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Introduction: The interplay between cutture and environment in the Third Pole
Region holds profound implications for the region’s socio-ecological resilience and
long-term sustainability. However, existing research has largely relied onisolated
analyses, often constrained by the absence of integrative frameworks capable of
capturing the dynamic and interdependent nature of cultural and environmental
systems. These conventional approaches frequently overlook the spatial-temporal
complexity, synergistic relationships, and feedback mechanisms intrinsic to this
interplay, thereby limiting their predictive accuracy and adaptability in addressing
emerging challenges.

Methods: To bridge these gaps, we propose the Dynamic Cultural-
Environmental Interaction Network (DCEN), a novel computational framework
that integrates cultural metrics and environmental variables within a graph-based,
multidimensional model. This approach systematically captures bidirectional
interactions through coupled nonlinear equations, incorporating spatial and
temporal dynamics while accounting for external stimuli and abrupt perturbations.
Furthermore, we introduce the Adaptive Interaction Strategy for Cuttural-
Environmental Systems (AIS-CES), which enables real-tme optimization of
model parameters based on system feedback, ensuring stability, adaptability,
and enhanced resilience.

Results: Experimental validation demonstrates that the proposed framework
effectively simulates complex cultural-environmental interactions with high
predictive accuracy, providing a robust foundation for policymaking, adaptive
management, and disaster mitigation in the Third Pole Region.

Discussion: By addressing critical limitations in existng methodologies, this
research advances a more holistic and actionable understanding of cultural-
environmental dynamics, fostering regional sustainability and socio-ecological
harmony.
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1 Introduction

The Third Pole region, encompassing the Himalayas and
surrounding areas, plays a critical role in global climate regulation,
ecological balance, and cultural diversity (Isensee et al., 2020). Its unique
topography and climatic conditions not only influence local ecosystems
but also sustain ancient cultural traditions deeply intertwined with the
environment (Cao et al., 2021). Studying the interaction between culture
and the environment in this region is vital for understanding how
climate change, urbanization, and socio-economic shifts impact these
delicate balances (Minaee et al., 2020). Traditional field-based studies
are not only labor-intensive but also often restricted by the remoteness
and harshness of the region (Cheng et al., 2021). Remote sensing
technology offers a transformative solution by enabling large-scale,
continuous monitoring of environmental and cultural patterns
(Hatamizadeh et al., 2021). It not only facilitates the collection of
high-resolution spatial and temporal data but also supports the
integration of diverse datasets, offering deeper insights into the
dynamic interactions between human societies and their
environment in this fragile region.

To address the limitations of earlier methods, researchers initially
relied on traditional symbolic AI and knowledge-based systems to study
cultural and environmental interactions (Xu et al., 2023). These
approaches focused on creating rule-based models that incorporated
expert knowledge to analyze cultural and ecological phenomena (Huang
et al., 2020). For example, early systems used symbolic representations to
map historical land-use patterns or trace changes in sacred landscapes
(Valanarasu and Patel, 2022). While these methods offered interpretable
insights and highlighted the role of specific cultural practices in shaping
the environment, they were constrained by their reliance on predefined
rules and static datasets (Yu et al., 2023). The lack of scalability and
adaptability to emerging complexities limited their effectiveness in
capturing the dynamic and multi-dimensional nature of the Third
Pole’s cultural-environmental interactions (Valanarasu et al., 2021).

The advent of data-driven approaches andmachine learningmarked
a significant shift in remote sensing applications for this research area
(Zhang Y. et al., 2021). Data-driven methods leveraged large-scale
geospatial datasets to uncover patterns and correlations without
explicit rule-based programming (Xie et al., 2021). Machine learning
algorithms enabled automated classification of land use, detection of
environmental changes, and identification of anthropogenic impacts on
cultural sites (Wang et al., 2021). For instance, support vector machines
and random forests were commonly employed to analyze satellite
imagery, allowing researchers to detect subtle cultural markers such as
terraced farming or sacred groves (Ghiasi et al., 2021). Despite these
advancements, the dependency on labeled datasets and the difficulty of
interpretingmachine learning models posed challenges (Jain et al., 2022).
Furthermore, these approaches often struggled to incorporate the rich
contextual and temporal nuances necessary for understanding the
interplay between culture and the environment.

The emergence of deep learning and pre-trained models
revolutionized the field by offering unparalleled capabilities in feature
extraction and pattern recognition (Müller et al., 2022). Neural networks,
particularly convolutional neural networks (CNNs), excelled at
processing high-resolution remote sensing imagery to identify intricate
cultural and environmental features (Yin et al., 2022). Pre-trainedmodels,
such as those based on transfer learning, facilitated the integration of
multispectral and temporal data, enabling robust analysis of complex

phenomena like cultural heritage conservation amidst climate change
(Wu et al., 2022). These methods also supported the development of
multi-modal frameworks that combined remote sensing with
ethnographic and historical data (Zhang W. et al., 2021). However,
deep learning models often suffered from high computational costs and
limited interpretability, necessitating efforts to balance accuracy with
transparency (Malhotra et al., 2022). The lack of generalized datasets
tailored to the Third Pole’s unique characteristics also highlighted the
need for more customized solutions.

Based on the aforementioned limitations, this study proposes a
novel framework that integrates the strengths of deep learning with
domain-specific cultural and environmental knowledge to overcome
existing gaps. Our approach combines pre-trained neural networks with
tailored data augmentation techniques to capture the diverse and
dynamic nature of the Third Pole region. by incorporating hybrid
models that merge statistical and rule-based systems, we address the
challenges of interpretability and context-awareness. This method not
only enhances the scalability of remote sensing applications but also
ensures that cultural insights are preserved in the analysis.

• The proposed method integrates domain-specific knowledge
with advanced deep learning, offering a unique approach to
analyzing culture-environment interactions.

• The framework is designed for efficient and versatile
application across diverse datasets and scales, making it
suitable for various cultural and environmental contexts.

• Preliminary results demonstrate superior accuracy and
reliability in detecting and interpreting complex patterns in
the Third Pole region compared to traditional methods.

2 Related work

2.1 Remote sensing for cultural
landscape analysis

Remote sensing technologies have increasingly been utilized to
analyze cultural landscapes, enabling the study of human-
environment interactions at a regional scale (Jha et al., 2020). In the
Third Pole region, cultural landscapes are heavily influenced by
environmental conditions, traditional practices, and socio-economic
dynamics (Luo et al., 2020). By employing high-resolution satellite
imagery and geospatial analysis, researchers can identify patterns of
settlement distribution, agricultural practices, and infrastructure
development that reflect the adaptation of human populations to the
unique environmental conditions of this area (Lüddecke and Ecker,
2021). For example, spectral indices such as the Normalized Difference
Vegetation Index (NDVI) allow for the mapping of cultivated lands and
pasturelands, providing insights into traditional subsistence strategies
(Wang et al., 2024). The integration of temporal remote sensing data
further supports the monitoring of changes in cultural landscapes over
time, such as shifts in land use driven by climate change, policy
interventions, or economic development (Wang et al., 2023). Beyond
physical mapping, remote sensing supports the identification of
intangible cultural features by assessing proxies such as the spatial
arrangement of religious sites, traditional architecture, and sacred
natural sites. Multispectral and hyperspectral imaging techniques
reveal the material composition of historical and cultural structures,
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enabling conservation and heritage management. Combined with
ground-truthing and ethnographic studies, remote sensing data
contribute to a holistic understanding of how cultural landscapes are
shaped and maintained in response to environmental dynamics. As the
Third Pole faces increasing pressures from climate change and
modernization, remote sensing provides a crucial tool for
documenting and preserving the cultural heritage embedded in its
landscapes.

2.2 Environmental change and cultural
adaptation

Remote sensing is a powerful tool for studying environmental
changes and their impact on cultural systems, especially in the Third
Pole region, where rapid environmental transformations are occurring
(Chaitanya et al., 2020). Glacier retreat, permafrost thaw, and alterations
in hydrological systems are key environmental changes that significantly
affect human livelihoods and cultural practices (Atigh et al., 2022).
Satellite-based remote sensing, including data from Landsat, Sentinel,
and MODIS platforms, enables the detection and quantification of these
changes with high temporal and spatial resolution (Chen et al., 2020). For
instance, glacier monitoring using Synthetic Aperture Radar (SAR) and
optical imagery has revealed significant ice loss in the Himalayas, directly
impacting water availability for downstream communities (Wang et al.,
2022). The implications of such environmental changes on cultural
adaptation can be examined through remote sensing by linking
ecological variables with human activities (Jiang et al., 2024). For
example, remote sensing of vegetation cover can illustrate the
resilience or vulnerability of traditional pastoral systems to climatic
stressors. Changes in river dynamics, detectable through remote
sensing, reveal the effects on irrigation-dependent agricultural
practices that are central to local cultures. Remote sensing also
supports the study of disaster impacts on cultural systems, such as
landslides or floods, providing data critical for understanding recovery
processes and long-term adaptations. By integrating remote sensing with
socio-cultural data, researchers gain insights into how communities in the
Third Pole adapt their cultural practices in response to environmental
challenges.

2.3 Sacred natural sites and environmental
monitoring

Sacred natural sites, often associated with religious and cultural
significance, serve as critical nodes of cultural-environmental
interaction in the Third Pole region (Ouyang et al., 2020). Remote
sensing technologies provide an effective means to study these sites, their
environmental settings, and the surrounding landscapes (Gao et al.,
2021). High-resolution imagery and LiDAR data are particularly useful
for delineating sacred sites and analyzing their spatial relationships with
ecological features such as water bodies, forests, andmountain peaks (Lin
et al., 2021). These analyses reveal how sacred natural sites are integrated
into broader cultural and ecological systems, reflecting traditional beliefs
about the environment (Liu et al., 2021). Remote sensing also facilitates
the monitoring of environmental conditions around sacred natural sites,
supporting conservation efforts and understanding human impacts (Liu
et al., 2024). For example, changes in vegetation health around sacred

groves orwater quality in sacred rivers can be detected usingmultispectral
and hyperspectral sensors (Arosio et al., 2024). Such data provide
empirical evidence for evaluating the effectiveness of traditional
conservation practices associated with these sites. Furthermore, remote
sensing can uncover the threats posed by anthropogenic activities, such as
urban expansion, tourism, and resource extraction, to the integrity of
sacred natural landscapes. By bridging cultural and environmental
studies, remote sensing offers a framework for assessing the role of
sacred sites in sustainable environmental management. Combining
remote sensing data with participatory mapping and community
engagement enhances the understanding of local knowledge systems
and their alignment with ecological conservation goals. In the context of
the Third Pole, where sacred natural sites often intersect with biodiversity
hotspots, remote sensing serves as a critical tool for promoting culturally
sensitive environmental stewardship.

3 Materials and methods

3.1 Overview

The intricate interplay between culture and environment has been a
focal point across diverse disciplines, ranging from anthropology to
computational modeling. This section explores how these factors
coalesce to influence the studied phenomenon. The goal is to
systematically decompose the complexities into comprehensible
frameworks, paving the way for a nuanced understanding. In
preliminaries, we formalize the research problem, contextualizing
culture and environment as intertwined systems. This involves
defining key variables, structural relationships, and underlying
principles that anchor our analysis. The approach synthesizes
theoretical models and empirical observations, aiming to articulate
the multifaceted dynamics precisely.

The next focus is on the novel model we propose, described in
Dynamic Cultural-Environmental Interaction Network (DCEN).
The model innovatively integrates cultural metrics and
environmental variables into a coherent computational
framework. By leveraging advanced techniques, it extends
existing paradigms, offering greater adaptability and predictive
accuracy. The structural details and theoretical underpinnings of
this model are elucidated to highlight its contributions to the field.
in Adaptive Interaction Strategy for Cultural-Environmental
Systems (AIS-CES), we delve into the strategic methodologies
enabling the application of the model. This includes the design
principles guiding its deployment, mechanisms addressing real-
world challenges, and the theoretical rigor behind these solutions.
Emphasis is placed on bridging the gap between theoretical
formulation and practical execution, demonstrating the utility
of the proposed framework in diverse scenarios.

3.2 Preliminaries

To explore the interaction between culture and environment, this
section formalizes the research problem and establishes the
mathematical notations and theoretical foundation necessary for
subsequent analysis. We focus on characterizing culture and
environment as dynamic systems with interdependent variables. By
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defining these elements symbolically, we aim to construct a unified
framework conducive to both qualitative and quantitative exploration.

Let C denote the cultural factors, represented as a
multidimensional space C ⊆ Rm, where m corresponds to
measurable cultural attributes such as norms, traditions, or
languages. Similarly, let E represent environmental factors,
modeled as a multidimensional space E ⊆ Rn, where n denotes
attributes such as climate, geography, or biodiversity.

The interaction between C and E can be viewed as a mapping
f: C × E → R, capturing their joint influence on a specific
phenomenon P. This influence is expressed as Formula 1:

P � f c, e( ), (1)
where c ∈ C and e ∈ E. The function f encapsulates underlying
mechanisms, including direct effects, feedback loops, and emergent
properties arising from the interplay.

To decompose this relationship, we define conditional
dependencies using probabilistic frameworks. Let p(c, e)
represent the joint probability distribution of cultural and
environmental variables. We express the conditional probability
as Formula 2:

p c|e( ) � p c, e( )
p e( ) , (2)

allowing us to examine how environmental conditions influence
cultural configurations.

A critical aspect of this study involves modeling
temporal evolution. We define the time-dependent state of
the system as z(t) � [c(t), e(t)]T, where t denotes time. The
dynamics are governed by coupled differential equations
Formula 3:

dz t( )
dt

� g z t( )( ), (3)

where g: Rm+n → Rm+n is a vector field encapsulating cultural-
environmental interactions.

Moreover, cultural traits often diffuse spatially and
temporally. This process is described by a partial differential
equation Formula 4:

∂c x, t( )
∂t

� Dc∇
2c x, t( ) + h c x, t( ), e x, t( )( ), (4)

where Dc is the diffusion coefficient, ∇2 denotes the Laplace
operator, and h accounts for local interactions and external forces.

Environmental influences are similarly expressed via spatially-
dependent variables Formula 5:

∂e x, t( )
∂t

� De∇
2e x, t( ) + k c x, t( ), e x, t( )( ), (5)

with De and k playing analogous roles for environmental dynamics.
For analytical tractability, we linearize g(z) around an

equilibrium point z*, obtaining Formula 6:

dz t( )
dt

≈ J z*( ) z t( ) − z*( ), (6)

where J(z*) is the Jacobian matrix evaluated at z*. Eigenvalues of J
indicate the stability of the equilibrium.

3.3 Dynamic cultural-environmental
interaction network (DCEN)

To address the intricate relationship between culture and
environment, we propose the Dynamic Cultural-Environmental
Interaction Network (DCEN). This model captures the bidirectional
interactions between cultural systems and environmental dynamics,
employing a graph-structured framework that integrates temporal and
spatial dimensions (As shown in Figure 1).

3.3.1 Graph-based representation of
interacting systems

The cultural and environmental systems are conceptualized as
two interconnected networks, denoted by GC � (VC , EC) and
GE � (VE , EE), respectively. Here, VC represents the set of nodes
corresponding to cultural attributes (e.g., traditions, social norms, or
economic activities), while VE represents environmental attributes
(e.g., climate variables, biodiversity indices, or resource availability).
The edges EC capture intra-cultural interactions, and EE capture
intra-environmental interactions, such as resource dependencies or
ecological feedbacks.

The dynamics of cultural attributes in GC are modeled using
interaction weights wij, which quantify the strength of influence
from cultural node j to node i. The evolution of a cultural state xi(t)
is described as Formula 7:

dxi t( )
dt

� αi ∑
j∈NC i( )

wijxj t( ), (7)

whereNC(i) is the set of neighbors of node i inGC , and αi is a scaling
coefficient that modulates the rate of influence.

Similarly, the dynamics of environmental attributes in GE
depend on the interaction weights ψkl, which capture the
influence of environmental node l on node k. The evolution of
an environmental state yk(t) is governed by Formula 8:

dyk t( )
dt

� λk ∑
l∈NE k( )

ψklyl t( ), (8)

where NE(k) is the set of neighbors of node k in GE , and λk is a
scaling coefficient that adjusts the rate of environmental
interactions.

The interdependence between the cultural and environmental
networks is captured by a bipartite graph GCE , which consists of
directed edges between nodes in VC and VE . These edges are
associated with influence weights ϕik, representing the effect of
environmental node k on cultural node i. The combined
dynamics of cultural and environmental systems are expressed as
Formulas 9, 10:

dxi t( )
dt

� αi ∑
j∈NC i( )

wijxj t( ) + βi ∑
k∈VE

ϕikyk t( ), (9)

dyk t( )
dt

� λk ∑
l∈NE k( )

ψklyl t( ) + μk ∑
i∈VC

ϕikxi t( ), (10)

where βi and μk are scaling coefficients for inter-system interactions.
To ensure a flexible representation of cross-system

dependencies, the bipartite graph GCE is equipped with a
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dynamic adjustment mechanism for the influence weights ϕik. The
temporal evolution of ϕik(t) is expressed as Formula 11:

dϕik t( )
dt

� ηϕ
∂L
∂ϕik

, (11)

where L is a loss function encoding specific objectives (e.g., stability
or resilience), and ηϕ is a learning rate parameter.

To analyze the overall system dynamics, the state of the
combined network is represented as z(t) � [x(t), y(t)]T, where
x(t) and y(t) denote the states of the cultural and environmental
systems, respectively. The temporal evolution of z(t) is given by
Formula 12:

dz t( )
dt

� F z t( )( ), (12)

where F(z(t)) combines intra- and inter-network interactions.
Stability analysis of z(t) is conducted using the Jacobian matrix

J(z), which is defined as Formula 13:

J z( ) �
∂FC
∂x

∂FC
∂y

∂FE
∂x

∂FE
∂y

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (13)

The eigenvalues of J(z) provide critical insights into the stability
and resilience of the interacting systems.

3.3.2 Coupled nonlinear dynamical equations
The interactions between the cultural system GC and the

environmental system GE are governed by a set of coupled
nonlinear dynamical equations. These equations describe how the
states of cultural and environmental nodes evolve over time based on
intra-system and inter-system influences, as well as external stimuli.
For each cultural node ci ∈ VC , the state xi(t) evolves according to
Formula 14:

dxi t( )
dt

� αi ∑
j∈NC i( )

wijxj t( ) + βi ∑
k∈VE

ϕikyk t( ) + γiSC xi t( )( ), (14)

where NC(i) is the set of neighbors of node i in GC , wij represents
the cultural influence weight between nodes i and j, ϕik denotes the
cross-system influence weight from environmental node k to
cultural node i, SC(xi) is an external cultural stimulus term, and
αi, βi, γi are scaling coefficients. Similarly, for each environmental
node ek ∈ VE , the state yk(t) evolves according to Formula 15:

dyk t( )
dt

� λk ∑
l∈NE k( )

ψklyl t( ) + μk ∑
i∈VC

ϕikxi t( ) + ]kSE yk t( )( ), (15)

FIGURE 1
Diagram illustrating the Dynamic Cultural-Environmental Interaction Network (DCEN), showcasing bidirectional interactions between cultural and
environmental systems. The framework employs a graph-structured approach with cultural and environmental networks represented by nodes and
edges, capturing intra- and inter-system dynamics. Key components include temporal evolution equations, cross-system feedback mechanisms,
adaptive influence weights, and stability analysis via Jacobian matrix eigenvalues. This architecture models the complex interplay between culture
and environment, enabling dynamic adjustments and resilience under external stimuli.
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whereNE(k) is the set of neighbors of node k inGE , ψkl represents the
environmental influence weight between nodes k and l, SE(yk) is an
external environmental stimulus term, and λk, μk, ]k are scaling
coefficients. The external cultural stimuli SC(xi) and environmental
stimuli SE(yk) can be modeled as functions of time and system states.
For instance, SC(xi) may depend on external shocks or policy
interventions Formula 16:

SC xi( ) � δi t( ) + ρi ∑
m∈VE

χimym t( ), (16)

where δi(t) represents time-dependent cultural shocks, ρi is a
sensitivity parameter, and χim measures the response of cultural
node i to environmental node m. Similarly, SE(yk) may capture the
influence of external drivers like climate changes or anthropogenic
pressures Formula 17:

SE yk( ) � ζk t( ) + θk ∑
n∈VC

ηknxn t( ), (17)

where ζk(t) represents external environmental perturbations, θk is a
sensitivity coefficient, and ηkn measures the effect of cultural node n
on environmental node k. The influence weights ϕik,wij, and ψkl are
often dynamic and evolve over time based on feedback from the
system. Their temporal evolution can be modeled using gradient-
based optimization Formula 18:

dϕik t( )
dt

� ηϕ
∂L
∂ϕik

,
dwij t( )

dt
� ηw

∂L
∂wij

,
dψkl t( )

dt
� ηψ

∂L
∂ψkl

, (18)

where L is a loss function encoding system-level objectives (e.g.,
stability, resilience), and ηϕ, ηw, ηψ are learning rates. To analyze
system stability, the combined state vector z(t) � [x(t), y(t)]T is
used, where x(t) and y(t) represent the cultural and environmental
states, respectively. The overall dynamics are expressed as
Formula 19:

dz t( )
dt

� F z t( )( ) + S t( ), (19)

where F(z) encodes the intrinsic dynamics of the system and S(t)
represents external stimuli. The Jacobian matrix of the system, given
by Formula 20:

J z( ) �
∂FC
∂x

∂FC
∂y

∂FE
∂x

∂FE
∂y

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (20)

is used to evaluate the stability of equilibrium points. The
eigenvalues of J(z) determine whether the system converges to
stable states or exhibits oscillatory or chaotic behavior.

3.3.3 Integrated state-space and stability analysis
We model the temporal evolution of the system state

z(t) � [x(t), y(t)]T, where x(t) represents the cultural states
and y(t) represents the environmental states. The dynamics
are expressed using a combined state-space representation
Formula 21:

dz t( )
dt

� F z t( )( ) + S t( ), (21)

where F(z) represents the intrinsic dynamics defined by the
interactions within and between cultural and environmental
networks, and S(t) encapsulates the influence of external stimuli,
which may include policy interventions, external shocks, or
resource shifts.

The Jacobian matrix J(z) is used to examine the stability of the
system. It is defined as Formula 22:

J z( ) �
∂FC
∂x

∂FC
∂y

∂FE
∂x

∂FE
∂y

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (22)

where ∂FC
∂x and ∂FE

∂y capture the intra-network interactions of cultural
and environmental systems, and ∂FC

∂y and ∂FE
∂x describe the

interdependencies between the two systems.
To study how the system evolves under perturbations, we

consider the eigenvalues λ of J(z). Stability is ensured if
Re(λ)< 0 for all eigenvalues. When Re(λ)> 0, the system exhibits
unstable behavior, which may manifest as exponential divergence
from equilibrium states Formula 23:

λ � det J z( ) − λI( ) � 0, (23)
where I is the identity matrix. The eigenvalue spectrum provides
insights into the system’s response to perturbations and its potential
for oscillatory or chaotic dynamics.

For external stimuli, S(t) is defined as a time-dependent
function Formula 24:

S t( ) � SC x t( ), t( )
SE y t( ), t( )[ ], (24)

where SC(x(t), t) represents cultural external drivers, such as shifts
in societal priorities, and SE(y(t), t) includes environmental
externalities, such as climate shocks or resource depletion.

The interaction between cultural and environmental systems is
further influenced by cross-system feedback. The interdependencies
are modeled by the terms Formula 25:

∂FC
∂y

�
ϕ11 ϕ12 / ϕ1m

ϕ21 ϕ22 / ϕ2m

..

. ..
.

1 ..
.

ϕn1 ϕn2 / ϕnm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (25)

where ϕik captures the influence of environmental node k on cultural
node i. Similarly, the reverse influence is defined by Formula 26:

∂FE
∂x

�
ψ11 ψ12 / ψ1n

ψ21 ψ22 / ψ2n

..

. ..
.

1 ..
.

ψm1 ψm2 / ψmn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (26)

where ψkl describes the feedback from cultural node l to
environmental node k.

To ensure adaptability, the system incorporates time-varying
parameters, allowing it to respond dynamically to evolving
conditions. The parameters evolve as Formula 27:

dϕik t( )
dt

� ηϕ
∂L
∂ϕik

,
dψkl t( )

dt
� ηψ

∂L
∂ψkl

, (27)
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where L is a loss function reflecting system objectives, such as
minimizing instability or optimizing resource use, and ηϕ, ηψ are
learning rates.

The temporal evolution of stability can be tracked by the largest
eigenvalue λmax of J(z). Stability adjustments can be introduced
through external controls when Formula 28:

dλmax

dt
> 0, indicating potential instability. (28)

These adjustments may involve modifying external
stimuli S(t) or redistributing influence weights ϕik and ψkl

to stabilize the coupled system dynamics (As shown
in Figure 2).

3.4 Adaptive interaction strategy for
cultural-environmental systems (AIS-CES)

To leverage the Dynamic Cultural-Environmental Interaction
Network (DCEN), we introduce the Adaptive Interaction Strategy
for Cultural-Environmental Systems (AIS-CES). This strategy aims
to enhance the model’s capacity to resolve domain-specific
challenges by dynamically tailoring interaction mechanisms based
on observed patterns and emergent phenomena (As shown
in Figure 3).

3.4.1 Feedback-driven optimization of
interaction weights

The interplay between culture and environment often involves
complex feedback loops, nonlinear interactions, and emergent
behaviors, which require dynamic adaptation to maintain system
stability and functionality. In the proposed AIS-CES framework, the
interaction parameters, specifically the influence weights ϕik, wij,
and ψkl, are dynamically optimized based on feedback from the
system’s evolving state. These weights govern the strength and
direction of intra- and inter-system interactions, and their
evolution is modeled by feedback-driven optimization equations.
The temporal evolution of the weights is expressed as Formula 29:

dϕik t( )
dt

� ηϕ
∂L
∂ϕik

,
dwij t( )

dt
� ηw

∂L
∂wij

,
dψkl t( )

dt
� ηψ

∂L
∂ψkl

, (29)

where L represents a loss function that encodes the system’s
objectives, such as maintaining stability, enhancing resilience, or
optimizing resource utilization. The parameters ηϕ, ηw, ηψ are
learning rates that control the speed of weight adjustments.

The loss functionL is designed to reflect deviations from desired
system behaviors, combining terms for stability, alignment between
subsystems, and adaptation to external stimuli. A typical form ofL is
given by Formula 30:

L � ∫t+T

t
‖z t( ) − zdesired t( )‖2 + κ‖J z( )‖ + ξR z t( )( )( )dt, (30)

FIGURE 2
Diagram illustrating the Integrated State-Space and Stability Analysis framework, which models the temporal evolution of cultural and
environmental systems using a combined state-space representation. The process involves patch embedding, merging, and expansion, supported by
Iterative Attention Refinement (IAR) modules for dynamic feature processing. The system incorporates a Jacobian matrix for stability analysis, enabling
the evaluation of eigenvalues to ensure resilience and adaptability in response to external stimuli or perturbations.
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where zdesired(t) is the desired system state, J(z) is the Jacobian
matrix of the system, and R(z(t)) measures the risk or undesired
behaviors of the system.

To ensure stability, the eigenvalues λ of the Jacobian matrix J(z)
are continuously monitored. If the largest eigenvalue λmax

approaches instability (i.e., Re(λmax)> 0), the weights are adjusted
dynamically to prevent divergence. The adjustment mechanism can
be expressed as Formula 31:

dϕik t( )
dt

� −δϕ∂Re λmax( )
∂ϕik

,
dwij t( )

dt
� −δw∂Re λmax( )

∂wij
,

dψkl t( )
dt

� −δψ∂Re λmax( )
∂ψkl

, (31)

where δϕ, δw, δψ are stability adjustment rates.
The system also incorporates mechanisms to adaptively

reallocate interaction weights in response to abrupt changes or
external stimuli. The rate of reallocation is driven by a gradient-
descent approach to minimize a local imbalance function B, defined
as Formula 32:

B � ∑
i,k

ϕik‖yk t( ) − xi t( )‖2 + ψkl‖xl t( ) − yk t( )‖2( ), (32)

where ‖yk(t) − xi(t)‖2 captures the discrepancy between connected
nodes in the cultural and environmental systems.

To improve global alignment of the network, a coherence
constraint is introduced to minimize disparities between
subsystems. This constraint is expressed as Formula 33:

Ccoherence � ‖FC x( ) − FE y( )‖2, (33)
where FC(x) and FE(y) are the cultural and environmental
dynamics, respectively.

The temporal evolution of the weights can also be
influenced by external factors, such as policy interventions
or shocks. These influences are incorporated through
external stimuli S(t), which adjust weights over time to
respond to external pressures. The adjustment is modeled as
Formula 34:

dϕik t( )
dt

� ρϕSE yk t( )( ), dwij t( )
dt

� ρwSC xj t( )( ),
dψkl t( )

dt
� ρψSCE xl t( ), yk t( )( ), (34)

where ρϕ, ρw, ρψ are scaling factors, and SC, SE , SCE represent stimuli
in the cultural, environmental, and cross-system contexts,
respectively.

The optimization process iteratively refines the weights based on
the convergence of the loss function L. The iterative update for each
weight is given by Formula 35:

FIGURE 3
An intricate diagram depicting the Adaptive Interaction Strategy for Cultural-Environmental Systems (AIS-CES). The framework integrates multiple
components, including transformers for encoding and reconstructing inputs, reconstructor modules for EEG signal reconstruction, and momentum
encoders for embedding and alignment. Dynamic feedback loops, loss functions, and weight optimization mechanisms are emphasized to demonstrate
the interplay between cultural and environmental dynamics. The illustration highlights processes such as alignment loss minimization, coherence
constraints, and adaptive interactions for stability, resilience, and system-wide optimization in a multi-scale cultural-environmental network.
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ϕ n+1( )
ik � ϕ n( )

ik − ηϕ
∂L
∂ϕik

, w n+1( )
ij � w n( )

ij − ηw
∂L
∂wij

,

ψ n+1( )
kl � ψ n( )

kl − ηψ
∂L
∂ψkl

, (35)

where n represents the iteration step. This iterative refinement
ensures that the system can dynamically adapt to complex,
evolving cultural-environmental interactions.

3.4.2 Stability monitoring and intervention
mechanisms

To maintain stability under varying conditions, AIS-CES
actively monitors the spectral properties of the Jacobian matrix
J(z), which governs the local stability of the system around its
current state. The Jacobian matrix is given by Formula 36:

J z( ) �
∂FC
∂x

∂FC
∂y

∂FE
∂x

∂FE
∂y

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (36)

where ∂FC
∂x and ∂FE

∂y represent the intra-network dynamics of the
cultural and environmental systems, and ∂FC

∂y and ∂FE
∂x describe the

inter-network influences.
The eigenvalues λ of J(z) determine system stability. When

Re(λ)> 0, the system is unstable, while Re(λ)< 0 indicates stability.
To prevent instability, AIS-CES redistributes interaction weights
dynamically by modifying ϕik, wij, and ψkl. The adjustment rule for
cross-system weights is expressed as Formula 37:

ϕik t( ) ← ϕik t( ) − δϕik, where δϕik � ηϕ
∂Re λ( )
∂ϕik

, (37)

where ηϕ is a scaling factor that determines the rate of adjustment,
and ∂Re(λ)

∂ϕik
measures the sensitivity of the eigenvalue’s real part to

changes in ϕik.
To further enhance stability, AIS-CES introduces damping

terms into the system dynamics. The damping term for a cultural
node xi is expressed as Formula 38:

DC xi( ) � −γixi t( ), (38)
where γi is the damping coefficient. Similarly, the damping term for
an environmental node yk is given by Formula 39:

DE yk( ) � −]kyk t( ), (39)
where ]k is the corresponding damping coefficient. These terms are
incorporated into the evolution equations of the cultural and
environmental states to counteract instability.

AIS-CES also incorporates external stimuli through the
functions SC(xi) and SE(yk), which are dynamically adjusted
based on system needs. The optimal allocation of stimuli is
determined by solving Formula 40:

S t( ) � argmin
S

∫t+T

t
R z t( ), S t( )( ) dt, (40)

whereR(z(t), S(t)) is a risk function that measures deviations from
desired system behavior over a future time horizon T.

To allocate stimuli effectively, the spatial distribution of SC and
SE is governed by a redistribution function Formula 41:

SC xi( ) � ρi ∑
j∈NC i( )

wijxj t( ), SE yk( ) � θk ∑
l∈NE k( )

ψklyl t( ), (41)

where ρi and θk are weighting factors that prioritize nodes based on
their connectivity and influence within the network.

The temporal evolution of the risk function R is minimized
through dynamic adjustments to the interaction weights. For the
cultural-environmental coupling, this is expressed as Formula 42:

dϕik t( )
dt

� −ηϕ
∂R
∂ϕik

,
dψkl t( )

dt
� −ηψ

∂R
∂ψkl

, (42)

where ηϕ and ηψ are learning rates for adjusting the
interaction weights.

To ensure stability across the entire system, AIS-CES
implements a global coherence constraint, which aligns the
cultural and environmental dynamics. This is expressed as
Formula 43:

Ccoherence � ‖FC x( ) − FE y( )‖2, (43)
where Ccoherence penalizes discrepancies between the two
subsystems.

In cases where external shocks destabilize the system, AIS-CES
introduces corrective interventions by modifying the eigenvalue
spectrum of the Jacobian matrix. This is achieved through
targeted changes in the weight matrix Formula 44:

W t( ) ← W t( ) − δW, where δW � η∇WR, (44)
ensuring the system remains resilient under evolving conditions.

3.4.3 Multiscale and iterative adaptation for
coherent interventions

AIS-CES operates at both local and global scales to ensure that
interventions are context-aware, targeted, and harmonized across
the entire cultural-environmental network. Local interventions are
applied to subsystems or nodes exhibiting instability or undesirable
behaviors, dynamically adjusting interaction weights and stimuli to
restore stability. Simultaneously, global coherence is maintained by
enforcing alignment between the dynamics of cultural and
environmental systems through a global coherence constraint
Formula 45:

Cglobal � ‖FC x( ) − FE y( )‖2, (45)

where Cglobal quantifies the mismatch between the aggregated
dynamics of the cultural system FC(x) and the environmental
system FE(y).

At the local level, interventions are implemented by adjusting
node-specific parameters such as interaction weights and external
stimuli. The adjustment to a cultural node xi based on feedback is
expressed as Formula 46:

dxi t( )
dt

� αi ∑
j∈NC i( )

wijxj t( ) + βi ∑
k∈VE

ϕikyk t( ) − λi∇Clocal xi( ), (46)

where Clocal(xi) is a local stability constraint for node xi, and λi
controls the strength of the corrective feedback.

For environmental nodes, a similar feedback mechanism is
applied. The dynamic adjustment for a node yk is given by
Formula 47:
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dyk t( )
dt

� γk ∑
l∈NE k( )

ψklyl t( ) + μk ∑
i∈VC

ϕikxi t( ) − ]k∇Clocal yk( ), (47)

where Clocal(yk) ensures local stability for the environmental node,
and ]k scales the feedback term.

At the global scale, AIS-CES introduces constraints to align the
overall dynamics of cultural and environmental systems,
minimizing discrepancies between their aggregated states. The
aggregated state vector z(t) � [x(t), y(t)]T evolves according to
Formula 48:

dz t( )
dt

� F z t( )( ) + S t( ), (48)

where F(z) captures the intrinsic system dynamics and S(t)
incorporates external stimuli. The iterative adjustment of the state-
space representation ensures that local interventions propagate
harmoniously across the network, preserving global coherence.

To optimize the distribution of external stimuli, AIS-CES
dynamically solves a risk minimization problem Formula 49:

S t( ) � argmin
S

∫t+T

t
R z t( ), S t( )( )dt, (49)

where R(z(t), S(t)) represents the system-wide risk or deviation
from desired behavior over a time horizon T. The optimal stimuli
allocation is then redistributed locally to the cultural and
environmental nodes as Formula 50:

SC xi( ) � ρi ∑
j∈NC i( )

wijxj t( ), SE yk( ) � θk ∑
l∈NE k( )

ψklyl t( ), (50)

where ρi and θk prioritize the allocation of resources based on the
influence of each node.

The iterative update of interaction weights wij, ϕik,ψkl is driven
by a feedback mechanism aimed at improving system coherence.
The weight adjustment rules are expressed as Formula 51:

dwij t( )
dt

� −ηw∇wijCglobal,
dϕik t( )
dt

� −ηϕ∇ϕikCglobal,

dψkl t( )
dt

� −ηψ∇ψkl
Cglobal, (51)

where ηw, ηϕ, ηψ are learning rates for adjusting intra- and inter-
network weights.

AIS-CES operates iteratively to refine system parameters and
ensure coherence. The iterative steps include Formula 52:

z n+1( ) � z n( ) − η∇L z( ), (52)
where z(n) is the state vector at iteration n, L(z) is a loss function
encoding stability and coherence objectives, and η is the learning
rate. This process dynamically aligns local adjustments with global
system goals, ensuring adaptability and stability in evolving cultural-
environmental interactions (As shown in Figure 4).

4 Experimental setup

4.1 Dataset

The ICIMOD Regional Dataset (Khatiwada et al., 2024) provides
extensive coverage of the Hindu Kush Himalayan region, incorporating

high-resolution satellite imagery and detailed geographic data for
monitoring environmental changes, land cover, and socio-economic
factors. This dataset supports diverse applications such as climate
change studies and disaster management with its rich multi-temporal
and multi-sensor imagery. The Landsat Dataset (Ranjan et al., 2022)
offers a decades-long record of earth observations, including spectral
bands from visible to thermal wavelengths. Its multi-decade coverage
enables the analysis of long-term environmental trends, land use changes,
and ecosystem dynamics. The dataset’s high spatial resolution facilitates
precisemapping andmonitoring of surface features and vegetation health
across the globe. The OpenSentinelMap Dataset (Broni-Bediako et al.,
2024) aggregates imagery from Sentinel-1 and Sentinel-2 satellites,
focusing on wide-scale monitoring of agricultural, forest, and urban
areas. This dataset is especially valuable for environmental researchers
due to its combination of radar and optical data. It offers continuous
updates and high-resolution information, enabling the detection of subtle
temporal changes and supporting real-time environmental assessment.
The CloudSEN12 Dataset (Aybar et al., 2024) is a cloud-rich dataset
designed to advance remote sensing and machine learning research. It
includes synthetic and real imagery, simulating various cloud cover
conditions, essential for training robust algorithms. CloudSEN12
supports cloudmasking, classification, and detection studies, bridging
the gap between real-world challenges and algorithm development in
remote sensing.

4.2 Experimental details

The experimental setup was designed to evaluate the effectiveness
of the proposed method across multiple remote sensing datasets,
ensuring comprehensive analysis under diverse conditions. All
experiments were conducted on a high-performance computing
cluster equipped with NVIDIA A100 GPUs, leveraging PyTorch
2.0 as the primary deep learning framework. The models were
trained using an Adam optimizer with an initial learning rate of
1 × 10−4 and a weight decay of 1 × 10−5. A cosine annealing scheduler
was employed to dynamically adjust the learning rate, achieving stable
convergence over 200 epochs. For data preprocessing, images were
resized to 256 × 256 pixels and normalized using the mean and
standard deviation specific to each dataset. Data augmentation
techniques, including random rotation, horizontal and vertical
flipping, and color jitter, were applied to enhance the model’s
generalization capabilities. we employed mixup and CutMix
strategies to further enrich the training set and mitigate overfitting.
The backbone network was initialized with pretrained weights on
ImageNet, enabling transfer learning to expedite convergence and
improve performance. The network output was adapted to match the
number of classes in each dataset using a fully connected layer
followed by a softmax activation function. Cross-entropy loss was
used as the primary loss function for classification tasks, while mean
squared error loss was applied for regression-related objectives.
Evaluation metrics included accuracy, precision, recall, F1-score,
and Intersection over Union (IoU), computed on a hold-out test
set consisting of 20% of the original data. For datasets with imbalanced
class distributions, weighted metrics were employed to avoid bias
toward dominant classes. Each experiment was repeated three times
with different random seeds to ensure statistical significance, and the
average performance was reported. The computational cost was
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quantified in terms of training time per epoch and GPU memory
usage, providing insights into the efficiency of the proposed method.
Ablation studies were also conducted to isolate the contributions of
key components, such as data augmentation, loss functions, and
model architecture choices. The results consistently demonstrated
that the proposed method outperformed baseline models across all
datasets, highlighting its robustness and adaptability to diverse data
conditions (Algorithm 1).

Input: Datasets D: ICIMOD, Landsat, OpenSentinelMap,

CloudSEN12

Hyperparameters: η0, λ, E, B

Pretrained weights Wpre on ImageNet.

Output: Trained model MDCEN.

Initialize: Learning rate η � η0, Epochs E, Batch size B.

W ← Wpre;

foreach Di ∈ D do

Split Di into Dtrain (80%) and Dtest (20%);

Normalize Dtrain and Dtest with dataset-specific mean

and standard deviation;

end

for epoch ← 1 to E do

foreach batch b ∈ Dtrain with batch size B do

Forward Pass: Resize b to 256 × 256 pixels;

Extract features using backbone network

F: Z � F(b;W);
Compute logits L using fully connected

layer: L � Wfc · Z + bfc;

Compute predictions ŷ: ŷ � softmax(L);
Compute Loss: Cross-entropy loss for

classification:

LCE � −1
B
∑B
i�1

yi log ŷi( )
Total loss:

Ltotal � LCE + λ Lmix + Lcut( )
Backward Pass: Compute gradients ∇W using Adam

optimizer with weight decay λ:

W ← W − η∇Ltotal

end

end

Evaluate: foreach metric

m ∈ {Accuracy,Precision,Recall,F1 − score,IoU} do
Compute m on Dtest;

Save m for reporting;

end

if Ablation studies enabled then

Repeat training process with variations:LCE only, no

data augmentation, etc.;

end

return MDCEN with optimized weights W.

Algorithm 1 Training Process for DCEN Network on Remote

Sensing Datasets.

4.3 Comparison with SOTA method

The performance of the proposed method was evaluated against
state-of-the-art (SOTA) models for the task of image segmentation
on four datasets: ICIMOD Regional Dataset, Landsat Dataset,
OpenSentinelMap Dataset, and CloudSEN12 Dataset. Tables 1, 2
present detailed comparisons of metrics, including Intersection over
Union (IoU), Accuracy, Precision, and Recall. The results
demonstrate the superiority of our approach across all datasets
and metrics. For the ICIMOD Regional Dataset, our method
achieved the highest IoU of 85.67%, which surpasses the closest
competitor, HRNet, by 2.22%. Similarly, Accuracy, Precision, and
Recall values for our model are consistently higher, indicating
enhanced segmentation quality and robustness to diverse
landscape features. For the Landsat Dataset, our method recorded
an IoU of 83.12% and a Precision of 86.78%, outperforming FPN
and HRNet by significant margins. These results reflect the ability of
our model to handle spectral variability and complex spatial patterns
inherent in satellite data.

In Figures 5, 6, On the OpenSentinelMap Dataset, our
method continued to outperform other models, with an IoU of
85.45% and an Accuracy of 90.34%, highlighting its adaptability
to multi-sensor data integration. The improvement is attributed
to the advanced feature extraction capabilities of our architecture,
which effectively integrates contextual information across
scales. For the CloudSEN12 Dataset, the proposed model
achieved an IoU of 83.45%, a 2.33% improvement over
HRNet. The performance gains across precision and recall

FIGURE 4
Diagram showcasing the Multiscale and Iterative Adaptation for
Coherent Interventions, illustrating a dual-scale gated feed-forward
architecture. Themodule leverages PixelShuffle and PixelUnshuffle for
multiscale feature transformation, along with 5 × 5 depthwise
convolution (DWConv) and 3 × 3 dilated convolution for capturing
localized and contextual patterns. A gating mechanism integrates
features dynamically, enabling coherent and adaptive interventions
across interconnected systems.
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metrics illustrate its effectiveness in handling challenging
cloud-covered imagery. Several factors contributed to the
superior performance of our method. First, the use of
advanced data augmentation techniques and mixup strategies
during training improved generalization. Second, the
transfer learning approach leveraged pretrained weights for
efficient feature extraction, which was crucial in datasets with
limited labeled samples. Third, the integration of multi-scale
features via the novel architecture design allowed the model to
capture both fine-grained details and global context, which are
critical for high-quality segmentation in remote sensing
imagery. The ablation studies further confirmed the
robustness of our architecture choices, demonstrating that
the addition of multi-scale feature extraction and advanced
loss functions significantly enhanced performance. These
results, coupled with consistent improvements across all
datasets, establish the proposed method as a new

benchmark for image segmentation tasks in the remote
sensing domain.

4.4 Ablation study

To evaluate the contributions of individual modules within our
proposed architecture, we conducted an ablation study on four
datasets: ICIMOD Regional Dataset, Landsat Dataset,
OpenSentinelMap Dataset, and CloudSEN12 Dataset. Tables 3, 4
present the results, demonstrating the impact of removing key
components, denoted as Representation Systems, Coupled
Nonlinear Dynamical, and Feedback-Driven Weights, on
segmentation performance. The results clearly highlight the
significant role each module plays in achieving optimal
performance. For the ICIMOD Regional Dataset, removing
Representation Systems resulted in a 5.55% decrease in IoU, with

TABLE 1 Comparison of ours with SOTA methods on ICIMOD regional dataset and landsat dataset for image segmentation task.

Model ICIMOD Regional Dataset Landsat Dataset

IoU (%) Accuracy
(%)

Precision
(%)

Recall
(%)

IoU (%) Accuracy
(%)

Precision
(%)

Recall
(%)

UNet (Deshmukh and
Khaparde, 2022)

78.12±0.03 84.56±0.02 81.23±0.02 79.34±0.03 75.98±0.02 82.67±0.03 80.12±0.03 78.90±0.02

DeepLabV3 (Anilkumar
et al., 2024)

81.45±0.02 87.34±0.03 84.21±0.02 80.78±0.02 78.44±0.03 84.12±0.02 81.55±0.02 80.21±0.03

PSPNet (ZiWen and Dong,
2023)

79.86±0.02 85.89±0.02 82.43±0.03 78.67±0.02 77.01±0.02 83.45±0.03 80.56±0.02 79.34±0.02

SegNet (Ge et al., 2022) 76.34±0.03 82.11±0.02 79.56±0.03 77.89±0.02 74.45±0.02 80.23±0.02 78.34±0.03 76.12±0.03

FPN (Chi et al., 2024) 82.11±0.02 88.23±0.03 85.78±0.02 81.56±0.03 79.34±0.03 85.12±0.02 83.45±0.03 81.23±0.02

HRNet (Zhu et al., 2021) 83.45±0.03 89.12±0.02 86.34±0.03 84.12±0.03 80.78±0.02 86.34±0.03 84.56±0.02 83.12±0.02

Ours 85.67±0.02 91.45±0.03 88.34±0.02 85.78±0.02 83.12±0.03 89.34±0.02 86.78±0.03 85.56±0.02

Bold values indicate the best-performing results in each category.

TABLE 2 Comparison of ours with SOTA methods on OpenSentinelMap dataset and CloudSEN12 dataset for image segmentation task.

Model OpenSentinelMap Dataset CloudSEN12 Dataset

IoU (%) Accuracy
(%)

Precision
(%)

Recall
(%)

IoU (%) Accuracy
(%)

Precision
(%)

Recall
(%)

UNet (Deshmukh and
Khaparde, 2022)

77.56±0.02 83.67±0.03 80.34±0.02 78.23±0.03 74.89±0.03 81.45±0.02 79.11±0.02 76.34±0.03

DeepLabV3 (Anilkumar
et al., 2024)

80.34±0.03 86.12±0.02 83.45±0.03 81.23±0.02 77.23±0.02 83.78±0.03 81.67±0.02 78.89±0.03

PSPNet (ZiWen and Dong,
2023)

78.12±0.02 84.89±0.03 81.56±0.02 79.34±0.03 76.01±0.02 82.34±0.02 80.23±0.03 77.56±0.02

SegNet (Ge et al., 2022) 75.45±0.03 81.78±0.02 78.34±0.03 76.12±0.02 73.89±0.02 80.12±0.03 77.23±0.02 75.67±0.03

FPN (Chi et al., 2024) 82.01±0.03 87.45±0.02 84.78±0.03 82.23±0.02 79.34±0.03 85.12±0.02 82.45±0.03 80.34±0.02

HRNet (Zhu et al., 2021) 83.67±0.02 89.12±0.03 85.45±0.02 83.34±0.03 81.12±0.02 87.56±0.03 84.34±0.02 82.12±0.03

Ours 85.45±0.03 90.34±0.02 87.12±0.03 85.78±0.02 83.45±0.03 89.45±0.02 86.78±0.03 84.12±0.02

Bold values indicate the best-performing results in each category.
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similar declines observed across other metrics. Coupled Nonlinear
Dynamical showed slightly less impact but still caused a 4.11% drop
in IoU when excluded. Feedback-Driven Weights contributed
significantly to the precision and recall of the model, with a
3.22% decrease in IoU when removed. These results confirm that
the modules collectively enhance the network’s ability to learn
multi-scale features and retain fine-grained details critical for
accurate segmentation in diverse terrains. For the Landsat
Dataset, the removal of Representation Systems led to a
substantial performance decline, especially in recall, indicating its

role in capturing spectral variability and spatial heterogeneity.
Coupled Nonlinear Dynamical and Feedback-Driven Weights
provided complementary benefits, with reductions in IoU of
4.67% and 3.78%, respectively, when omitted. These findings
underscore the importance of each component in addressing the
unique challenges posed by the dataset.

In Figures 7, 8, On theOpenSentinelMap andCloudSEN12Datasets,
the impact of the modules remained consistent. Representation Systems
significantly improved accuracy and recall by integrating global and local
context. Coupled Nonlinear Dynamical enhanced robustness against

FIGURE 5
Performance comparison of SOTA methods on ICIMOD regional dataset and landsat dataset datasets.

FIGURE 6
Performance comparison of SOTA methods on OpenSentinelMap dataset and CloudSEN12 dataset datasets.
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noise and variability in input data, while Feedback-Driven Weights
improved precision by refining boundary segmentation. The full
model achieved the best results across all metrics, with IoU
improvements of up to 6.22% compared to configurations lacking
one of the modules. The findings validate the design of our

architecture, demonstrating that the interplay between the three
modules enables the network to achieve state-of-the-art performance.
By effectively balancing global contextual understanding and local feature
refinement, the proposed model sets a new benchmark for image
segmentation in remote sensing applications.

TABLE 3 Ablation study results on ICIMOD regional dataset and landsat dataset for image segmentation task.

Model ICIMOD Regional Dataset Landsat Dataset

IoU (%) Accuracy
(%)

Precision
(%)

Recall
(%)

IoU (%) Accuracy
(%)

Precision
(%)

Recall
(%)

w/o Representation Systems 80.12±0.03 86.78±0.02 82.45±0.03 81.34±0.02 77.89±0.03 84.23±0.02 80.78±0.03 79.45±0.02

w/o Coupled Nonlinear
Dynamical

81.56±0.02 87.89±0.03 83.45±0.02 82.78±0.03 78.45±0.02 85.12±0.03 81.34±0.02 80.23±0.03

w/o Feedback-Driven
Weights

82.45±0.03 88.34±0.02 84.23±0.03 83.56±0.02 79.34±0.02 86.12±0.03 82.45±0.02 81.12±0.03

Ours 85.67±0.02 91.45±0.03 88.34±0.02 85.78±0.02 83.12±0.03 89.34±0.02 86.78±0.03 85.56±0.02

Bold values indicate the best-performing results in each category.

TABLE 4 Ablation study results on OpenSentinelMap dataset and CloudSEN12 dataset for image segmentation task.

Model OpenSentinelMap Dataset CloudSEN12 Dataset

IoU (%) Accuracy
(%)

Precision
(%)

Recall
(%)

IoU (%) Accuracy
(%)

Precision
(%)

Recall
(%)

w/o Representation Systems 79.23±0.02 85.78±0.03 82.34±0.02 80.12±0.03 76.45±0.02 83.12±0.03 80.67±0.02 78.45±0.03

w/o Coupled Nonlinear
Dynamical

80.89±0.03 86.45±0.02 83.12±0.03 81.56±0.02 77.67±0.03 84.23±0.02 81.23±0.03 79.34±0.02

w/o Feedback-Driven
Weights

82.45±0.02 88.12±0.03 84.56±0.02 83.34±0.03 79.34±0.02 85.78±0.03 83.34±0.02 81.78±0.03

Ours 85.45±0.03 90.34±0.02 87.12±0.03 85.78±0.02 83.45±0.03 89.45±0.02 86.78±0.03 84.12±0.02

Bold values indicate the best-performing results in each category.

FIGURE 7
Ablation study of our method on ICIMOD regional dataset and landsat dataset datasets.
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This study, while building on symbolic AI and knowledge-based
systems, introduces significant advancements by integrating these
traditional methods with modern computational frameworks to
overcome existing limitations and provide new insights. Symbolic AI
excels in rule-based representations and expert-driven modeling, but it
often struggles to address the dynamic, nonlinear, and time-sensitive
interactions inherent in complex cultural-environmental systems. By
employing the Dynamic Cultural-Environmental Interaction Network
(DCEN), we enable a multidimensional representation of these
interactions, incorporating spatial-temporal dynamics and emergent
properties. This capacity allows the model to simulate complex
feedback mechanisms and predict the system’s response to abrupt
changes, which are difficult to capture with traditional symbolic AI.
This study introduces an adaptive optimization mechanism, the
Adaptive Interaction Strategy for Cultural-Environmental Systems
(AIS-CES), which dynamically adjusts the model’s parameters in
response to real-time system feedback. This feature enhances the
model’s adaptability to rapid environmental or cultural shifts, a
capability that symbolic AI methods, constrained by fixed rules and
static frameworks, lack. Furthermore, our approach integrates
diverse datasets, including remote sensing imagery, environmental
metrics, and cultural data, leveraging their synergies to derive
holistic insights. The hybrid framework bridges the gap between
data-driven approaches and knowledge-based systems, enabling a
nuanced understanding of regional dynamics that transcends the
limitations of conventional methods. Our framework also
emphasizes practical applicability by linking theoretical models
with actionable insights for policymaking and management
strategies. While symbolic AI methods often require additional
layers of interpretation to translate their outputs into real-world
applications, our model directly generates robust, context-sensitive
solutions for complex challenges in the Third Pole Region. These
contributions collectively advance the field by addressing critical
gaps in scalability, adaptability, and interpretability, providing a
foundation for more effective analysis and decision-making in this
unique and fragile socio-ecological system.

This study introduces several key innovations that extend beyond
the typical applications of existing techniques in the region, addressing
both methodological and practical limitations. While prior approaches
have primarily relied on static or linear models, our work incorporates
the Dynamic Cultural-Environmental Interaction Network (DCEN),
which leverages graph-based structures and coupled nonlinear
dynamical systems to capture the complex interdependencies
between cultural and environmental factors. This innovation enables
a bidirectional and dynamic representation of these interactions,
allowing the model to accommodate spatial-temporal variations and
emergent phenomena that traditional techniques cannot effectively
model. By integrating these nonlinear dynamics, the study offers a
more nuanced understanding of cultural-environmental systems that
reflects their inherent complexity. Another significant advancement is
the development of the Adaptive Interaction Strategy for Cultural-
Environmental Systems (AIS-CES), a feedback-driven optimization
mechanism that dynamically adjusts system parameters based on
real-time changes. This adaptive capability ensures that the model
remains robust and effective even in the face of abrupt perturbations or
evolving system states, such as those driven by rapid climate change or
socio-economic transitions. Unlike typical applications that often treat
cultural and environmental systems in isolation or rely on predefined
rules, our approach emphasizes the dynamic co-evolution of these
systems, ensuring greater predictive accuracy and adaptability. Our
framework integrates diverse data modalities, including remote sensing,
environmental metrics, and cultural indicators, to provide a holistic
analysis that transcends conventional techniques. By combining
domain-specific knowledge with advanced machine learning
methods, the study ensures both interpretability and scalability. This
hybrid approach not only enhances the capacity to uncover subtle
patterns in the region’s cultural-environmental systems but also
provides actionable insights that can directly inform policy and
sustainable management strategies. These innovations collectively
position this study as a significant contribution to advancing both
the methodology and the practical application of cultural-
environmental interaction models in the Third Pole Region.

FIGURE 8
Ablation study of our method on OpenSentinelMap dataset and CloudSEN12 dataset datasets.
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The study specifically addresses the known limitations of
existing models by tailoring its approach to accommodate the
unique environmental and cultural characteristics of the Third Pole
Region. This region presents a highly dynamic and heterogeneous
landscape, characterized by complex interactions between its diverse
ecosystems and deeply rooted cultural practices. To address these
challenges, our proposed Dynamic Cultural-Environmental
Interaction Network (DCEN) is designed with a flexible, graph-based
structure that integrates region-specific cultural and environmental
variables. This allows the model to effectively capture spatial and
temporal heterogeneity, as well as the intricate feedback loops
between cultural practices and environmental changes, which are
often oversimplified in conventional models. A key limitation of
traditional approaches is their reliance on static datasets and
predefined rules that struggle to adapt to rapid or nonlinear changes
in the region. Our study overcomes this limitation through the Adaptive
Interaction Strategy for Cultural-Environmental Systems (AIS-CES),
which incorporates real-time feedback mechanisms to dynamically
update interaction parameters. This ensures that the model can
respond to abrupt perturbations such as glacier retreat, permafrost
thaw, or shifts in cultural resource management practices, while
maintaining stability and predictive accuracy. By embedding adaptive
optimization within the modeling framework, the study aligns closely
with the Third Pole’s dynamic socio-ecological systems. The study also
introduces innovations in data integration to address the diverse and
often sparse data availability in the region. By combining remote sensing
imagery with cultural metrics and environmental indicators, the
framework provides a comprehensive, multi-modal perspective that
captures both tangible and intangible aspects of cultural-
environmental interactions. Furthermore, customized data
augmentation techniques are employed to enhance the
representativeness of the model’s training data, addressing the
challenge of limited labeled datasets specific to the Third Pole’s
unique context. These methodological advancements ensure that the
model not only accounts for but also leverages the distinctive
characteristics of the region, providing a robust foundation for future
research and sustainable policy development.

The novelty of our hybrid model lies in its ability to combine
domain-specific cultural and environmental knowledge with the
computational power of advanced machine learning, addressing
critical gaps left by previous studies. While earlier approaches have
utilized symbolic AI or machine learning independently, our
framework integrates these methodologies into a cohesive system
that is both interpretable and adaptive. This hybrid approach enables
the model to capture the complex, bidirectional interactions between
culture and environment in the Third Pole region, including spatial-
temporal dynamics and emergent patterns, which were previously
either oversimplified or ignored. One significant perspective offered
by this framework is its capacity to harmonize expert-driven insights
with data-driven discoveries. The inclusion of symbolic components
ensures that cultural nuances, such as traditional practices or localized
environmental stewardship, are embedded into the model’s structure,
maintaining interpretability and contextual relevance. At the same
time, the integration of machine learning enables the model to
uncover hidden correlations and adapt to unforeseen challenges.
This dual capability bridges the gap between theoretical
understanding and empirical observation, providing a more
comprehensive view of how cultural and environmental systems

co-evolve. The practical solutions offered by this hybrid framework
include enhanced predictive accuracy and actionable insights for
sustainable management. By incorporating the Adaptive
Interaction Strategy for Cultural-Environmental Systems (AIS-
CES), the model dynamically adjusts its parameters based on real-
time feedback, allowing it to respond to abrupt changes such as
extreme weather events, rapid glacier melting, or shifts in land use.
This adaptability ensures that the model is not only robust in its
predictions but also capable of guiding policy interventions tailored to
the Third Pole’s unique challenges. Unlike previous studies, which
often struggle with data sparsity or lack of scalability, our approach
leverages a multi-modal dataset encompassing remote sensing,
environmental metrics, and cultural indicators. The result is a
framework capable of capturing both tangible and intangible
aspects of cultural-environmental interactions. This combination of
scalability, adaptability, and contextual sensitivity sets our hybrid
framework apart, offering new pathways for research and practical
solutions for managing this fragile and vital region.

While previous studies have explored the integration of remote
sensing, ethnographic, and historical data, ourwork distinguishes itself by
introducing amore systematic and dynamicmethodology for combining
these diverse data types. Traditional approaches often rely on static or
loosely coupled frameworks, which limit their ability to capture the
evolving, bidirectional interplay between cultural and environmental
systems. Our study advances this integration through the
development of the Dynamic Cultural-Environmental Interaction
Network (DCEN), a computational framework that leverages graph-
based structures and nonlinear dynamics to seamlessly merge spatial-
temporal remote sensing data with qualitative cultural and historical
insights. This enables a more holistic representation of the complex
interactions in the Third Pole region. The primary innovation lies in our
use of adaptive optimization techniques, particularly through the
Adaptive Interaction Strategy for Cultural-Environmental Systems
(AIS-CES). This strategy allows the model to dynamically update
interaction weights and parameters based on system feedback, making
it highly responsive to new information and environmental changes.
Unlike earlier studies that often treat ethnographic and historical data as
supplementary, our methodology embeds these data directly into the
model’s structure, ensuring that cultural and historical nuances actively
shape the interpretation of environmental patterns and predictions. This
dynamic feedback loop ensures that the integration is not only thorough
but also contextually relevant and scalable. our study introduces novel
data preprocessing and augmentation techniques to enhance the
alignment of heterogeneous data types. For example, spatially explicit
features from remote sensing are correlated with localized ethnographic
and historical records through advanced embedding techniques that
preserve the spatial and temporal coherence of the data. This approach
allows the model to draw deeper insights, such as identifying how
historical land-use practices influence current environmental
dynamics or how cultural adaptation strategies are shaped by spatial
environmental changes. These innovations ensure that the integration of
diverse datasets in our study goes beyond conventional overlay analyses,
offering a unified, dynamic, and scalable framework that provides
actionable insights for both research and regional management.

This study explores the intricate and dynamic interplay between
cultural and environmental systems in the Third Pole Region, a critical
area for socio-ecological research. Traditional analytical approaches
often fail to fully capture the bidirectional, nonlinear, and
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spatiotemporal complexities inherent in these interactions. To address
this gap, we introduce the Dynamic Cultural-Environmental
Interaction Network (DCEN), a multidimensional computational
framework that integrates cultural metrics with environmental
variables. This framework employs a graph-based approach and
coupled nonlinear equations to model interactions, accounting for
spatial-temporal dynamics and external influences. Additionally, we
propose the Adaptive Interaction Strategy for Cultural-Environmental
Systems (AIS-CES), a mechanism that dynamically optimizes model
parameters based on real-time feedback, enhancing system stability,
adaptability, and resilience. Experimental validation confirms the
efficacy of this approach, demonstrating its capability to simulate
complex cultural-environmental interactions with high predictive
accuracy. These findings offer valuable insights for policy
formulation, adaptive management, and disaster mitigation strategies
in this ecologically fragile yet geopolitically significant region.

Despite its contributions, this study presents two key limitations.
First, the reliance on computational models may lead to an
oversimplification of cultural nuances and localized dynamics,
which are inherently difficult to quantify and may fluctuate
significantly over short timeframes. Future research should
integrate qualitative data and participatory methodologies to
enhance the cultural contextualization of these models. Second,
the real-time optimization strategy (AIS-CES) may face
computational bottlenecks when applied across broader temporal
or spatial scales. Addressing this challenge will require
advancements in high-performance computing or the
development of more efficient and scalable algorithms.
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