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The Central andWest Asia Economic Corridor (CWAEC) is a critical component of
the Belt and Road Initiative (BRI), and that vegetation changes in the region are
under significant uncertainty due to fragile ecological conditions, diverse climatic
variability, and that these uncertainties are compounded by the interaction of
natural factors and human activities. For the sustainable development of the
CWAEC, it is urgent to pay attention to its regional environmental health. Using
MOD13A3 NDVI data and ERA5 meteorological reanalysis data, this study
evaluated the spatiotemporal changes in NDVI across the CWAEC over the
past decade of BRI implementation. A trend analysis method was applied to
assess NDVI development, and the relative impacts of climate change and human
activities were explored through a multivariate regression residual analysis. The
results revealed a declining trend in NDVI across the CWAEC, with an average rate
of −0.26 × 10⁻2 a⁻1, and 50.74% of the region exhibiting insignificant degradation.
Significant degradation was observed in the hilly areas of northern Kazakhstan,
the low-altitude areas bordering the Tian Shan and Hindu Kush mountains, and
the central part of the corridor. Conversely, significant restoration was
concentrated in the hinterland of Kazakhstan and the coastal areas of the
Caspian Sea. Climate change inhibited NDVI changes in 65.24% of the region,
while human activities facilitated changes in 49.64%, indicating that the variations
in NDVI were primarily driven by the combined effects of these factors. This study
identifies the key drivers of NDVI changes in the CWAEC since the
implementation of the BRI, provides scientific evidence to support the
sustainable development of green BRI initiatives, and offers valuable insights
for future ecological restoration and engineering projects within the corridor.
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1 Introduction

The Belt and Road Initiative (BRI) seeks to enhance
international cooperation and promote green development. It
emphasizes sustainable, low-carbon production and lifestyles,
fosters environmental collaboration, supports the construction of
ecological civilizations, and aligns with the 2030 Sustainable
Development Goals (Xi, 2017). While the BRI has delivered
substantial economic benefits to countries along its route (Huang,
2016), a significant portion of the initiative traverses arid, semi-arid,
and sub-humid regions with fragile ecological systems. These
regions, already vulnerable, are expected to face increasing
environmental challenges due to global climate change and
intensified human activities (Zhang et al., 2021). Therefore,
maintaining a focus on regional environmental sustainability is
crucial throughout the implementation of the BRI.

The Central and West Asia Economic Corridor (CWAEC)
serves as a key hub of the BRI and is one of the regions most
affected by fragile ecological conditions and severe desertification
issues along the route. Its spatial extent roughly coincides with the
ancient Silk Road, encompassing areas characterized by temperate
continental and subtropical desert climates. The Central Asian
portion features vast stretches of Gobi, intense
evapotranspiration, and arid conditions, while the West Asian
region consists of high plateaus, expansive deserts, and low
precipitation. Together, these areas face critical environmental
challenges such as drought and desertification (Wu et al., 2018).
Land cover in the region is primarily composed of grassland,
cropland, and bare land, which collectively account for over 85%
of the total area (Naboureh et al., 2023). Studies have highlighted
that water resources in the CWAEC are expected to become
increasingly scarce in the future, potentially exacerbating
environmental degradation (Masson-Delmotte et al., 2021; Zhou
et al., 2020). Quantitative modeling and identification of ecosystem
change trends in the region are essential to ensuring the sustainable
development of the BRI and advancing the goals of the Green Belt
and Road initiative (Liu, 2015).

With advancements in Earth observation technology, remote
sensing has become an efficient and effective tool for evaluating
surface vegetation changes (Cao, 2013). Among various indicators,
the normalized difference vegetation index (NDVI) plays a crucial
role due to its strong linear relationship with vegetation
productivity, biomass, and leaf area index. NDVI provides an
accurate measure of vegetation growth status and serves as a
valuable tool for monitoring vegetation cover and growth over
large areas. It has been widely used to assess the health of diverse
land cover types, including forests, grasslands, wastelands, and
deserts, particularly in arid and semi-arid regions (Bashir et al.,
2020; Xie et al., 2021; Wang et al., 2022; Gao et al., 2023).

Previous studies have shown that vegetation cover in the
CWAEC region is generally low, with NDVI values below 0.27
(Fan et al., 2020; Yang et al., 2020). In the context of global warming,
understanding how vegetation trends respond to rising
temperatures and decreasing precipitation is essential for
assessing the impacts of climate change on ecosystem structure
and function (Xu et al., 2020). Climate change and human activities
have introduced substantial disturbances and threats to terrestrial
ecosystems (Tian et al., 2024; Xi et al., 2024). Research indicates that

rising temperatures and drought conditions contribute significantly
to vegetation changes in the CWAEC. Additionally, human
activities, especially land-use changes associated with increased
foreign trade, play a critical role in driving these changes (Xu
et al., 2021; Hai et al., 2022; Fan and Li, 2019). However, most
existing studies focus on periods before or shortly after the
implementation of the BRI, with limited research exploring
developments in the years since its introduction. Even fewer
studies address ecological and environmental issues specifically
along the BRI. Therefore, a comprehensive analysis of the
patterns and drivers of vegetation change in the CWAEC during
the BRI’s implementation is urgently needed to support the long-
term objectives of the Green BRI.

Therefore, this study focuses on seven countries along the
CWAEC, addressing gaps in vegetation dynamics research in this
ecologically fragile region. By integrating robust methods such as
Theil-Sen analysis, Mann-Kendall tests, and multivariate regression
residual analysis, it analyzed the spatial and temporal evolution of
NDVI in the region over the past decade since the implementation of
the BRI, quantified the driving forces behind NDVI variations, and
emphasized the relative contributions of climate change and human
activities using MOD13A3 NDVI and ERA5 meteorological
reanalysis data. The study aims to provide insights for balancing
economic development and ecological preservation, offering
valuable guidance for sustainable management under the Green BRI.

2 Materials and methods

2.1 Study area

The study area includes Kazakhstan (KAZ), Kyrgyzstan (KGZ),
Tajikistan (TJK), Uzbekistan (UZB), Turkmenistan (TKM), Iran
(IRN), and Turkey (TUR) within the CWAEC, covering
approximately 6.53 million km2 with geographic coordinates
ranging from 25.06°N to 55.43°N and 25.66°E to 87.21°E
(Figure 1). The region’s elevation varies from −140 m to
7,217 m, with an average height of 755 m. Higher altitudes are
found in the western and southern Iranian Plateau and the eastern
Tian Shan regions, while the rest of the area has relatively flat terrain.
The region’s elevation varies from −140 m to 7,217 m, with an
average height of 755 m. Higher altitudes are found in the western
and southern Iranian Plateau and the eastern Tian Shan regions,
while the rest of the area has relatively flat terrain (Wang et al.,
2017). The annual average temperature is approximately 15°C, while
the yearly cumulative precipitation averages around 170 mm, with
notable spatial heterogeneity. Temperature tends to increase toward
the south and decrease toward the north, while precipitation is
concentrated in mountainous and hilly areas. The deserts of Central
Asia and the Gobi region experience higher temperatures, whereas
areas surrounding the Tian Shan Mountains have much cooler
conditions, with average annual temperatures below 0°C. The
Kavel Desert, located in the eastern part of West Asia, has an
extremely arid climate with annual rainfall ranging from 30 to
250 mm. In contrast, the central area enjoys more favorable
hydrothermal conditions, and the western region features a
typical Mediterranean climate (Chen et al., 2020). Land cover in
the study area is predominantly composed of grasslands, deserts,

Frontiers in Environmental Science frontiersin.org02

Wang et al. 10.3389/fenvs.2025.1546190

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1546190


and sparse vegetation, with a few scattered forests, resulting in
generally low vegetation greenness.

2.2 Data sources

This study utilized Moderate-resolution Imaging
Spectroradiometer (MODIS) NDVI data, ERA5 reanalysis data,
and relevant statistics covering the seven countries along the
CWAEC from 2013 to 2022.

The NDVI data were derived from the National Aeronautics and
Space Administration’s (NASA) MODIS MOD13A3 NDVI 16-day
composite product (https://ladsweb.modaps.eosdis.nasa.gov), with a
spatial resolution of 1,000 m and a temporal resolution of 16 days.
The data acquisition track numbers included h19v04, h19v05,
h20v03, h20v04, h20v05, h21v03, h21v04, h21v05, h21v06,
h22v03, h22v04, h22v05, h22v06, h23v03, h23v04, h23v05,
h23v06, h24v04, and h24v05, with data collected from 2013 to
2022. Using the study area boundaries obtained from the
Resource and Environmental Science and Data Platform (https://
www.resdc.cn), NDVI data were preprocessed on the Google Earth
Engine platform. This involved batch projection, splicing, cropping,
and quality control based on the MOD13A3 quality control field.
Yearly NDVI data products were generated using the maximum
value synthesis method. Meteorological data were obtained from the
ERA5-Land Monthly Aggregated dataset provided by the European
Centre for Medium-Range Weather Forecasts (ECMWF) Climate
Reanalysis of the Copernicus Climate Change Service (https://
climate.copernicus.eu). These data have a horizontal resolution of
0.1° × 0.1° (original resolution: 9 km). Monthly temperature and
precipitation data from 2013 to 2022 were extracted using the
Google Earth Engine platform (Xu et al., 2019; Chen et al.,
2019). Bilinear interpolation was applied to resample the
meteorological data to match the spatial resolution of the NDVI
data (Guo et al., 2018; Wang et al., 2024; Wei et al., 2022; Zandler
et al., 2020), and ArcGIS 10.2 was used to derive annual mean
temperature and cumulative precipitation figures. Given the
generally low NDVI values in the CWAEC, a spatial mask was

applied to include only data where NDVI values were greater than
zero. All datasets were projected using the GCS_WGS_
1984 coordinate system for uniformity.

2.3 Methods

2.3.1 Theil-Sen Median trend analysis and Mann-
Kendall significance test

Theil-Sen Median trend analysis and the Mann-Kendall (MK)
test were employed to examine changes in the spatial trend of NDVI
and its significance. Theil-SenMedian trend analysis is a robust non-
parametric statistical approach utilized for calculating trends (Sen,
1968; Hoaglin et al., 2000), which can reduce the influence of data
anomalies and is applicable to trend analysis of long-term time series
data (Cai and Yu, 2009; Lunetta et al., 2022). The formula is shown
in Equation 1:

β � Median
NDVIj − NDVIi

j − i
( ) (1)

In the formula,Median refers to the median value and i and j are
the time series where 2013 ≤ i ≤ j ≤ 2022. If β > 0, NDVI reflects an
upward trend, whereas if β < 0, NDVI indicates a downward trend.
To ensure a meaningful interpretation of NDVI trends, this study
categorized β ≥ 0.0005 as an improving region, −0.0005 ≤ β <
0.0005 as a stable region, and β < −0.0005 as a degrading region. The
MK test does not assume a normal distribution, is less influenced by
outliers and missing values, and is suitable for evaluating trend
significance in long-term time series data (Kendall, 1948). The
significance test is conducted using the test statistic Z, which was
calculated as shown in Equations 2–5:

Z �

S − 1�������
Var S( )√ S> 0( )

0 S � 0( )
S + 1�������
Var S( )√ S< 0( )

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(2)

FIGURE 1
Distribution of the seven countries along the CWAEC: (A) Elevation, and (B) Land cover type.
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S � ∑n−1
i�1

∑n
j�i+1

sgn NDVIj − NDVIi( ) (3)

sgn NDVIj − NDVIi( ) � 1 NDVIj >NDVIi( )
0 NDVIj � NDVIi( )
−1 NDVIj <NDVIi( )

⎧⎪⎨⎪⎩ (4)

Var S( ) � n n − 1( ) 2n + 5( )
18

(5)

Here, n represents the length of the time series, and sgn is the
sign function. In this study, the significance of the NDVI trend was
assessed at a significance level of α = 0.05, the test result Z was
categorized into significant change (| Z |>1.96) and insignificant
change (| Z |<1.96) (Jiang et al., 2015). Combining the β and Z
values, the five categories of significant degradation (SD, β<−0.0005,
|Z|>1.96), insignificant degradation (ISD, β < −0.0005, |Z|<1.96), no
change (NC, −0.0005 ≤ β < 0.0005), insignificant improvement (ISI,
β > 0.0005, |Z|<1.96) and significant improvement (SI, β > 0.0005, |
Z|>1.96) were designated.

2.3.2 Multiple regression residual analysis
Multiple regression residual analysis was employed to examine

the impacts and relative contributions of climatic variation and
anthropogenic activities on changes in NDVI (Evans and Geerken,
2004; Wessels et al., 2007). Based on NDVI, temperature, and
precipitation time series data, a binary linear regression model
was established, with NDVI as the independent variable and the
rest serving as the dependent variables. The predicted NDVI
(NDVICC), reflecting the influence of climate changes, was then
calculated. The residual NDVI (NDVIHA), representing the impact
of human activities, was determined by subtracting the NDVICC
from the observed NDVI (NDVIobs). The formula is shown in
Equations 6, 7:

NDVICC � a × T + b × P + c (6)
NDVIHA � NDVIobs − NDVICC (7)

Where T and P referred to the annual mean temperature and
cumulative precipitation in °C and mm respectively, and a, b, and c
were the model parameters.

2.3.3 Determination of driving factors for
NDVI changes

Slope(NDVIobs), Slope(NDVICC), Slope(NDVIHA) are the
interannual trends of NDVIobs, NDVICC, NDVIHA respectively,
which were calculated using simple linear regression to serve as the
basis for the subsequent determination of the NDVI drivers (Zhang
et al., 2016). The formula used for calculation is shown in
Equation 8:

Slope �
n × ∑n

i�1
i × NDVIi,xy − ∑n

i�1
i × ∑n

i�1
NDVIi,xy

n × ∑n
i�1
i2 − ∑n

i�1
i( )2 (8)

Where Slope was the slope of the simple linear regression
equation fitted to NDVI and the time variable, characterizing the
trend of NDVI from 2013 to 2022, n represented the length of the
time series, i was the time variable, and NDVIi,xy represented the
pixel value of the x-row and y-column of the NDVI data of the ith

year. Slope(NDVICC) and Slope(NDVIHA) represent the trends of
NDVI change under the influence of climate change and human
activities respectively. Slope >0 indicates a restoration trend, while
Slope <0 reflects a degradation trend over time. The larger the
absolute value of the slope, the faster the rate of change is. To
quantify the impacts of climate change and human activities on
NDVI changes in the CWAEC, thresholds were applied, where
Slope(NDVICC) and Slope(NDVIHA) were classified into seven
categories of obvious inhibition, moderate inhibition, slight
inhibition, no effect, slight enhancement, moderate enhancement,
and obvious enhancement in equal intervals concerning to the
previous study (JIN et al., 2020). The classification criteria are
presented in Table 1.

The criteria for distinguishing the dominant drivers of NDVI
variation and assessing the relative influence of climatic alterations
and anthropogenic activities on NDVI variation are outlined in
Table 2 (Sun et al., 2015). When the signs of Slope(NDVIobs),
Slope(NDVICC), and Slope(NDVIHA) were all the same, it was
considered a joint influence of climate change and human activities
(CC & HA). If only the signs of Slope(NDVIobs) and
Slope(NDVICC) were consistent, it was regarded as climate
change influence alone (CC), and when only Slope(NDVIobs),
Slope(NDVIHA) had the same signs, it was regarded as the
effects of human activity alone (HA).

3 Results

3.1 Spatio-temporal distribution patterns of
NDVI in the CWAEC

The average spatial distribution of NDVI in the CWAEC from
2013 to 2022 showed a gradual decline from north to south, with
values ranging from 0 to 0.93. The overall multi-year regional
average was 0.34 (Figure 2). High NDVI values were
concentrated in the northern Kazakh hills, the low-altitude areas
of the eastern Tian Shan and the Altai Mountains, the Elburz
Mountains in northern IRN, and the coastal regions of TUR.
These areas benefited from favorable thermal and hydrological
conditions and were predominantly grassland, with NDVI values
exceeding 0.50. In contrast, low NDVI values were observed in the
central Turan lowlands and the southern Iranian Plateau, primarily
due to desertification in regions such as the Kyzylkum Desert,
Karakum Desert, and Kavir Salt Desert, where NDVI values were

TABLE 1 Classification of slope (NDVICC) and slope (NDVIHA).

Slope(NDVICC/NDVIHA) (10−3a−1) Impact level

<−2.0 obvious inhibition

−2.0 ~ −1.0 moderate inhibition

−1.0 ~ −0.2 slight inhibition

−0.2 ~ 0.2 no effect

0.2 ~ 1.0 slight enhancement

1.0 ~ 2.0 moderate enhancement

≥2.0 obvious enhancement
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below 0.30. Among the countries, TUR recorded the highest average
NDVI at 0.55, followed by KGZ at 0.46, while IRN had the lowest
average NDVI at 0.19.

Regarding temporal changes, the mean NDVI in the CWAEC
varied between 0.30 and 0.37 over the past decade, peaking in

2016 and reaching its lowest point in 2021, as shown in Figure 3.
Over this period, the average NDVI exhibited a declining trend at an
annual rate of −0.23 × 10⁻2. From 2013 to 2016, NDVI increased at
an annual rate of 1.2 × 10⁻2. But from 2016 to 2022, it showed a
declining trend at an average annual rate of −0.78 × 10⁻2, which may

TABLE 2 Determination of drivers and calculation of contribution rate of NDVI changes.

Slope (NDVIobs) Driver Classification of drivers Contribution of drivers (%)

Slope(NDVICC) Slope(NDVIHA) Climate change Human activities

>0 CC & HA >0 >0 Slope(NDVICC)
Slope(NDVIobs)

Slope(NDVIHA)
Slope(NDVIobs)

CC >0 <0 100 0

HA <0 >0 0 100

<0 CC & HA <0 <0 Slope(NDVICC)
Slope(NDVIobs)

Slope(NDVIHA)
Slope(NDVIobs)

CC <0 >0 100 0

HA >0 <0 0 100

FIGURE 2
Spatial distribution of average NDVI in CWAEC from 2013–2022.
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be related to a stronger increase in evapotranspiration than
precipitation during the dry season from April to September
(Ren et al., 2022), as well as to the depletion of groundwater due
to land reclamation, mineral development (Yu et al., 2023).

NDVI changes also varied among the seven countries. TUR
fluctuated around 0.54, peaking at 0.57 in 2015. KGZ showed
fluctuations near 0.46, with a peak of 0.49 in 2017. KAZ
displayed a declining trend with an average rate of −0.42 × 10⁻2,
fluctuating around 0.38 and peaking at 0.44 in 2016. TJK, UZB, and
TKM exhibited more consistent interannual changes, all peaking in
2019 despite significant interannual variations and instability.
Meanwhile, IRN and TKM fluctuated around 0.20. These

findings suggest that regions with low vegetation cover are more
vulnerable to perturbations, leading to greater variability in
NDVI trends.

3.2 Trend of NDVI changes in the CWAEC

Figure 4 illustrates the trend of NDVI changes in the CWAEC
over the past decade. The trend ranged from −0.11 to 0.12 a⁻1, with
an average change rate of −0.0026 a⁻1. Significant vegetation
degradation was observed in the hilly regions of northern KAZ
and the central low-altitude areas bordering the Tian Shan and

FIGURE 3
Temporal changes of NDVI in CWAEC countries, 2013–2022.
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Hindu Kush mountains ranges. Conversely, notable vegetation
recovery occurred in the hinterlands of KAZ and along the
Caspian Sea coastline. The statistical results of trend significance
categories are also shown in Figure 4. The findings revealed that
insignificant degradation (ISD) dominated NDVI change trends,
covering 50.74% of the total area, followed by insignificant

improvement (ISI) at 28.58%. Significant degradation (SD) and
significant improvement (SI) were less prevalent, accounting for
5.69% and 2.21% of the area, respectively. Areas with no change
(NC) in NDVI represented 12.78% of the total region.

Except for KGZ, which had the highest percentage of ISI at
46.51%, all other countries along the route exhibited the highest
percentage of ISD. KAZ recorded the highest ISD percentage at
60.85% (Figure 5). The proportions of SI and SD areas were
relatively low in each country. TUR had the highest percentage
of SI areas at 3.38%, primarily concentrated along the northern
Caspian Sea coast. Meanwhile, KAZ had the highest percentage of
SD areas at 8.11%, which were widely distributed across its northern
and eastern regions. NC areas were most prominent in IRN, with the
highest percentage at 28.19%, predominantly located in the
hinterlands of the Iranian Plateau.

3.3 Dominant driving factors of NDVI change
in the CWAEC

The effects of climate change and human activities on NDVI
changes in the CWAEC exhibited significant spatial heterogeneity,
with notable differences in how these factors influenced NDVI

FIGURE 4
Changing trend of NDVI in CWAEC.

FIGURE 5
Statistical results for trend significance categories.
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changes within the same region. As shown in Figure 6A climate
change hindered NDVI growth in 65.24% of the region, with 38.57%
of this area experiencing significant inhibition. These areas were
primarily located in the northern Kazakh hills, the Ustyurt Plateau
(spanning western KAZ and northwestern UZB), the central
Karakum Desert in TKM, and the Zagros Mountains in eastern
TUR and southwestern IRN. Conversely, climate change
contributed to NDVI increases in 23.11% of the total area.
Among these, slight enhancement covered the largest proportion
at 10.28%, while obvious enhancement accounted for only 6.84%.
These increases were concentrated in high-elevation regions, such as
the Tian Shan Mountains around KGZ and the southeastern part of
TKM. In 11.65% of the region, climate change had no noticeable
effect on NDVI changes.

Human activities contributed to NDVI increases in 49.64% of
the region, with a distinct strip stretching from northeastern KAZ
to southwestern IRN (Figure 6B). Compared to climate change,
human activities had a more significant impact on NDVI
increases, affecting a larger area. Regions with obvious
enhancement accounted for 27.21% of the total area, primarily
found in south-central KAZ, the Caspian Sea coastal region,
southwestern IRN, and the Black Sea coastal region in northern
TUR. These areas were predominantly coastal or riverine.
Conversely, human activities hindered NDVI increases in
42.66% of the region, with obvious inhibition accounting for
25.82%. This was mainly observed in the southeastern Tian Shan
Mountains, the Pamir Plateau at lower altitudes, the north-
central and eastern regions of KAZ, and the Anatolian Plateau
in central TUR. Approximately 7.70% of the area showed no
impact from human activities on NDVI changes. Analysis
indicated that from 2013 to 2022, the average effects of
climate change and human activities on NDVI changes in the
CWAEC were −0.23 × 10⁻2 a⁻1 and −0.95 × 10−4 a⁻1, respectively.

Figure 7 illustrates the spatial distribution of the factors driving
NDVI changes in the CWAEC. Among the areas experiencing
positive impacts, the combined influence of CC&HA was the
primary driver of NDVI increases, accounting for 15.98% of the

region. In contrast, NDVI increases attributed solely to CC made up
only 3.25% of the area and were relatively scattered. Areas where HA
alone drove NDVI increases constituted 18.69%, primarily located
in south-central KAZ, western TKM, and the north-south coastal
regions of IRN. For areas experiencing negative impacts, 33.92% of
the region showed that CC & HA jointly contributed to NDVI
decreases. These declines were mainly concentrated in the northern
and central parts of the CWAEC, as well as in the hinterlands of IRN
and TUR. NDVI decreases driven solely by CC accounted for
19.00% of the area, and their spatial distribution largely
overlapped with the previously mentioned regions. Meanwhile,
areas where NDVI decline was attributed exclusively to HA
comprised 9.17%, concentrated in the southeastern parts of TKM
and the interior regions of TUR. Overall, the joint effects of CC &
HA were the dominant drivers of NDVI changes in the CWAEC
during the past decade of BRI implementation.

Driver analysis was conducted for each country and
summarized in Table 3. In IRN, NDVI changes were solely
influenced by HA, whereas in the other six countries, the
driving factors were a combination of CC&HA. The calculation
of Slope (NDVICC) and Slope (NDVIHA) by country revealed
considerable variation in the effects of CC and HA on NDVI
changes. The impact of CC ranged from −0.40 × 10⁻2 a⁻1 in KAZ to
0.07 × 10⁻2 a⁻1 in KGZ, while the influence of HA varied
from −0.17 × 10⁻2 a⁻1 in TUR to 0.13 × 10⁻2 a⁻1 in IRN. Except
for TKM and KGZ, CC suppressed NDVI changes in all countries.
KAZ experienced significant inhibition, UZB moderate inhibition,
and TUR, TJK, and IRN slight inhibition. Conversely, CC slightly
enhanced NDVI in KGZ and had almost no effect in TKM. HA
slightly suppressed NDVI in KAZ, TJK, and TKM, with moderate
inhibition observed in TUR. In contrast, HA slightly enhanced
NDVI in KGZ, moderately enhanced it in IRN and had minimal
impact in UZB. Overall, climate change and human activities
predominantly suppressed NDVI changes across the countries,
with only a few exceptions where they had a positive impact. KGZ
was the only country where both CC and HA positively
contributed to NDVI changes.

FIGURE 6
Impact of drivers on NDVI change: (A) Climate change, and (B) Human activities.
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3.4 Relative contribution of different drivers
to NDVI changes

Climate alterations and human intervention jointly influenced
the variations of NDVI across the CWAEC, but their relative
contributions varied spatially. Figure 8 illustrates the relative
contributions of CC and HA to NDVI changes within the region.

Areas where CC contributed between 0% and 20% represented the
largest portion, covering 39.42% of the total area. This was followed
by areas where CC contributed between 80% and 100%, accounting
for 29.63%. These high-contribution zones were primarily
distributed in a band stretching from the Caspian coast to
northwestern KAZ and in the central-northern part of the
Karakum Desert in TKM. These regions, characterized

FIGURE 7
Spatial distribution of driving factors of NDVI change in the CWAEC, 2013–2022.

TABLE 3 Statistics of driving factors by country.

Country Slope (NDVI) Impact on NDVI increase Driving factor

(10–2 a−1) Climate change Human activities

KAZ −0.43 obvious inhibition slight inhibition CC & HA

TUR −0.26 slight inhibition moderate inhibition CC & HA

TJK −0.15 slight inhibition slight inhibition CC & HA

UZB −0.14 moderate inhibition no effect CC & HA

TKM −0.09 no effect slight inhibition CC & HA

IRN 0.06 slight inhibition moderate enhancement HA

KGZ 0.12 slight enhancement slight enhancement CC & HA
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predominantly by grasslands and deserts, were significantly
influenced by CC.

In contrast, the spatial distribution of HA’s relative contribution
to NDVI change was the inverse of CC. Areas where HA contributed
80%–100% of the changes accounted for 39.42%, primarily located
in the southwestern parts of Central Asia, the southern Iranian
Plateau, and the Anatolian Plateau in TUR. These regions were
densely populated and heavily affected by anthropogenic activities
such as agriculture and mining, overlapping with core BRI
construction zones. Meanwhile, areas where HA contributed
between 0% and 20% made up 29.63% of the total region. The
relative contributions of CC and HA in the 20%–40%, 40%–60%,
and 60%–80% ranges were each approximately 10% and were
scattered across the CWAEC.

HA contributed more to NDVI variations than CC, accounting
for 54.78% of the changes, while CC accounted for 45.22%. At the
national level, CC contribution to NDVI change ranged from
31.27% to 54.89%, with only KAZ exceeding 50%, followed by
UZB at 48.09%. In contrast, HA’s contribution to NDVI changes
ranged from 45.11% to 68.73%. TUR had the highest contribution
fromHA at 68.73%, followed by TJK at 66.98%, KGZ at 64.76%, IRN
at 63.69%, and TKM at 63.33%. In these five countries, the relative
contribution of HA to NDVI changes was greater than that of CC.
However, in KAZ and UZB, NDVI changes were more strongly
influenced by CC.

4 Discussion

4.1 NDVI degradation drivers in the CWAEC

The study indicated that the NDVI in the CWAEC along the BRI
demonstrated a significant degradation trend from 2013 to 2022,
marked by considerable spatial heterogeneity. The combined effects
of CC&HA were identified as the primary drivers of NDVI
degradation. Over the past decade, the climate has shown a
warming and drying trend, with temperatures increasing at a rate
of 0.06°C a⁻1 and annual precipitation decreasing by 4.74 mm a⁻1.

Regions with insignificantly rising temperatures accounted for
83.16% of the area, while those with insignificantly declining
precipitation represented 63.79% (Figure 9). These conditions
have been particularly unfavorable for vegetation growth in the
hills, sandy areas, and deserts of arid and semi-arid regions (Jiang
and Zhou, 2023). Sparse vegetation in these regions has been heavily
influenced by precipitation, and rising temperatures have further
exacerbated land surface evapotranspiration, limiting vegetation
growth due to increased water scarcity. Consequently, ecological
conditions in desert areas, especially the Karakum Desert, have
worsened under climate change.

Human activities have also negatively impacted vegetation.
Overgrazing, agriculture, industrial activities, and population
pressures have all significantly contributed to degradation.
Practices such as animal feeding and trampling have altered the
surface vegetation structures in low-cover areas, particularly in
traditional pasturelands like the Kazakh steppe and the northern
foothills of the Tian Shan Mountains (Zhu et al., 2022). The
increased intensity of livestock husbandry and grazing pressure
in TKM, KAZ, and UZB has led to a further reduction in
grassland NDVI (Chen et al., 2020). In Central Anatolia of TUR,
the combination of warm-drying climates and strong winds, along
with overgrazing and intensive farming, has severely degraded
ecosystems, resulting in greatly reduced or completely absent
natural plant cover (Yıldız et al., 2022).

Additionally, the reclamation of cropland and changes in land
use have contributed to vegetation loss. In northern KAZ, where
agriculture relied heavily on rain-fed cultivation, the decline in
precipitation has adversely affected cropland productivity.
Conversely, the development of irrigation-based agriculture along
the Amu Darya and Syr Darya river basins in southern KAZ, UZB,
and TKM has resulted in land salinization, further decreasing
vegetation cover (Ruan and Yu, 2019).

Industrial activities, such as mining, petroleum extraction, and
chemical operations along the mineral-rich Tian Shan Mountains,
have caused extensive damage to the surrounding steppes,
diminishing productivity and leading to the destruction of
surface vegetation and groundwater pollution (Chen et al., 2020;

FIGURE 8
Relative contribution of (A) climate change and (B) human activities to NDVI change.
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Liu et al., 2021). Population growth has exacerbated regional water
scarcity, further worsening vegetation degradation (Abuduwaili
et al., 2019). Inconsistent land management practices,
deforestation, and soil erosion in semi-arid regions have also
contributed to soil degradation and the loss of plant species,
accelerating the decline in NDVI (Sivakumar, 2007; Mutlu, 2019).

4.2 NDVI restoration drivers in the CWAEC

Vegetation cover in the CWAEC improved due to the combined
effects of CC&HA. Climate warming, particularly the melting of
glaciers, has led to increased precipitation and surface runoff in
high-altitude regions. As shown in Figure 9B, areas with non-
significant increases in precipitation accounted for 27.11% of the
region, mainly concentrated in the high-altitude areas of the Tian
Shan extension vein in the east-central region, the Pamir Plateau,
and the southern Iranian Plateau (Dastigerdi et al., 2024).
Furthermore, warming has enhanced the photosynthesis of
vegetation, improving productivity and effectively promoting
growth in these areas (Gong et al., 2017). Along the Black Sea
coast in northern TUR and theMediterranean coast in southwestern
TUR, vegetation recovery has been driven by favorable regional

climate conditions (Aktürk and Güney, 2021). Parts of southern
TUR have also experienced vegetation restoration due to the
combined effects of slightly lower temperatures and slightly
higher precipitation. In the Central Asian region, where steppe
vegetation is sparse, annual herbaceous plants have shown rapid
growth in response to increased precipitation.

Human activities have further contributed to vegetation
recovery, primarily through ecological restoration projects. For
instance, TUR has planted black pines in semi-arid artificial
grasslands to restore ecosystems (Ayan et al., 2021), while TKM
has implemented a national forest program to improve land
conditions (Kust et al., 2022). These ecological initiatives have
notably increased forest cover, and maintaining appropriate
planting densities has supported the restoration of understory
vegetation (Yıldız et al., 2022).

In sparsely vegetated areas, such as the deltas of Lake Balkhash
and the Amu Darya, cultivation has improved vegetation cover.
However, increased irrigation water usage due to reclamation efforts
in southern TKM has exacerbated ecological water shortages
downstream, contributing to land degradation around the Aral
Sea. In IRN, the establishment of ecological reserves has
effectively improved overall ecosystem functioning (Mashizi and
Sharafatmandrad, 2020).

FIGURE 9
Changes and significance of precipitation (A, B) and temperature (C, D) in the CWAEC.
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4.3 Further refinement of dominant
driving forces

The combined effects of climate CC&HA were identified as the
dominant driving forces behind NDVI changes in 49.90% of the
study area over the past decade. Within these regions, 15.98%
showed signs of vegetation recovery, while 33.92% showed
vegetation degradation. In areas where vegetation recovered, the
contribution of CC was approximately 33.74%, whereas HA
accounted for 66.26%. In contrast, areas with vegetation
degradation showed a higher contribution from CC at 51.82%,
while HA contributed only 45.18%. These findings emphasize the
crucial role of human intervention in improving the ecological
environment within the CWAEC.

The fragile ecological environment of the CWAEC presents
significant challenges for resource exploitation and sustainable
development. Considering the similarities between the climate
and environment of the CWAEC and northwestern China, the
successful experiences in ecological and environmental
management from China could serve as valuable examples.
Initiatives such as the Beijing-Tianjin-Hebei sandstorm control
initiative, the Three-North Shelterbelt Program, and the national
desertification control scheme (Niu et al., 2023; Zhu and Zheng,
2019; Zhang and Huisingh, 2018) exemplify these efforts. Key
technologies from these projects include efficient water resource
management, techniques for sand prevention and control, and
strategies for managing saline-alkaline land (Yue et al., 2022).

4.4 Limitations

Despite its contributions, this study has certain limitations. The
original spatial resolution of the ERA5 reanalysis meteorological data
(9 km) differs from that of theMOD13A3 data (1,000m). Although the
meteorological data were resampled to 1,000m, the spatial resolution of
the ERA5-LandMonthly Aggregated datasets is indeed relatively coarse
compared to the MOD13A3 NDVI data, which introduces limitations
in the regression analysis. Additionally, the regression model for NDVI
prediction considered only temperature and precipitation, which are
dominant climatic factors in arid and semi-arid zones. Furthermore,
temperature and precipitation data have high temporal and spatial
resolution, and are consistent with the NDVI data, ensuring the
reliability of the regression analysis. However, other factors such as
wind speed, hours of sunshine, relative humidity, altitude, and slope also
affect NDVI. Consequently, the residuals of NDVI likely reflect not only
human impacts but also the influence of unaccounted factors. The 10-
year study period may also limit the analysis of long-term trends.
However, the primary objective of this research was to explore
environmental changes in the CWAEC since the implementation of
the Belt and Road Initiative (BRI). The findings provide valuable
insights for comparative analyses of conditions before and after the
policy’s implementation. Future studies could focus on core BRI areas,
further incorporate more variables through multiple regression analysis
or machine learning methods to comprehensively assess the combined
effects of these factors on NDVI change, integrate land cover and
vegetation type changes on longer time scales, downscale the spatial
resolution of the ERA5-land product using more rigorous methods to
enhance the accuracy of this data in climate change simulation, thereby

providing a more complete understanding of the complex drivers of
vegetation change in CWAEC.

5 Conclusion

Using MOD13A3 and meteorological data, this study
investigated the evolution of NDVI trends and identified the
dominant driving forces behind NDVI changes in seven
countries along the CWAEC from 2013 to 2022. The key
findings are as follows.

(1) The average spatial distribution of NDVI in the CWAEC
from 2013 to 2022 showed a gradual decline from north to
south, with an overall average NDVI value of 0.34. Over the
decade, the region exhibited a downward trend, with an
average rate of −0.26 × 10⁻2 a⁻1. The dominant change
trend was non-significant degradation, accounting for
50.74% of the total changes.

(2) The combined effects of CC&HA were the primary drivers of
NDVI variations. Negative impacts of CC included climate
warming and drying, while positive impacts arose from
warming and humidifying trends. Human activities had
both detrimental effects, such as overgrazing, intensive
agriculture, mineral resource extraction, and deforestation,
and beneficial effects tied to ecological restoration initiatives.
As for the future construction of the BRI, the ecological
environment of arid areas can be improved through the
efficient utilization and protection of water resources, sand
suppression and saline-alkali land management.

(3) The impacts of CC and HA on NDVI changes exhibited
significant spatial heterogeneity. Climate change primarily
exerted negative impacts, with an average effect of −0.23 ×
10⁻2 a⁻1, while HA contributed slightly more positive effects
than negative ones, with an average impact of −0.95 × 10⁻4 a⁻1.
The influence of CC on NDVI changes ranged from −0.40 ×
10⁻2 a⁻1 in KAZ to 0.07 × 10⁻2 a⁻1 in KGZ. In contrast, the
impact of HA ranged from −0.17 × 10⁻2 a⁻1 in TUR to 0.13 ×
10⁻2 a⁻1 in IRN. Human activities contributed 54.78% to the
relative impact on NDVI changes in the region, while CC
accounted for 45.22%. KAZ and UZB experienced greater
influence from CC, whereas in the other countries, HA had a
more significant impact on NDVI changes than CC.
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