating these
indicators are provided in Equations 13–15:

MSE � 1
n
∑n
i�1

yi − ŷi( )2 (13)

MAE � 1
n
∑n
i�1

yi − ŷi

∣∣∣∣ ∣∣∣∣ (14)

RMSE �
������������
1
n
∑n
i�1

yi − ŷi( )2√
(15)

Where yi represents the actual observed value, ŷi is the
predicted value from the model, and n is the total number of
data points, these metrics allow us to intuitively evaluate the
accuracy of the model’s predictions. Lower values of Mean
Squared Error (MSE) and Mean Absolute Error (MAE) indicate
that the predicted values are closer to the actual values, suggesting
better predictive performance. Additionally, a lower Root Mean
Squared Error (RMSE) implies a better model fit to the data,
indicating more reliable prediction results.

We evaluated seven baseline methods for comparative analysis.
In the multivariate setting, we selected four Transformer-based
models: Autoformer (Wu et al., 2021), Informer (Zhou et al.,
2021), Reformer (Kitaev et al., 2020), and Pyraformer Liu et al.
(2022), in addition to one model based on linear networks: FiLM
(Zhou et al., 2022a). For the univariate setting, we considered more
competitive baselines: FEDformer (Zhou et al., 2022b), and a model
based on MLP: LightTS (Campos et al., 2023).

4.3 Main results

4.3.1 Multivariate results
Multivariate analysis involves the simultaneous consideration of

multiple time series to examine the interrelationships and influences
among them.In the multivariate settings, we conducted experiments
using eight different datasets. The results indicate that SFDformer
consistently achieved state-of-the-art performance across most
baseline and prediction horizon configurations (see Table 2).
Specifically, under the input-96-predict-58 (The model utilizes
96 historical data points to forecast 58 future data points)
configuration, SFDformer reduces the MSE by 0.9% in Baoding
(0.328 → 0.325), 1.6% in Handan (0.471 → 0.463), 1.8% in
Shijiazhuang (0.375 → 0.368), 1.5% in Xingtai (0.443 → 0.436),
0.7% in Yulin (0.763→ 0.757), 2.1% in Lishui (0.601→ 0.588), 7.6%
in Urumqi (0.364 → 0.336), and 6.4% in Jingzhou (0.823 →0.770)
compared to previous state-of-the-art results. Overall, in this
configuration, the average MSE reduction for SFDformer is
22.46%. Furthermore, on the Shijiazhuang dataset, SFDformer
did not exhibit optimal performance in the input-96-predict-
12 and input-96-predict-36 settings. However, its performance
improves as the prediction horizon extends. This improvement

can be attributed to the relatively minor impact of noise in
short-term forecasting, whereas long-term forecasting is more
influenced by the intricate temporal patterns inherent in real-
world time series, demonstrating SFDformer’s ability to better
handle complex temporal patterns.

4.3.2 Univariate results
Univariate analysis predicts future values based solely on the

historical data of a single time series. We showcase the univariate
outcomes for eight illustrative datasets, as depicted in Table 3. In
contrast with numerous baseline models, SFDformer achieves
cutting-edge performance in prediction tasks. Notably, under the
input-96-predict-58 setup, our model diminishes the mean absolute
error (MAE) on the Baoding dataset by 1.1% (0.339 → 0.335).
Regarding the Handan dataset, the model lowers the MAE by 0.4%
(0.404 → 0.402), Regarding the Shijiazhuang dataset, the model
lowers the MAE by 1.8% (0.320 → 0.314), Regarding the Xingtai
dataset, the model lowers the MAE by 1.1% (0.344 → 0.340),
Regarding the Yulin dataset, the model lowers the MAE by 0.7%
(0.551→ 0.547), Regarding the Lishui dataset, the model lowers the
MAE by 0.8% (0.336 → 0.333), Regarding the Urumqi dataset, the
model lowers the MAE by 8% (0.357 → 0.326), Regarding the
Jingzhou dataset, the model lowers the MAE by 7% (0.496→ 0.458).
Moreover, as the prediction timeline extends, the model’s
proficiency stays consistent, underscoring its resilience in
forecasting PM2.5 air pollution concentration levels.

4.3.3 Ablation research
This study assesses the impact of the Sparse Frequency Domain

Attention (SFDA) module on model performance via an ablation
experiment. Three variants of SFDformer were tested: KEDformer,
which entirely substitutes both the self-attention and cross-attention
mechanisms with SFDA; SFDformerV1, which replaces only the
self-attention mechanism with SFDA while maintaining the cross-
correlation attention mechanism; and SFDformerV2, which
employs self-correlation attention to manage both mechanisms.
The experiments were conducted on eight datasets, as illustrated
in Table 4. SFDformer exhibited performance enhancements in
90 out of 96 test cases. Importantly, the SFDformer integrated
with the SFDA module consistently demonstrated improvements
across all cases, corroborating the effectiveness of SFDA in
substituting traditional attention mechanisms and significantly
improving the model’s performance.

5 Discusion

5.1 Efficiency analysis and
performance analysis

The present study comprehensively evaluates the impact of
various self-attention mechanisms on model performance and
computational efficiency, with a detailed analysis of the trade-offs
between these two aspects (see Figure 5). To further verify the
model’s generalization capability across regions with different levels
of air pollution, two distinct locations were selected: Handan,
situated in northern China and characterized by relatively severe
air pollution, and Lishui, located in eastern China with relatively
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mild air pollution. The SFDformer model stands out from other
models by integrating Fourier transform and sparse attention
techniques into its attention mechanism, thereby significantly
enhancing prediction accuracy. Compared with traditional
Transformer models, SFDformer effectively mitigates the inherent
quadratic complexity of conventional attention mechanisms,
leading to a substantial improvement in operational efficiency.
This feature makes SFDformer particularly well-suited for
handling large-scale time series datasets, such as those used in air
pollution forecasting tasks.

5.2 Computation efficiency

In the multivariate setting and with the current optimal
implementation of all methods, SFDformer has achieved a
significant enhancement in computational efficiency compared
to conventional Transformer models. This improvement
effectively addresses the challenges associated with the
quadratic time complexity O(L2) and memory usage O(L2)
inherent to standard self-attention mechanisms. By employing
sparse attention and the discrete Fourier transform, SFDformer
reduces both the time complexity and memory usage to
O(L logL), thereby enhancing the model’s capability to handle
real-world scenarios of air pollutant concentration prediction.
During the testing phase, SFDformer completes predictions in a
single step, in contrast to traditional models that require O(L)
steps, thereby substantially increasing its efficiency. As
demonstrated in Table 5, SFDformer strikes a superior balance
between computational efficiency and predictive accuracy,
rendering it a practical solution for air pollutant concentration
prediction tasks in resource-constrained environments.

5.3 Performance impact of time series
decomposition and frequency
transformation

To explore the effectiveness of time series decomposition and
Fourier transform techniques, we conducted experimental studies
using datasets fromHandan and Lishui, two regions with significantly
different levels of air pollution. As illustrated in Figure 6, the
SFDformer model integrates both techniques, whereas the
SFDformer-NF model excludes the Fourier transform step, and the
SFDformer-NFD model omits both techniques. The experimental
results elucidate that the SFDformer model surpasses the other two
models, with performance enhancements stemming from several
pivotal factors. Primarily, the time series decomposition technique
enables the model to directly emulate the seasonal variations in air
pollutant concentrations, thereby more accurately capturing periodic
patterns and significantly improving the model’s ability to make
predictions based on historical data. Secondly, the application of
the Fourier transform allows the model to discern and accentuate
crucial features in the data while mitigating noise interference,
ensuring the model concentrates on the most pertinent
information during predictions. These findings substantiate the
efficacy of time series decomposition and Fourier transform
techniques in improving model performance. This version adheres

to the standards for scientific articles, employing clear and
precise language.

5.4 Generalization and predictive insights of
the model on pollutant levels

In this study, the SFDformer model demonstrated remarkable
precision in predicting PM2.5 concentrations. Industrial
development is one of the sources of various air pollutants and is
also a key factor contributing to air pollution. To further evaluate the
generalization ability of this model, we selected two regions with
different industrial characteristics for experiments: Handan, a city
with significant heavy industrial development, and Lishui, a region
dominated by light industrial activities. We applied the SFDformer
model to predict the concentrations of additional pollutants,
including PM10, carbon monoxide, sulfur dioxide, and ozone. As
shown in Figure 7, the SFDformer model exhibited remarkable
proficiency across these diverse pollutant prediction tasks. The
experimental results clearly indicate that the SFDformer model
outperforms alternative models in terms of generalization capability.

6 Conclusion

The rapid advancement of deep learning technologies has led to
their widespread adoption across both academia and industry. This
paper presents a novel framework, SFDformer, which seamlessly
integrates time series decomposition, Fourier transform, and sparse
attention mechanisms. Through the employment of time series
decomposition, SFDformer adeptly captures the seasonal fluctuations
and long-term trends ofPM2.5 concentrations, elucidating the interplay
between short-term variations and long-term patterns. The fusion of
Fourier transform and sparse attention mechanisms not only
substantially reduces computational complexity from quadratic to
linear, thereby significantly enhancing computational efficiency, but
also effectively mitigates noise interference from air pollution features
during the prediction process. This dualmechanism’s designminimizes
the impact of noise on prediction outcomes, enabling the model to
better adapt to the temporal dynamics of the real world, which is pivotal
for the accurate forecasting of PM2.5 concentrations, a critical air
pollution indicator.

In future research, we will focus on enhancing the adaptability
of SFDformer to diverse datasets, especially those with irregular
patterns. We are confident that through further optimization and
expansion, SFDformer will achieve even more remarkable results
in the highly challenging field of air pollution time-series
forecasting. In summary, SFDformer has made significant
breakthroughs in addressing the complexities of air pollution
time-series forecasting. This achievement not only demonstrates
its strong effectiveness but also highlights its great potential and
broad application prospects in this critical field.
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