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Quantifying the impact of landscape metrics on water quality can offer scientific
supports for water conservation and land use planning. However, previous
studies mainly relied on coarse land use maps, and were lack of
understanding of effects from physiographic metrics. Here, based on the in-
situ water quality monitoring data in the Fujiang river basin, we used redundancy
analysis, variation partitioning analysis, and Shapley Additive exPlanations
methods to assess the impact of landscape metrics on water quality. We use
these analyses in the dry and wet season, in circular buffer zone, in riparian buffer
zone, and at the sub-basin scale, we are able to analyze and understand the
complex interactions between landscape features and water quality, as well as
spatial and temporal scale effects. The results indicated that the impact of
landscape metrics on water quality variation can be ranked in the following
order: landscape composition (15.8%–32.2%) > landscape configuration (1.2%–
19.5%)> physiographic metrics (−2.0%-0.6%). Forests and grasslands improved
water quality, whereas farmland and impervious surfaces degraded water quality.
At a finer scale of land use types, closed broadleaf evergreen forests improved
water quality, while rainfed cropland had the opposite effect. The 1500m circular
buffer was the key scale with the highest rate of interpretation. The relationship
between landscape metrics and water quality was marginally stronger during the
wet season than the dry season. Water quality was improved by large relief
amplitude and slope standard deviation. The water quality is not significantly
affected by the river network density, the length of the river, or the basin area.
These conclusions could provide science-informed information and support to
the study between landscape metrics and water quality.
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1 Introduction

Water is universally recognized as the most crucial natural resource (Shi et al., 2017).
Nevertheless, due to the intensified anthropogenic activities, the decline in water quality has
become an almost unavoidable worldwide ecological issue (Basu et al., 2022; Li et al., 2022).
Water quality is affected by the interaction of various natural and human factors, including
pollutant discharges, changing climate, land cover, land use intensity, and various
anthropogenic activities (Ai et al., 2015; Naderian et al., 2024; Li et al., 2022; Lausch
et al., 2025). Anthropogenic activities, especially agricultural practices and rapid
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urbanization, have caused a growing shift of vegetated landscapes
into agricultural and urban regions (Peng and Li, 2021). This shift
has exacerbated the decline in water quality in most regions of the
world. Most of the damage to water quality originates from non-
point source (NPS) pollution caused by farming production (Xu
et al., 2022a) and point source (PS) pollution caused by urban living
and production (Zhou et al., 2016). However, at a large watershed
scale, the degradation of water quality (especially surface water) is
spatially and temporally variable, and is determined by various
factors, including topography, hydrology, land use, and other
related variables (Liu et al., 2016; Shen et al., 2014; Ongley et al.,
2010). Therefore, it is vital to comprehend the quantitative
connections between land use and water quality for efficiently
manage watersheds and water quality conservation.

Much research effort has been devoted to understand and
quantify the relationship between land use and surface water
quality. In terms of land use indicators, initial research linked the
chemical composition of water to various land use types within a
stream basin (Donohue et al., 2006).These studies suggested that
urbanization, arable land, and pastureland are the main factors
affecting river water quality. Recently, with the development of earth
observation techniques and landscape ecology, more and more
studies are attempting to quantify the impacts of land use on
water quality using more integrated indicators of landscape
structure. Landscape structure mainly consist of landscape
compositions and landscape configurations. Landscape
compositions mainly refer to the relative proportions of different
landscape types, and landscape configurations, pertain to the
geographical distribution of various types of landscape (Xu et al.,
2021; Shu et al., 2022). For instance, only the effects of landscape
composition on water quality were considered in some studies
(Wang et al., 2023; Sun et al., 2023), and they found that the
land use types cropland, woodland, and urban area, showed
negative impacts to water quality, whereas grassland has been
associated with positive impacts on water quality. In addition,
Shi et al. (2017) and Shu et al. (2022) considered the effects of
both landscape composition and landscape configuration on water
quality, the conclusion show that both landscape composition and
landscape configuration have important effects on water quality.
However, at a larger watershed scale, spatial variability in surface
properties, local physiographic metrics, such as elevation, slope,
basin area, magnitude of relief amplitude (HD), and topographic
wetness index (TWI), also can contribute to differences in water
quality (Xu et al., 2023; Wu and Lu, 2021; Alakbar and Burgan,
2024). However, these factors have not been properly discussed in
previous studies. At the same time, the river network (which can be
quantitively expressed as river network density, RND) as the flowing
structure of the watershed, also have an impact on water quality.
Thus, it is necessary to incorporate the RND into water
quality analyses.

Furthermore, regarding landscape composition, the majority of
studies grouped land use types into broad categories such as
farmland, forestland, grassland, and residential land (Caldwell
et al., 2023; Xu et al., 2021). However, it is known that there are
many subtypes under these coarse divisions. For example, forestland
includes mixed forest and deciduous forest, which show different
impacts for water quality (Wang et al., 2020). And farmland also
includes paddy field and dry land crop field (Wang et al.,

2020).Therefore, Some studies have suggested that, a more
comprehensive categorization of landscape types would likely
provide a more accurate representation of how landscape
compositions impacts the water quality (Xu et al., 2021).

As an integrated reflection of multi-scale landscape structure,
watershed water quality is responsive to seasonal and spatial scales
(Li et al., 2018; Zhang et al., 2018). Therefore, spatial and temporal
scale is another issue when understanding the impacts from
landscape metrics on water quality, due to spatial-temporal
heterogeneity in water quality and landscape. In the current
study, sub-basin and buffer scales are widely utilized,
additionally, the buffer zone can be classified into riparian buffer
zone and circular buffer zone (Wu and Lu, 2021). However, there is
not a consensus among researchers on the best scale to use to
describe variation in water quality (Xu et al., 2021; Cheng et al.,
2023). Some researchers contended that land use at buffer scale
provided more precise forecasts of water quality (Xu et al., 2021;
Cheng et al., 2023;Wu and Lu, 2021). Conversely, others maintained
that land use at the sub-basin scale could offer a more thorough
depiction of information (Ding et al., 2016). Furthermore, the
optimal buffer widths were inconsistent. For riparian buffer zone
scale, the results for optimal riparian buffer zone widths ranged from
100, 300–2,000 m (Xu et al., 2021; Wang et al., 2024; Cheng et al.,
2023). The varied results can be due to the distinct features of each
watershed, which have an impact on water quality. Therefore, it is
imperative to conduct more studies in different study areas and at
different scales to quantify the impacts of landscape metrics on
water quality.

Although encouraging and important findings have been
produced in the previous studies, there are several limitations
that need to be explored further: (1) the absence of
comprehensive investigation of fine-grained land use on water
quality, (2) the influence of natural physiographic properties of
the watershed on water quality needs to be further investigated, and
(3) the optimal scale for interpreting landscape impacts on water
quality has not yet been harmonized.

In this study, we try to quantify the multi-scale contributions of
fine-grained landscape and physiographic metrics to water quality in
the Fujiang river basin, which is situated in the upper region of the
Yangtze River with high-intensity agricultural activities. Initially, we
analyzed spatial-temporal variations in water quality, landscape
composition, and landscape configuration. Secondly, the impact
of different metrics on water quality was explored through
redundancy analysis and the optimal scale was determined.
Furthermore, the contribution of the three types of metrics to
water quality was quantified through variation partitioning
analysis. Lastly, in addition to the traditional statistical
methodology, the explanatory rates of the different factors on
water quality were investigated through the Shapley Additive
exPlanations (SHAP) method. Compared to previous studies, the
contributions of this study are as follows: (1) fine-grained land use
data was employed to examine the correlation between landscape
and water quality, especially, rainfed cropland, irrigated cropland,
open forest, closed forest. This is a lack of discussion in previous
studies, and the use of fine-grained land use maps is precisely the
novelty of this study. (2) we considered combined effects of
landscape and physiographic metrics (particularly river network
density) on water quality. (3) identify the spatial scale effects and
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seasonal variations of the influence of landscape metrics on water
quality, and determine the scale at which landscape metrics best
reflects water quality.

2 Material and methods

2.1 Study area

The Fujiang river basin (FRB), mainly in central Sichuan
Province, China (29°30′to 33°05′N, 103°44′to 106°16′E), is one of
the most ecologically fragile areas in the upper reaches of the Yangtze
River (Wang et al., 2020; Wang et al., 2024) (Figure 1). It covers an
area of 35,509 km2, and the elevation above sea level ranges from
180 to 5,502 m. The upper reaches of the FRB are at a high altitude,
and the middle and lower reaches are dominated by hilly landscapes
with low forest cover and serious soil erosion. The FRB is dominated
by the subtropical monsoon climate, which is characterized by an
average annual temperature of 17.9°C, an average annual precipitation
of 1,102mm, an average wind speed of 1.28m/s, and relative humidity
of 77.3%. Since more over half of the total precipitation falls in the
summer, the year may be divided into two seasons: the wet (June to
August) and the dry (September to May).

Generally, the FRB has the largest proportion of cropland. The
upper reaches are dominated by forested land with high vegetation

cover, while the middle and lower reaches dominated by cropland
and construction land.

In the FRB, unique natural conditions, including abundant
rainfall, hilly and mountainous topography, and soil erosion,
provide the foundation and possibility for NPS pollution.
Additionally, the dense agricultural population, well-developed
agricultural activities and rough production patterns in FRB
(Zhang et al., 2016) further contribute to the severe deterioration
of river water quality. Therefore, the FRB is an ideal area for
analyzing the multiscale impacts of landscape metrics on water
quality based on fine-grained land use maps.

2.2 Data collection and processing

The data used in the study are described in Table 1. Monthly
averages were calculated for the water quality data. And we used
Kolmogorov-Smirnov test to assess the normality of water quality
data in SPSS. We extracted the land use data separately according to
different scales and calculated Landscape configuration metrics.
DEM data were extracted based on the extent of the study area.
We extracted Sub-basin boundaries within the study area and
calculated the basin area. We counted vector lengths of river
network data in the study area. These data processing operations
are performed in ArcGIS.

FIGURE 1
The location and land use map of the FRB.
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2.2.1 Water sampling and measurement
In this study, water quality data at 14 sampling sites (Figure 2A)

was obtained from the National Surface Water Quality Automatic
Monitoring System (https://szzdjc.cnemc.cn:8070/GJZ/Business/
Publish/Main.html). The dataset covers the period from June
2017 to May 2022. The detailed records primarily consisted of
water quality parameters, including dissolved oxygen (DO),
chemical oxygen demand (COD), permanganate index

(CODmn), biochemical oxygen demand (BOD), ammonia
nitrogen (NH4

+-N), total nitrogen (TN), and total phosphorus
(TP). DO, NH4

+-N, and CODmn, measurement by electrode
method, TN and TP are measured photometrically, BOD is
measured using the microbial membrane method (The National
Standards of the People’s republic of China: environmental quality
Standards for surface Water (GB 3838-2002)). These data were
recorded six times per day. To further eliminate noise, the monthly
average of each water quality parameters was calculated to express
changes in water quality.

2.2.2 Spatial scale groping
To measure the multi-scale impacts from landscape metrics on

water quality, three types of spatial buffers were employed, including
circular buffer zones, riparian buffer zones and the sub-basin regions
(Figures 2B–D). After comprehensively considering the optimal
buffer scales of previous studies (Dou et al., 2022; Cheng et al.,
2023; Xu et al., 2021), for the circular buffer zones, we established
three buffer zones centered onmonitoring stations, each with widths
of 500, 1,000 and 1,500 m (Figure 2B). In riparian buffer zones, we
constructed three buffer zones with a buffer radius of 100,300 and
500 m, with the central line of the river as the central axis
(Figure 2C). And for the sub-basin regions, these include the
entire catchment upstream from the sampling site (Figure 2D).

TABLE 1 Datasets for quantifying the relationship between water quality
and landscape metrics.

Data Source

Water quality
data

Automatic water quality monitoring center (https://www.
cnemc.cn/sssj/)

Land use Fine classification system at 30 m (GLC_FCS30–1985_2020)
(Zhang et al., 2021)

DEM NASA’s SRTM 30m product (https://www.earthdata.nasa.gov/
sensors/srtm)

Sub-basin
boundaries

HydroBASINS database (https://www.hydrosheds.org/
products/hydrobasins)

River network
data

Open Street Map (OSM) (https://openmaptiles.org/)

FIGURE 2
The digital elevation model (DEM) and distribution of the 14 sampling sites of the FRB (A), and schematic diagrams of the three scales used in this
study: (B) circular buffer zone (the widths of buffer zones included 500, 1,000, 1,500m); (C) riparian buffer zone (the widths of buffer zones included 100,
300, 500 m); and (D) sub-basin (the entire catchment upstream from the sampling site).
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2.2.3 Landscape metrics
The landscape metrics we established can be categorized into

three groups: landscape composition, landscape configuration and
physiographic metrics. The landscape composition metrics contains
the percentages of rainfed cropland (RC), herbaceous cover (HC),
irrigated cropland (IC), open evergreen broadleaved forest
(FORoeb), closed evergreen broadleaved forest (FORceb), closed
deciduous broadleaved forest (FORcdb), closed evergreen needle-
leaved forest (FORcen), grassland (GRA), wetlands (WET),
impervious surfaces (IS), and water body (WAT). The landscape
configuration consists of patch density (PD), largest patch index
(LPI), landscape shape index (LSI), contagion index (CONTAG),
proportion of like adjacencies (PLADJ), patch cohesion index
(COHESION), and Shannon’s diversity index (SHDI)were
calculated at the landscape level using the FRAGSTAT

4.2 software. The physiographic metrics includes relief amplitude
(HD), slope standard deviation (Slope_sd) and topographic wetness
index (TWI), at the riparian buffer zone scale it also includes river
length (RL) and buffer zone area (AREA), at the sub-basin scale it
also includes river network density (RND). Table 2 contained a list
of each landscape category’s individual metrics.

2.3 Analysis methods

We employed the Kolmogorov-Smirnov test to assess the
normality of water quality data. Due to the non-normal
distribution of the data, the Mann-Whitney test was employed to
assess the disparity in water quality across various seasons. In order
to exclude covariance between metrics, the collinearity among

TABLE 2 Variables and descriptions of the landscape metrics.

Class Variables Description

Landscape composition
metrics

Rainfed cropland (RC) Rainfed cropland percentage

Herbaceous cover (HC) Herbaceous cover percentage

Irrigated cropland (IC) Irrigated cropland percentage

Open evergreen broadleaved forest
(FORoeb)

Open evergreen broadleaved forest percentage

Closed evergreen broadleaved forest
(FORceb)

Closed evergreen broadleaved forest percentage

Closed deciduous broadleaved forest
(FORcdb)

Closed deciduous broadleaved forest percentage

Closed evergreen needle-leaved forest
(FORcen)

Closed evergreen needle-leaved forest percentage

Grassland (GRA) Grassland percentage

Wetlands (WET) Wetlands percentage

Impervious surfaces (IS) Impervious surfaces percentage

Water body (WAT) Water body percentage

Landscape configuration
metrics

Patch density (PD) Number of patches of the corresponding class per unit area (number per 100 ha)

Largest patch index (LPI) The percentage of total landscape area comprised by the largest patch of a patch type (unit: %)

Landscape shape index (LSI) Measures the perimeter-to-area ratio for the corresponding class, only meaningful relative to the size
of the landscape (no unit)

Contagion index (CONTAG) Land-use type aggregation tendency (unit: %)

Proportion of like adjacencies (PLADJ) The proportion of neighboring landscape types in the overall neighboring landscape (unit: %)

Patch cohesion index (COHESION) The physical connectivity of related patch types (no unit)

Shannon’s diversity index (SHDI) Ameasure of variety in community ecology that indicates patch diversity within a landscape (no unit)

Physiographic metrics Relief amplitude (HD) Height difference between the highest point (Hmax) and the lowest point (Hmin) (Ai et al., 2015)
(unit: m)

Slope standard deviation (Slope_sd) Slope standard deviation (unit: %)

Topographic wetness index (TWI) TWI = ln (a/tan(b)), where a represents the upslope area per unit contour length and tan(b)
represents the local slope (Hoylman et al., 2019) (no unit)

River length (RL) Sum of river lengths (unit: km)

Basin areas (AREA) Total basin area (unit: km2)

River network density (RND) The ratio of the total length of the water system to the area of the basin (Li et al., 2023) (unit: km−1)
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explanatory variables was assessed using a variance inflation factor
(VIF). When the VIF value is less than 10, there is no collinear
relationship between the explanatory variables (Ding et al., 2016).

Redundancy analysis (RDA) is commonly used to ascertain the
correlation between environmental factors and landscape features
(Shi et al., 2017). Detrended correspondence analysis (DCA) was
first performed to decide whether to use a linear or unimodal
models. The results of DCA indicated that the maximum length
of the gradient for the four ordination axes was below 3.
Consequently, this study employed the RDA method to evaluate
the connections between water quality and landscape metrics at
multiple scales.

The variation partitioning analysis (VPA) method was
employed to evaluate the proportional impacts of three types of
landscape metrics on variations in water quality. Specifically,
important landscape compositions, landscape configuration and

physiographic metrics were selected at the spatial scales that had
the greatest rates of interpretation. In order to fully consider the
differences at different scales, the scale with the highest impacts
under each scale division was selected, and the 1,500 m circular
buffer zone scale, and the sub-basin were selected for further
VPA analysis.

Shapley Additive exPlanations (SHAP) was created to provide a
more efficient and consistent interpretation of machine learning
models that aligns with human intuition (Lundberg and Lee,
2017). Research has demonstrated that the SHAP method is an
effective machine learning model interpreter (Wang et al., 2021).
As a game-theoretic methodology, SHAP can assess the significance of
feature in machine learning models. Based on its marginal
contribution, each feature’s share of the model’s output was
assigned. Several studies have successfully used the SHAP method
to offer a credible explanation of the relationship between land use

FIGURE 3
Water quality parameters of wet and dry season from 14 sampling sites in the FRB, including DO, COD, CODmn, BOD, NH4

+-N, TN, and TP variables.
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and water quality (Zhang et al., 2022; Liu et al., 2025). The SHAP
method incorporating XGBoostmodels was employed in this study. A
greater SHAP value indicates amore pronounced influence.When the
SHAP value is positive, it signifies that the feature acts as a positive
force, contributing to the increase in the concentration of water
quality parameters. The flow chart of this study is shown in Figure 3.

3 Results and discussion

3.1 Spatial and seasonal variation of
water quality

Figure 4 illustrates the differences in water quality metrics between
the dry and wet seasons in the FRB. According to the Mann-Whitney
test, the majority of water quality parameters exhibited significant
seasonal fluctuations (p < 0.05), with the exception of BOD, NH4

+-
N, and TP. In most cases, concentrations of CODmn, COD, and TN
tended to increase during the wet season, where concentrations of DO
and TP were higher during the dry season.

3.2 Characteristics of landscape metrics

The primary landscape types at the circular buffer zone size were
farmland (including rainfed and irrigated cropland), woodland
(including closed evergreen broadleaved forest, closed deciduous

broadleaved forest, and closed evergreen needle-leaved forest),
impermeable surfaces, and water bodies (Table 3). As the buffer
distance increased at the circular buffer zone, there was an increase in
the proportion of farmland and a decrease in the proportion of forest
land, impermeable surfaces, and water bodies. The primary landscape
types seen at the riparian buffer zone size were farmland, grassland,
and impervious surfaces.With an increase in the buffer distance at the
riparian buffer zone, there was a corresponding rise in the proportion
of forest land, while the proportions of farming, grassland,
impermeable surfaces, and water bodies declined. Farmland and
forest were the primary landscape types at the sub-basin scale.

Figure 5 displays the values of seven landscape configuration
metrics across the seven distinct regional division levels. LPI,
PLADJ, and COHESION metrics were lowest at the 100 m width
of the riparian buffer zone, and increased with increasing buffer zone
width. At buffer scale, CONTAG, PLADJ, and COHESION metrics
increased with buffer width, while PD metrics are the opposite,
decreasing with buffer width.

3.3 Relationships between landscape
metrics and water quality

3.3.1 Influences of landscape metrics on
water quality

The RDA assessed the impact of landscape metrics on water
quality (Figure 6; Table 4). Most of the water quality variation was

FIGURE 4
Landscape configuration metrics (PD, LPI, LSI, CONTAG, PLADJ, COHESION, and SHDI) at scales ranging from the buffer zone to sub-basin.
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accounted for the first two axes. In the wet season, landscape metrics
accounted for over 93.26% of the variations in water quality.
However, this explanation decreased by 0.23%–4.62% during the
dry season. 91.27%–97.34% changes in water quality can be
determined by landscape metrics at the circular buffer zone scale.
The explanation dropped to 91.12%–95.70% at the sub-basin zone.
At the riparian buffer zone scale, the explanation dropped to
90.76%–95.69%. Landscape metrics at the circular buffer zone
scale provides a more reliable representation of changes in water
quality compared to the riparian buffer zone and sub-basin scale.
Additionally, these landscape metrics have a greater impact when
it rains.

During the wet season, the landscape metrics exhibited the
highest explanatory rate on water quality within the 1,500 m
width of the circular buffer zone, explaining up to 97.34% of the
variation. The indicators SHDI (57.0%) and FORoeb (13.9%) were
shown to be the most important factors influencing water quality.
During the dry season, the landscape metrics exhibited the greatest
explanatory power within the circular buffer zone with a width of
1,500 m, explaining up to 97.11% of the variation in water quality.
The variables SHDI (55.3%) and FORoeb (15.0%) were also shown
to have the most significant impact on water quality.

Most water quality parameters, including COD, CODmn, BOD,
TN, TP and NH4

+-N were positively related to LPI, RC, HC,
CONTAG, PLADJ and COHESION, while negatively correlated
with GRA, SHDI, FORceb, HD, PD, and Slope-sd. However, the
water quality parameter DO is the opposite of the other water quality
parameters, DO were positively correlated with GRA, LSI, FORceb
and HD, negatively correlated with LPI, CONTAG, PLADJ and HC.
In particular, the results were slightly different at the sub-basin scale.
Only FORceb showed a negative correlation with water quality,
whereas the other metrics, including PD, RND, and COHESION,
etc., exhibited a positive relationship with water quality indicators.

The VPA analysis revealed that the landscape composition had
the most significant influence on the overall variations in water
quality. Specifically, it accounted for 54.3%–73.9% of the variations
in water quality, as shown in Figure 7.

At the 1,500 m circular buffer zone scale, the combined effects of
landscape configuration and landscape composition on water
quality varied between 33.4% and 39.3%. This interaction effect
was particularly noticeable during the wet season. At the sub-basin
scale, the interactive contributions of landscape configuration,
landscape composition, and physiographic metrics on water
quality varied from 23.3% to 25.3%. These effects were especially
obvious during the dry season. In terms of the interaction of
landscape composition and landscape configuration alone, the
wet season showed a stronger interaction impact. The least
independent contributor to changes in water quality was
physiographic metrics.

Regarding seasons, water quality showed the greatest variation
in landscape composition (2.8%–16.4%), followed by landscape
configuration (2.8%–10.7%) and physiographic metrics (−2.0%–

0.64%). This suggested that the variations in seasonal water
quality were primarily due to changes in landscape composition.
Regarding spatial scales, the independent effects of landscape
configuration varied from 7.6% to 15.5%, which was slightly
greater than the range of landscape composition (8.0%–11.2%).
These finding suggest that landscape configuration is the main
element causing spatial scale variations of water quality.

3.3.2 Relationships between landscapemetrics and
water quality

The SHAP method was used at the 1500 m circular buffer zone
and sub-basin scales (Figures 7, 8).

At the 1,500 m circular buffer zone scale, it was noticed that the
SHAP values of COD, CODmn, and TN increased as the feature
values of PLADJ increased. However, raising PLADJ may have the
opposite effect of reducing DO. SHAP values of COD, BOD,
CODmn and TN decreased with increasing feature values of
SHDI. At the 1500 m circular buffer zone, SHDI and PLADJ
were the main metrics controlling watershed COD,
CODmn, and TN.

At the sub-basin scale, there was a noticeable increase in the
SHAP values of COD, CODmn, and TN as the feature values of

TABLE 3 Landscape composition at different scales.

C500 C1000 C1500 R100 R300 R500 Sub-basin

RC (%) 34.17 39.57 42.23 40.28 38.21 37.58 34.62

HC (%) 0.39 0.29 0.19 0.04 0.05 0.05 0.05

IC (%) 15.96 16.37 17.44 16.22 13.57 12.60 9.01

FORoeb (%) 1.70 0.68 0.46 0.38 0.17 0.13 0.09

FORceb (%) 5.87 6.16 5.49 11.0 16.49 18.16 21.12

FORcdb (%) 12.22 8.27 7.01 4.95 7.34 8.19 8.73

FORcen (%) 6.97 6.83 7.07 9.69 11.61 12.65 18.70

GRA (%) 0.63 0.60 0.50 3.05 1.96 1.72 3.64

WET (%) 0.20 0.07 0.02 0.01 0.01 0.01 0.01

IS (%) 17.34 12.50 11.53 7.31 7.19 6.61 3.00

WAT (%) 23.37 15.44 12.23 6.54 3.13 2.09 0.57

Note: C500 represents 500 m width at the circular buffer zone scale, and R300 represents 300 m width at the riparian buffer zone scale.
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PLADJ increased. SHAP values of COD, BOD, and CODmn,
decreased with increasing feature values of FORceb. SHAP values
of DO decrease with increasing feature values of IS. FORceb, PD,
and PLADJ were the main metric controlling COD, BOD, and
CODmn in the basin.

3.4 Water quality in relation to
landscape metrics

Variations in water quality are closely linked to land use.
According to our research, cropland and impervious surfaces

FIGURE 5
Redundancy analysis (RDA) was used to examine the connection between water quality parameters (shown by blue lines) and landscape metrics
(represented by red lines) at different seasons and spatial scales.
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FIGURE 6
The results of the variation partitioning analysis (VPA) show how much of the total variation in water quality can be accounted by landscape
composition, landscape configuration, and physiographic metrics. (A) 1,500 m circular buffer scale Wet season, (B) 1,500 m circular buffer scale Dry
season, (C) Sub-basin scale Wet season, (D) Sub-basin scale Dry season.

TABLE 4 The RDA analysis for the proportion of total variation in water quality.

Season Scales Axis1 (%) Axis2 (%) All axes (%) The first five most explanatory variables (contribution%)

Wet C500 88.87 3.26 93.29 RC (49.2%), LPI (26.9%), IS (7.6%), PD (7.4%), FORceb (4.7%)

C1000 88.53 4.41 94.11 SHDI (63.2%), HC (11.1%), FORoeb (10.3%), CONTAG (5.9%), TWI (4.5%)

C1500 92.31 3.75 97.34 SHDI (57.0%), FORoeb (13.9%), HC (8.1%), IC (6.7%), FORceb (5.5%)

R100 91.02 3.87 95.69 FORceb (77.2%), TWI (9.4%), IS (5.4%), RL (4.8%), LPI (1.4%)

R300 90.68 3.95 95.46 HD (79.4%), IS (7.3%), FORcen (4.5%), PLADJ (3.9%), CONTAG (1.8%)

R500 91.06 3.70 95.47 PD (74.3%), WAT (10.7%), COHESION (7.2%), Slope-sd (3.4%), IS (1.8%)

Sub-basin 90.90 3.98 95.70 FORceb (77.8%), COHESION (8.1%), PLADJ (7.2%), PD (2.5%), IS (2.0%)

Dry C500 88.62 1.96 91.92 RC (48.2%), LPI (26.8%), PD (6.6%), IS (4.2%), FORceb (3.8%)

C1000 87.78 2.22 91.27 SHDI (60.9%), FORoeb (13.8%), HC (12.1%), TWI (5.0%), CONTAG (2.4%)

C1500 93.26 2.46 97.11 SHDI (55.3%), FORoeb (15.0%), HC (11.4%), WAT (6.9%), IC (4.2%)

R100 88.29 2.03 91.36 FORceb (76.8%), TWI (8.1%), IS (4.5%), RL (3.9%), LPI (3.8%)

R300 87.69 2.12 90.76 HD (78.7%), IS (6.9%), PLADJ (4.3%), FORcen (4.2%), RL (2.5%)

R500 87.80 2.01 90.85 PD (73.4%), WAT (10.7), Slope-sd (8.2%), RC (3.2%), RL (2.5%)

Sub-basin 87.98 2.06 91.12 FORceb (80.4%), PLADJ (6.4%), COHESION (5.5%), RND (3.0%), IS (2.0%)
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deteriorated water quality, whereas forest and grassland improved it.
These results align with findings from prior research (Shi et al., 2017;
Xu et al., 2023; Mello et al., 2018). At a finer scale for land use types,
closed evergreen broadleaved forest improves water quality, while
rainfed cropland and herbaceous cover have a detrimental influence
on water quality. Excessive use of tillage and fertilizers in agriculture
can lead to an excess of nutrients such as nitrogen and phosphorus
in the soil, which cannot be fully utilized by the crop, leading to
eutrophication of the water (Husk et al., 2024). As a result, these
nutrients are carried into streams through irrigation and rainfall
runoff, contributing to elevated levels of nutrients in the water
(Zhang et al., 2014; Zhao et al., 2010). Wang et al. (2020) also
claimed that in the FRB, farmland has the most significant influence
on agricultural NPS pollution. Forest and grassland play a crucial
role in improving river water quality by retaining soil nutrients,
filtering pollutants, and intercepting sediment, (Xu et al., 2019;
Winston et al., 2011).

Landscape configuration is critical in governing ecological
systems (Mitchell et al., 2013). In our results, LPI, CONTAG,
PLADJ, and COHESION showed a positive association with

water quality, whereas SHDI, PD, and LSI exhibited a negative
correlation with water quality. LPI assesses the percentage of the
largest patches within the landscape (Herzog et al., 2001), rainfed
cropland was themost predominant landscape in the study area, and
the use of nitrogen and phosphorus fertilizers on rainfed cropland
can lead to high polluting water quality in rivers. As the LSI
increases, the complexity of the landscape shape also increases.
The results indicate a negative connection between LSI and NH4

+-N,
TN and TP. This suggests that a landscape with a more complicated
patch shape is effective in retaining more nutrients (Shi et al., 2017).
Contrary to the research of Shi et al. (2017), PD, SHDI had a
negative relationship with water quality, while CONTAG,
COHESION,PLADJ displayed a positive relationship with water
quality. PD is a measure of fragmentation and SHDI reflects the
diversity of patches in the watershed. CONTAG is linked to the
distribution and interspersion of different land use, where low values
indicate a low level of clustering. COHESION reflects the level of
connectivity of the natural landscape, with COHESION approaches
to −1 indicating a more dispersed the distribution of patches, while a
COHESION value approaching to one indicates a more clustered

FIGURE 7
SHAP results for DO, COD, and TN at 1,500 m circular buffer zone.

Frontiers in Environmental Science frontiersin.org11

Zhou et al. 10.3389/fenvs.2025.1544078

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1544078


distribution of patches. The FRB has the largest proportion of
cropland, while the other basins have the largest proportion of
forested land. This could be the reason for the result, which
contradicts the findings of Shi et al. (2017).

Several research have been conducted to figure out the
correlation between water quality and physiographic metrics (Wu
and Lu, 2021; Xu et al., 2023). The results of our investigation
indicated a negative correlation between the physiographic metrics
HD and Slope-sd and water quality. Higher Slope-sd values and
relief amplitude (HD) values indicate higher flow rates, steep slopes
result in accelerated runoff, which gathers and transports
contaminants into the stream, hence enhancing river water
quality (Xu et al., 2022b; Zhou et al., 2017). Furthermore,
physiographic metrics can indirectly influence water quality by
altering the arrangement of land use (Xu et al., 2022b). Slope and
elevation increases can improve water quality by limiting human
activities like agriculture and industry (Li et al., 2020).

The combination of three landscape metrics significantly
influences water quality, both independently and through
interactive effects. Specifically, further comparing the three types
of metrics at the scale with the highest explanatory rates, at the
1500 m width of the circular buffer zone scale, and at the sub-basin
scale, our results indicate that landscape composition has the
greatest impact on water quality, followed by landscape
configuration, and lastly, physiographic metrics (Figure 7). This

contradicts the results of certain investigations (Wu and Lu, 2021; Li
et al., 2018). This may be due to the fine-grained land cover maps we
used in this study, according to Xu et al. (2021), a finer land use
classification can better respond to the impact of landscape
composition on water quality.

3.5 Influence of seasonal and spatial scales
on water quality

Seasonal fluctuations in precipitation and runoff greatly impact
the concentrations of contaminants in stream water. The levels of
CODmn, COD, and TN were elevated during the wet season. In our
study, the influence of landscape metrics on water quality was more
significant during the wet season compared to the dry season. This
conclusion was supported by many prior research (Wu and Lu,
2021; Shi et al., 2017; Mei et al., 2025). This could be attributed to
higher rainfall events and intensity during the wet season, leading to
increased surface runoff and transport of more soil particles from
June to August (Nobre et al., 2020).

Depending on the analysis’s scale, different patterns of land use
and cover have different effects on water quality (Ding et al., 2016;
Mainali and Chang, 2018). The findings indicated that the landscape
metrics had the best explanatory power at the 1,500 m width of the
circular buffer zone, followed by sub-basin, the 100 m width of the

FIGURE 8
SHAP results for COD, CODmn, and BOD at the sub-basin scale.
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riparian buffer zone. At the circular buffer zone scale, the
explanatory power of the composite landscape metrics increases
with increasing width. In contrast, at the riparian buffer zone scale,
the explanatory power of the composite landscape decreases with
increasing width. At the sub-basin scale, FORceb plays a crucial
function in enhancing water quality, whereas in the wet season, the
effects of PD on TN, TP, and NH4

+-N are detrimental, which is
different from the results at the buffer scale, therefore, at the sub-
basin scale, large tracts of forest should be kept intact as much as
possible to avoid fragmentation caused by too much farmland,
urban buildings.

Regarding seasons, landscape composition showed the biggest
seasonal variations in water quality (2.8%–16.4%), suggesting that
landscape composition was primarily responsible for seasonal
differences in water quality. In terms of scales, landscape
configuration had the greatest influence on water quality (7.6%–

15.5%). This suggested that spatial scale variations were mostly
influenced by landscape configuration. This finding is exactly
opposite to the research of Xu et al. (2023). In conclusion, the
impact of landscape metrics on water quality is contingent upon the
scale, and it also fluctuates over seasons and periods of time.

3.6 Effects of basin area, river length and
river network density on water quality

Overall, it appears that basin area, river length, and river
network density have a relatively weak effect on water quality. In
the wet season, river length contributes 2.5%–4.8% to water quality
at the 100 m riparian buffer zone. In the dry season, this
contribution is observed within riparian buffer zones of 100,
300 and 500 m. River network density contributes to water
quality only at the sub-basin scale under the dry season (3%).
Basin area at the 100 m, 300 m riparian buffer zone scale has a
detrimental effect on water quality, and the larger the basin area
within the riparian buffer zone, the more polluted the water quality
is, nutrients in water bodies spread with river migration.

Contrary to expectations, the impacts of river length, river
network density, and basin area on river water quality were not
as strong as we expected. This may be due to the greater influence of
landscape composition, which masks the impact of river length,
river network density, and basin area on water quality. Furthermore,
the distribution of the location of NPS pollution sources, and the
velocity and residence time of water movement, may also make the
impact of river structural features on water quality weakened. There
are still many unanswered questions about the spatial structure of
rivers. For example, Qin et al. (2020) reported that the depth of river
channel has an impact on the amount of nitrogen and phosphorus
nutrients in waters, thus blurring the relationship between farmland
and water quality. The study will conduct additional research to
examine the impact of river structure on water quality in the future.

4 Conclusion

We explored the effects of landscape metrics on water quality at
different spatial and temporal scales through RDA, VPA, and SHAP
methods. The main conclusions are: (1) the impact of landscape

composition on water quality was more significant compared to the
effects of landscape configuration and physiographic metrics; (2)
forests and grasslands improved water quality, while cropland and
impervious surfaces worsened water quality; at a finer scale of land
use types, closed broadleaf evergreen forests improved water quality,
while in contrast, rainfed cropland negatively affected water quality;
(3) LPI, CONTAG, PLADJ, and COHESION were positively
correlated with water quality, while SHDI, PD, and LSI were
negatively correlated with water quality; (4) the circular buffer
zone scale had the highest interpretation, followed by the sub-
basin and the riparian buffer zone scale, and the 1,500 m circular
buffer zone was the key scale with the highest interpretation rate; (5)
landscape metrics were slightly more relevant to water quality in the
wet season than in the dry season; (6) water quality was improved by
large relief amplitude and slope standard deviation; the water quality
is not significantly affected by the river network density, the length
of the river, or the basin area.

The FRB is the main grain and oil producing area in Sichuan and
Chongqing provinces. Agricultural NPS and man-made soil erosion is
serious, the contradiction between resource protection and exploitation
is increasingly prominent. In order to preserve and improve the water
environment of the basin, it is essential to establish appropriate
regulatory measures while promoting the growth of local companies.
For example, forests and grasslands improve water quality, and
emphasis should be placed on grassland and forest development,
such as increased planting of broadleaf evergreen forest vegetation.
Especially at the sub-basin scale, the role of FORceb in improving water
quality is crucial. The construction of high-quality forest ecosystems
should be strengthened at the sub-basin scale. This can be achieved
through the precise enhancement of forest quality and the construction
of urban and peri-urban ecological green space systems. Whereas
agricultural land and impervious surfaces deteriorate water quality,
conservation tillage (no-tillage) as well as precision fertilizer application
can help to reduce nutrient losses. Ecological protection and
construction should focus on: strengthening conservation tillage of
farmland, management and rehabilitation of degraded and polluted
farmland, prevention and control of agricultural surface pollution,
comprehensive management of soil erosion in small watersheds, and
establishing stable agricultural farming systems. This study confirms the
critical significance of circular buffer zone in protecting the water
quality of the FRB, particularly in the long-distance buffer zone
(1,500 m). Consequently, it is recommended to establish vegetation
buffer strips within the circular buffer zone of the streams to minimize
the arrangement of farmland, thereby enhancing the water quality.

This study has some limitations. Firstly, the study period of June
2017 to May 2022 is not a long enough time span and landscape
metrics may not have changed strongly enough. Therefore, changes
in the time series were not captured, and future studies could
lengthen the time span. Secondly, this study aimed to investigate
the effects of influencing factors on water quality and did not further
use these factors for water quality prediction. In future studies, we
will also combine remote sensing imagery and landscape metrics for
water quality prediction. Despite the limitations of our study, this
study used fine-grained land use maps as the basis for landscape
indicators. This is rare in previous studies and provides a new way of
thinking for future research. Our study used the SHAP method,
which can be combined with machine learning to enhance the
interpretability of the model and can be applied to more study areas.

Frontiers in Environmental Science frontiersin.org13

Zhou et al. 10.3389/fenvs.2025.1544078

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1544078


Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: https://szzdjc.cnemc.cn:8070/GJZ/Business/
Publish/Main.html.

Author contributions

YZ: Data curation, Funding acquisition, Resources,
Writing–review and editing. JH: Formal Analysis, Methodology,
Writing–original draft. LF: Supervision, Writing–review and
editing. BW: Software, Writing–review and editing. YC:
Supervision, Writing–review and editing. LM: Supervision,
Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This research
was funded by the Third Xinjiang Scientific Expedition Program
under Grant No. 2021xjkk1305, Key Laboratory of Land Satellite
Remote Sensing Application, Ministry of Natural Resources of the
People’s Republic of China under Grant No. KLSMNR-G202310,
the National Natural Science Foundation of China under Grant Nos
42071316, 41901292.

Acknowledgments

We thank the reviewers for their insights and constructive
comments to help improve the paper.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Ai, L., Shi, Z. H., Yin, W., and Huang, X. (2015). Spatial and seasonal patterns in
stream water contamination across mountainous watersheds: linkage with landscape
characteristics. J. Hydrology 523, 398–408. doi:10.1016/j.jhydrol.2015.01.082

Alakbar, T., and Burgan, H. I. (2024). Regional power duration curve model for
ungauged intermittent river basins. J. Water Clim. Change 15, 4596–4612. doi:10.2166/
wcc.2024.207

Basu, N. B., VAN Meter, K. J., Byrnes, D. K., VAN Cappellen, P., Brouwer, R.,
Jacobsen, B. H., et al. (2022). Managing nitrogen legacies to accelerate water quality
improvement. Nat. Geosci. 15, 97–105. doi:10.1038/s41561-021-00889-9

Caldwell, P. V., Martin, K. L., Vose, J. M., Baker, J. S., Warziniack, T. W., Costanza,
J. K., et al. (2023). Forested watersheds provide the highest water quality among all land
cover types, but the benefit of this ecosystem service depends on landscape context. Sci.
Total Environ. 882, 163550. doi:10.1016/j.scitotenv.2023.163550

Cheng, X., Song, J., and Yan, J. (2023). Influences of landscape pattern on water
quality at multiple scales in an agricultural basin of western China. Environ. Pollut. 319,
120986. doi:10.1016/j.envpol.2022.120986

Ding, J., Jiang, Y., Liu, Q., Hou, Z., Liao, J., Fu, L., et al. (2016). Influences of the land
use pattern on water quality in low-order streams of the Dongjiang River basin, China: a
multi-scale analysis. Sci. Total Environ. 551-552, 205–216. doi:10.1016/j.scitotenv.2016.
01.162

Donohue, I., Mcgarrigle, M. L., andMills, P. (2006). Linking catchment characteristics
and water chemistry with the ecological status of Irish rivers. Water Res. 40, 91–98.
doi:10.1016/j.watres.2005.10.027

Dou, J., Xia, R., Chen, Y., Chen, X., Cheng, B., Zhang, K., et al. (2022). Mixed spatial
scale effects of landscape structure on water quality in the Yellow River. J. Clean. Prod.
368, 133008. doi:10.1016/j.jclepro.2022.133008

Herzog, F., Lausch, A., Müller, E., Thulke, H.-H., Steinhardt, U. T. A., and Lehmann,
S. (2001). Landscape metrics for assessment of landscape destruction and rehabilitation.
Environ. Manag. 27, 91–107. doi:10.1007/s002670010136

Hoylman, Z. H., Jencso, K. G., Hu, J., Holden, Z. A., Martin, J. T., and Gardner, W. P.
(2019). The climatic water balance and topography control spatial patterns of
atmospheric demand, soil moisture, and shallow subsurface flow. Water Resour. Res.
55, 2370–2389. doi:10.1029/2018wr023302

Husk, B., Julian, P., Simon, D., Tromas, N., Phan, D., Painter, K., et al. (2024).
Improving water quality in a hypereutrophic lake and tributary through agricultural

nutrient mitigation: a Multi-year monitoring analysis. J. Environ. Manag. 354, 120411.
doi:10.1016/j.jenvman.2024.120411

Lausch, A., Selsam, P., Heege, T., VON Trentini, F., Almeroth, A., Borg, E., et al.
(2025). Monitoring and modelling landscape structure, land use intensity and landscape
change as drivers of water quality using remote sensing. Sci. Total Environ. 960, 178347.
doi:10.1016/j.scitotenv.2024.178347

Li, N. X., Xu, J. F., Yin, W., Chen, Q. Z., Wang, J., and Shi, Z. H. (2020). Effect of local
watershed landscapes on the nitrogen and phosphorus concentrations in the
waterbodies of reservoir bays. Sci. Total Environ. 716, 137132. doi:10.1016/j.
scitotenv.2020.137132

Li, F., Luo, Q., and Zhao, Y. (2023). Characterization and classification of river
network types. Water Resour. Manag. 37, 6219–6236. doi:10.1007/s11269-023-
03652-4

Li, K., Chi, G., Wang, L., Xie, Y., Wang, X., and Fan, Z. (2018). Identifying the critical
riparian buffer zone with the strongest linkage between landscape characteristics and
surface water quality. Ecol. Indic. 93, 741–752. doi:10.1016/j.ecolind.2018.05.030

Liu, R., Xu, F., Zhang, P., Yu, W., and Men, C. (2016). Identifying non-point source
critical source areas based on multi-factors at a basin scale with SWAT. J. Hydrology
533, 379–388. doi:10.1016/j.jhydrol.2015.12.024

Liu, S., Xu, J., Wang, R., Fu, X., Liu, X., Zhao, Y., et al. (2025). Investigating the causal
effects of anthropogenic factors on urban streams and lakes water quality by integrating
causal inference with interpretable machine learning. J. Clean. Prod. 488, 144626. doi:10.
1016/j.jclepro.2024.144626

Li, Y., Fang, L., Yuanzhu, W., Mi, W., Ji, L., Guixiang, Z., et al. (2022). Anthropogenic
activities accelerated the evolution of river trophic status. Ecol. Indic. 136, 108584.
doi:10.1016/j.ecolind.2022.108584

Lundberg, S. M., and Lee, S.-I. (2017). “A unified approach to interpreting model
predictions,” in Proceedings of the 31st international conference on neural information
processing systems.

Mainali, J., and Chang, H. (2018). Landscape and anthropogenic factors affecting
spatial patterns of water quality trends in a large river basin, South Korea. J. Hydrology
564, 26–40. doi:10.1016/j.jhydrol.2018.06.074

Mei, K., Shi, H., Wu, Y., Dahlgren, R. A., Ji, X., Yang, M., et al. (2025). Impact of
landscape patterns on river water quality: spatial-scale effects across an agricultural-
urban interface. Ecol. Indic. 170, 113019. doi:10.1016/j.ecolind.2024.113019

Frontiers in Environmental Science frontiersin.org14

Zhou et al. 10.3389/fenvs.2025.1544078

https://szzdjc.cnemc.cn:8070/GJZ/Business/Publish/Main.html
https://szzdjc.cnemc.cn:8070/GJZ/Business/Publish/Main.html
https://doi.org/10.1016/j.jhydrol.2015.01.082
https://doi.org/10.2166/wcc.2024.207
https://doi.org/10.2166/wcc.2024.207
https://doi.org/10.1038/s41561-021-00889-9
https://doi.org/10.1016/j.scitotenv.2023.163550
https://doi.org/10.1016/j.envpol.2022.120986
https://doi.org/10.1016/j.scitotenv.2016.01.162
https://doi.org/10.1016/j.scitotenv.2016.01.162
https://doi.org/10.1016/j.watres.2005.10.027
https://doi.org/10.1016/j.jclepro.2022.133008
https://doi.org/10.1007/s002670010136
https://doi.org/10.1029/2018wr023302
https://doi.org/10.1016/j.jenvman.2024.120411
https://doi.org/10.1016/j.scitotenv.2024.178347
https://doi.org/10.1016/j.scitotenv.2020.137132
https://doi.org/10.1016/j.scitotenv.2020.137132
https://doi.org/10.1007/s11269-023-03652-4
https://doi.org/10.1007/s11269-023-03652-4
https://doi.org/10.1016/j.ecolind.2018.05.030
https://doi.org/10.1016/j.jhydrol.2015.12.024
https://doi.org/10.1016/j.jclepro.2024.144626
https://doi.org/10.1016/j.jclepro.2024.144626
https://doi.org/10.1016/j.ecolind.2022.108584
https://doi.org/10.1016/j.jhydrol.2018.06.074
https://doi.org/10.1016/j.ecolind.2024.113019
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1544078


Mello, K. D., Valente, R. A., Randhir, T. O., Dos Santos, A. C. A., and Vettorazzi, C. A.
(2018). Effects of land use and land cover on water quality of low-order streams in
Southeastern Brazil: watershed versus riparian zone. Catena 167, 130–138. doi:10.1016/
j.catena.2018.04.027

Mitchell, M. G. E., Bennett, E. M., and Gonzalez, A. (2013). Linking landscape
connectivity and ecosystem service provision: current knowledge and research gaps.
Ecosystems 16, 894–908. doi:10.1007/s10021-013-9647-2

Naderian, D., Noori, R., Heggy, E., Bateni, S. M., Bhattarai, R., Nohegar, A., et al.
(2024). A water quality database for global lakes. Resour. Conservation Recycl. 202,
107401. doi:10.1016/j.resconrec.2023.107401

Nobre, R. L. G., Caliman, A., Cabral, C. R., AraúJO, F. D. C., GuéRIN, J., Dantas, F. D.
C. C., et al. (2020). Precipitation, landscape properties and land use interactively affect
water quality of tropical freshwaters. Sci. Total Environ. 716, 137044. doi:10.1016/j.
scitotenv.2020.137044

Ongley, E. D., Xiaolan, Z., and Tao, Y. (2010). Current status of agricultural and rural
non-point source Pollution assessment in China. Environ. Pollut. 158, 1159–1168.
doi:10.1016/j.envpol.2009.10.047

Peng, S., and Li, S. (2021). Scale relationship between landscape pattern and water
quality in different pollution source areas: a case study of the Fuxian Lake watershed,
China. Ecol. Indic. 121, 107136. doi:10.1016/j.ecolind.2020.107136

Qin, B., Zhou, J., Elser, J. J., Gardner, W. S., Deng, J., and Brookes, J. D. (2020). Water
depth underpins the relative roles and fates of nitrogen and phosphorus in lakes.
Environ. Sci. and Technol. 54, 3191–3198. doi:10.1021/acs.est.9b05858

Shen, Z., Qiu, J., Hong, Q., and Chen, L. (2014). Simulation of spatial and temporal
distributions of non-point source pollution load in the Three Gorges Reservoir Region.
Sci. Total Environ. 493, 138–146. doi:10.1016/j.scitotenv.2014.05.109

Shi, P., Zhang, Y., Li, Z., Li, P., and Xu, G. (2017). Influence of land use and land cover
patterns on seasonal water quality at multi-spatial scales. Catena 151, 182–190. doi:10.
1016/j.catena.2016.12.017

Shu, W., Wang, P., Xu, Q., Zeng, T., Ding, M., Zhang, H., et al. (2022). Coupled effects
of landscape structures and water chemistry on bacterioplankton communities at multi-
spatial scales. Sci. Total Environ. 811, 151350. doi:10.1016/j.scitotenv.2021.151350

Sun, X., Rosado, D., HöRMANN, G., Zhang, Z., Loose, L., Nambi, I., et al. (2023).
Assessment of seasonal and spatial water quality variation in a cascading lake system in
Chennai, India. Sci. Total Environ. 858, 159924. doi:10.1016/j.scitotenv.2022.159924

Wang, Y.-B., Junaid, M., Deng, J.-Y., Tang, Q.-P., Luo, L., Xie, Z.-Y., et al. (2024).
Effects of land-use patterns on seasonal water quality at multiple spatial scales in the
Jialing River, Chongqing, China. Catena 234, 107646. doi:10.1016/j.catena.2023.
107646

Wang, H., Xiong, X., Wang, K., Li, X., Hu, H., Li, Q., et al. (2023). The effects of land
use on water quality of alpine rivers: a case study in Qilian Mountain, China. Sci. Total
Environ. 875, 162696. doi:10.1016/j.scitotenv.2023.162696

Wang, K., Wang, P., Zhang, R., and Lin, Z. (2020). Determination of spatiotemporal
characteristics of agricultural non-point source pollution of river basins using the
dynamic time warping distance. J. Hydrology 583, 124303. doi:10.1016/j.jhydrol.2019.
124303

Wang, R., Kim, J.-H., and Li, M.-H. (2021). Predicting stream water quality under
different urban development pattern scenarios with an interpretable machine learning
approach. Sci. Total Environ. 761, 144057. doi:10.1016/j.scitotenv.2020.144057

Winston, R. J., Hunt, W. F., Osmond, D. L., Lord, W. G., and Woodward, M. (2011).
Field evaluation of four level spreader-vegetative filter strips to improve urban storm-
water quality. J. Irrigation Drainage Engineering-asce 137, 170–182. doi:10.1061/(asce)
ir.1943-4774.0000173

Wu, J., and Lu, J. (2021). Spatial scale effects of landscape metrics on stream water
quality and their seasonal changes. Water Res. 191, 116811. doi:10.1016/j.watres.2021.
116811

Xu, G., Li, P., Lu, K., Tantai, Z., Zhang, J., Ren, Z., et al. (2019). Seasonal changes in
water quality and its main influencing factors in the Dan River basin. Catena 173,
131–140. doi:10.1016/j.catena.2018.10.014

Xu, H., Tan, X., Liang, J., Cui, Y., and Gao, Q. (2022a). Impact of agricultural non-
point source pollution on river water quality: evidence from China. Front. Ecol. Evol. 10.
doi:10.3389/fevo.2022.858822

Xu, J., Bai, Y., You, H., Wang, X., Ma, Z., and Zhang, H. (2022b). Water quality
assessment and the influence of landscape metrics at multiple scales in Poyang Lake
basin. Ecol. Indic. 141, 109096. doi:10.1016/j.ecolind.2022.109096

Xu, M., Xu, G., Li, Z., Dang, Y., Li, Q., Min, Z., et al. (2023). Effects of comprehensive
landscape patterns on water quality and identification of key metrics thresholds causing
its abrupt changes. Environ. Pollut. 333, 122097. doi:10.1016/j.envpol.2023.122097

Xu, Q., Wang, P., Shu, W., Ding, M., and Zhang, H. (2021). Influence of landscape
structures on river water quality at multiple spatial scales: a case study of the Yuan river
watershed, China. Ecol. Indic. 121, 107226. doi:10.1016/j.ecolind.2020.107226

Zhang, S., Xia, C., Li, T., Wu, C., Deng, O., Zhong, Q., et al. (2016). Spatial variability
of soil nitrogen in a hilly valley: multiscale patterns and affecting factors. Sci. Total
Environ. 563-564, 10–18. doi:10.1016/j.scitotenv.2016.04.111

Zhang, X., Liu, L., Chen, X., Gao, Y., Xie, S., and Mi, J. (2021). GLC_FCS30: global
land-cover product with fine classification system at 30m using time-series Landsat
imagery. Earth Syst. Sci. Data 13, 2753–2776. doi:10.5194/essd-13-2753-2021

Zhang, X., Liu, Y., and Zhou, L. (2018). Correlation analysis between landscape
metrics and water quality under multiple scales. Int. J. Environ. Res. Public Health 15,
1606. doi:10.3390/ijerph15081606

Zhang, Y., Li, F., Zhang, Q., Li, J., and Liu, Q. (2014). Tracing nitrate pollution sources
and transformation in surface- and ground-waters using environmental isotopes. Sci.
Total Environ. 490, 213–222. doi:10.1016/j.scitotenv.2014.05.004

Zhang, Z., Huang, J., Duan, S., Huang, Y., Cai, J., and Bian, J. (2022). Use of
interpretable machine learning to identify the factors influencing the nonlinear linkage
between land use and river water quality in the Chesapeake Bay watershed. Ecol. Indic.
140, 108977. doi:10.1016/j.ecolind.2022.108977

Zhao,M., Zeng, C., Liu, Z., andWang, S. (2010). Effect of different land use/land cover
on karst hydrogeochemistry: a paired catchment study of Chenqi and Dengzhanhe,
Puding, Guizhou, SW China. J. Hydrology 388, 121–130. doi:10.1016/j.jhydrol.2010.
04.034

Zhou, P., Huang, J., Pontius, R. G., and Hong, H. (2016). New insight into the
correlations between land use and water quality in a coastal watershed of China: does
point source pollution weaken it? Sci. Total Environ. 543, 591–600. doi:10.1016/j.
scitotenv.2015.11.063

Zhou, Y., Xu, J. F., Yin, W., Ai, L., Fang, N. F., Tan, W. F., et al. (2017). Hydrological
and environmental controls of the stream nitrate concentration and flux in a small
agricultural watershed. J. Hydrology 545, 355–366. doi:10.1016/j.jhydrol.2016.12.015

Frontiers in Environmental Science frontiersin.org15

Zhou et al. 10.3389/fenvs.2025.1544078

https://doi.org/10.1016/j.catena.2018.04.027
https://doi.org/10.1016/j.catena.2018.04.027
https://doi.org/10.1007/s10021-013-9647-2
https://doi.org/10.1016/j.resconrec.2023.107401
https://doi.org/10.1016/j.scitotenv.2020.137044
https://doi.org/10.1016/j.scitotenv.2020.137044
https://doi.org/10.1016/j.envpol.2009.10.047
https://doi.org/10.1016/j.ecolind.2020.107136
https://doi.org/10.1021/acs.est.9b05858
https://doi.org/10.1016/j.scitotenv.2014.05.109
https://doi.org/10.1016/j.catena.2016.12.017
https://doi.org/10.1016/j.catena.2016.12.017
https://doi.org/10.1016/j.scitotenv.2021.151350
https://doi.org/10.1016/j.scitotenv.2022.159924
https://doi.org/10.1016/j.catena.2023.107646
https://doi.org/10.1016/j.catena.2023.107646
https://doi.org/10.1016/j.scitotenv.2023.162696
https://doi.org/10.1016/j.jhydrol.2019.124303
https://doi.org/10.1016/j.jhydrol.2019.124303
https://doi.org/10.1016/j.scitotenv.2020.144057
https://doi.org/10.1061/(asce)ir.1943-4774.0000173
https://doi.org/10.1061/(asce)ir.1943-4774.0000173
https://doi.org/10.1016/j.watres.2021.116811
https://doi.org/10.1016/j.watres.2021.116811
https://doi.org/10.1016/j.catena.2018.10.014
https://doi.org/10.3389/fevo.2022.858822
https://doi.org/10.1016/j.ecolind.2022.109096
https://doi.org/10.1016/j.envpol.2023.122097
https://doi.org/10.1016/j.ecolind.2020.107226
https://doi.org/10.1016/j.scitotenv.2016.04.111
https://doi.org/10.5194/essd-13-2753-2021
https://doi.org/10.3390/ijerph15081606
https://doi.org/10.1016/j.scitotenv.2014.05.004
https://doi.org/10.1016/j.ecolind.2022.108977
https://doi.org/10.1016/j.jhydrol.2010.04.034
https://doi.org/10.1016/j.jhydrol.2010.04.034
https://doi.org/10.1016/j.scitotenv.2015.11.063
https://doi.org/10.1016/j.scitotenv.2015.11.063
https://doi.org/10.1016/j.jhydrol.2016.12.015
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1544078

	Multiscale impacts of landscape metrics on water quality based on fine-grained land use maps
	1 Introduction
	2 Material and methods
	2.1 Study area
	2.2 Data collection and processing
	2.2.1 Water sampling and measurement
	2.2.2 Spatial scale groping
	2.2.3 Landscape metrics

	2.3 Analysis methods

	3 Results and discussion
	3.1 Spatial and seasonal variation of water quality
	3.2 Characteristics of landscape metrics
	3.3 Relationships between landscape metrics and water quality
	3.3.1 Influences of landscape metrics on water quality
	3.3.2 Relationships between landscape metrics and water quality

	3.4 Water quality in relation to landscape metrics
	3.5 Influence of seasonal and spatial scales on water quality
	3.6 Effects of basin area, river length and river network density on water quality

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


