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Machine learning (ML) models have proven to be an efficient technique for better
understanding and quantification of surface water quality, especially in
agricultural watersheds where considerable anthropogenic activities occur.
However, there is a lack of systematic investigations that can examine the
application of different ML regression models in agricultural settings to predict
the surface water quality using a group of input variables, including hydrological
(e.g., surface flow), meteorological (e.g., precipitation), and field (e.g., crop cover)
conditions. In this study, multiple ML regressionmodels, including support vector
machine (SVM) and regression trees (RT), were employed on a 2-year dataset
collected from a sand plain agricultural sub-watershed in southwestern Ontario,
Canada (i.e., Lower Whitemans Creek) to predict the nitrate and chloride
concentrations in surface water at nine sampling sites within the sub-
watershed. The prediction capabilities of these ML models were determined
using a group of evaluationmetrics including the coefficient of determination (R2)
and root-mean squared error (RMSE). In general, the Gaussian Process
Regression (GPR) model was the optimal algorithm to predict the nitrate and
chloride concentrations in surface water (R2 was 0.99 and 0.98 respectively for
training and testing). According to the results of a feature importance analysis, it
was found that the field conditions (specifically the location of sampling site (main
channel or tributary site) and crop cover) were the most crucial model input
variables for accurate predictions of the output variables. This study underscores
that ML regression models can be implemented to effectively quantify the water
quality properties of surface water in agricultural watersheds using easily
measurable parameters. These models can assist decision makers in
advancing successful actions and steps towards protecting the available
surface water resources.
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1 Introduction

Surface water bodies (e.g., rivers, lakes, and streams) act as
primary water resources for many communities, ecosystems, and
activities including agriculture, fishing, and recreation (Gorgoglione
et al., 2021). However, these systems are highly vulnerable to
contamination from multiple natural contributors, including soil
erosion, rock weathering, and decomposition of organic matter, and
anthropogenic sources such as industrial discharge, urban
stormwater, agricultural activities, and untreated wastewater
(Akhtar et al., 2021; Marshall et al., 2022; Rixon et al., 2024). In
addition, surface runoff from agricultural fields can elevate the
concentration of nutrients (i.e., nitrogen and phosphorus species)
in surface water due to the application of synthetic and manure-
based fertilizers (Ha et al., 2020; Liang et al., 2020). These nutrients
can degrade the surface water quality, leading to serious
environmental problems such as algal blooms, oxygen depletion
and eutrophication (Ahmed and Lin, 2021; Elsayed et al., 2021;
Elsayed et al., 2022a). Such degradation of surface water quality has
raised global concerns, leading to the establishment of national and
international agreements and policies that aim to safeguard the
available water resources. For example, the Canadian-U.S. Great
Lakes Water Quality Agreement and Canada-Ontario Agreement
on Great Lakes Water Quality and Ecosystem Health were issued to
highlight the importance of considering the role of nutrient
transport and dynamics on the water quality of the Great Lakes
(Environment and Climate Change Canada, 2017; Environment and
Climate Change Canada, 2021; Ministry of the
EnvironmentConservation and Parks, 2021). In general, the
obligations from different frameworks and policies are a crucial
component of sustainable water resources management and
environmental protection, emphasizing the importance of
continuous water quality monitoring in watersheds.

Nitrate (NO−
3 ) is frequently reported to be exported from

agricultural watersheds to surface water because it is highly
soluble and mobile in water (Gardner et al., 2020; Elsayed et al.,
2023a). Also, it can be easily leached from the soil matrix because it is
highly stable and cannot be combined with other pollutants in water
(Arabgol et al., 2016; Bedi et al., 2020). In addition, there are multiple
contributors of chloride (Cl−) in agricultural watersheds including
both natural (e.g., salts in rocks and soils, and atmospheric
deposition) and anthropogenic (e.g., road de-icing salts, and soil
fertilizers) sources. High Cl− levels in agricultural watersheds can
adversely affect plant health and soil quality, negatively impacting
agricultural yield and long-term soil productivity (Mackie et al.,
2022; Syeed et al., 2023). Moreover, elevated Cl− concentrations in
surface water can cause ecological imbalances in aquatic systems
such as osmotic stress, acute and chronic toxicity for aquatic
organisms (Castiblanco et al., 2023). Thus, NO−

3 and Cl−

concentrations serve as critical indicators for assessing the health
of surface water in agricultural watersheds, magnifying the necessity
of effective and continuous water quality monitoring of surface
water bodies.

Continuous monitoring of these surface water quality
parameters is crucial to effectively manage pollution sources and
prevent the disruption of biodiversity and surface water quality. By
collecting and maintaining advanced datasets on water quality
parameters (e.g., NO−

3 and Cl−), decision makers can implement

evidence-based policies and facilitate timely interventions to
safeguard water resources (Chow et al., 2020; Persaud et al.,
2023). However, conventional monitoring methods, especially in
agricultural watersheds, are often limited by multiple challenges
associated with sampling and logistical constraints (Bhattarai et al.,
2021). For example, regular sampling across large and diverse
regions is costly, time-consuming, and labor-intensive. In
addition, logistical constraints often limit access to certain areas,
especially during winter, heavy rainfall, and snowfall events,
resulting in spatial and temporal gaps in water quality datasets.
Most water quality parameters (e.g., nutrient and solid
concentrations) also require standard laboratory measurement
procedures to obtain the final concentrations which are costly,
resource-intensive, and time-consuming for obtaining continuous
time-series in agricultural watersheds. Such challenges and the need
for vigilant water quality management has led to increased attention
to innovative monitoring and predictive approaches aided by data-
driven techniques using machine learning (ML) models.

Recently, ML models have emerged as a powerful tool to tackle
the limitations of traditional surface water sampling and monitoring
methods (Pandey et al., 2023). ML regression models can offer a
scalable solution to predict water quality parameters using a variety
of environmental predictors, such as climatological and hydrological
conditions (Kim et al., 2021; Varadharajan et al., 2022). ML models
can also effectively compensate for the lack of comprehensive
sampling data and offer predictions that support realistic
decision-making by imitating complex patterns from historical
observations (Imani et al., 2021; Portuguez-Maurtua et al., 2022;
Wang X. et al., 2022). Unlike typical mechanistic models, ML
models can process extensive and complex datasets with diverse
parameters, allowing for high-resolution predictions across both
time and space (Elsayed et al., 2022b; Elsayed et al., 2023b). ML
models are particularly well adapted to agricultural watersheds
where contaminant concentrations are highly variable and
influenced by multiple environmental factors.

Previous studies applied different ML regression models (e.g.,
support vector machine and ensemble models) to predict general
surface water quality parameters such as ammoniacal nitrogen and
suspended solids concentration (Ahmed et al., 2019), total dissolved
solids (Shah et al., 2021), and Carlson’s Trophic State Index (i.e., a
reservoir water quality index) (Chou et al., 2018). However, few
studies reported ML investigations that focused on specific surface
water quality parameters, such as NO−

3 and Cl−, within the unique
context of agricultural watersheds under different meteorological,
hydrological, and field conditions. Limited studies have focused on
engaging ML regression models to describe and predict the water
quality conditions in different agricultural watersheds (Jung et al.,
2021; Wang S. et al., 2022). Other studies employed multiple ML
classification and regression models to quantify nutrient
concentrations in surface water in clay agricultural settings
(Elsayed et al., 2023b; Elsayed et al., 2024a). Few studies have
compared the ability of different individual ML regression
models to reproduce field datasets of NO−

3 and Cl−

concentrations from sand plain agricultural watersheds using a
range of environmental predictors (e.g., meteorological and field
conditions).

Furthermore, many of the previous studies predicted or
simulated only a single surface water quality parameter. For
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example, multiple ML regression models were employed to only
predict the water quality index (WQI) (Asadollah et al., 2021;
Kouadri et al., 2021; Khoi et al., 2022), concentration of
chlorophyll a (Chang et al., 2021), and total phosphorus (Qiao
et al., 2021). Other previous studies used only 1 ML algorithm to
predict water quality datasets without considering other potential
candidates of ML models for higher prediction accuracy. For
example, some previous employed the multiple linear regression
(MLR) (Ha et al., 2020; Qun’ou et al., 2021), artificial neural network
(ANN) (Imani et al., 2021; Gorgoglione et al., 2021; Balson and
Ward, 2022), self-organizing map (Yu et al., 2021), random forest
(Wang et al., 2021; Behrouz et al., 2022), and ensemble models
(Melesse et al., 2020; Zhang et al., 2022) to predict nutrient
concentrations in surface water. This reflects a major knowledge
gap about the applicability of different ML regression models and
further the selection of optimal models to predict multiple water
quality parameters based on systematic comparisons about the
performance of these models. Ultimately, limited studies have
explored the adaptability of ML models to seasonal and spatial
variability in contaminant levels, which is particularly pronounced
in agricultural landscapes.

The main objectives of this study are to: (1) examine the
interdependence and correlations between different process
parameters (e.g., meteorological conditions) and surface water
quality (i.e., nitrate-nitrogen (NO−

3 -N) and Cl− concentrations);
(2) compare the ability of different ML regression models to
predict NO−

3 -N and Cl− concentrations in surface water given a
group of input variables (e.g., field conditions); and (3) perform a
feature importance analysis on the model input variables to assess
their significance on the prediction accuracy of the optimal
ML models.

2 Study area and data collection

2.1 Site description

The available dataset was obtained from the Lower Whitemans
Creek study area (LWC) which is an agricultural sub-watershed in
southwestern Ontario, Canada (Figure 1). The sub-watershed is
located near Burford, Ontario in the lower portion of theWhitemans
Creek watershed (404 km2 with a stream order of 6.0). The
Whitemans Creek watershed is a tributary of the Grand River
watershed (6,700 km2) in southwestern Ontario. The LWC sub-
watershed has an approximate area of 63.5 km2, and it is dominated
by agricultural activities (73% of the total watershed area) including
pasture and forages. The main crops in the sub-watershed include
corn (36%), soybeans (17%), pasture/forages (15%), and winter
wheat (6%) (AAFC, 2023). It should be noted that these
percentages of crop cover are determined based on the total
watershed area. Elevations in LWC range between 254 and
360 m with an average slope of 3.4% over the entire sub-
watershed. The sub-watershed is considered the most water-
stressed region with the highest agricultural irrigation demand in
the entire Grand River watershed (Wong, 2011; Larocque et al.,
2019). The surficial geology is mainly comprised of gravel and sand
with limited silt to sandy silt areas in the southwest region. Further
details about the site description can be found in previous

investigations that intensively studied the sub-watershed (Osman,
2017; Larocque et al., 2019; Arce-Rodriguez, 2024; Zeuner
et al., 2025).

2.2 Dataset collection and description

In the current study, the available dataset was collected from five
main observation sites that are located along the main channel (S1 to
S5, S4 and S5 represents the sub-watershed inlet and outlet)
(Figure 1). Also, the dataset was gathered from four observation
sites (i.e., TF1 to TF4) that are located on tributaries (Figure 1). More
details about the sampling sites, such as distance to the watershed
outlet and geographic coordinates, are tabulated in Supplementary
Table S1. The sampling campaign extended fromOctober 2021 until
the end of December 2023 for the main channel observation sites
while the observation period of the tributary sampling sites ranged
from August 2022 until the end of December 2023. Surface water
was monitored monthly and sampled for water physico-chemical
and quality parameters at these nine observation sites. These water
physico-chemical parameters included the water temperature,
dissolved oxygen (DO), pH, electrical conductivity (EC), and
oxidation-reduction potential (ORP). The major surface water
quality parameters were also monitored including the NO−

3 -N
and Cl−. Daily precipitation was monitored at the Brantford
Airport Station that is close to the watershed outlet
(approximately 5 km) (ECCC, 2021). The land use and crop
cover were obtained from the actual agricultural activities during
the observation period within the sub-watershed (AAFC, 2023).

The physico-chemical water parameters (e.g., water temperature
and pH) were measured using a handheld multi-parameter
instrument (i.e., YSI ProPlus). The surface water samples were
collected from the center of the stream at a depth of
approximately 0.40 m below the water surface for quantifying the
water quality parameters. These water samples were gathered using
clean high density polyethylene bottles which were stored on ice and
then sent for analysis within a day of sampling. During the analysis
of water quality parameters, the samples were filtered using 0.45 µm
Fisherbrand Basix Syringe Filters then they were analyzed using a
Metrohm Eco IC Ion Chromatograph at the Morwick
G360 Groundwater Research Institute laboratory in the University
of Guelph. The detection range of NO−

3 -N was 0.01–100 mg NO−
3 -N/L

while themeasurement error/detection accuracy was ±0.1 mg NO−
3 -N/

L. For the Cl− measurements, the detection range and accuracy were
1–500 mg/L and ±1.0 mg/L, respectively. Precipitation was monitored
in the Brantford Airport Station, that is operated by the Environment
and Climate Change Canada -Meteorological Service of Canada, using
an OTT-Pluvio2 rain gauge that can measure both the rain- and snow-
fall depth and intensity with a detection range of 0.1–200 mm/day
and detection accuracy of ±0.2 mm (ECCC, 2021). The air
temperature and water levels were measured using FTS THS-3
and Sutron Accubar Bubbler pressure sensors, respectively. The
detection range varied between −50°C and 50°C for the air
temperature and 0–5 m for the water level. The detection
accuracy was ±0.1°C for the air temperature and ±0.5 cm for
the water level. More details about the data collection can be
obtained from other studies that investigated this sub-watershed
(Arce-Rodriguez, 2024; Zeuner et al., 2025).
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2.3 Hydrological and meteorological
conditions

During the observation period (i.e., 1 October 2021 to
31 December 2023), the average daily stream flow ranged from
0.35 to 39.5 m3/s where the average daily stream flow over the

observation period was 4.15 m3/s. The peaks of the stream flow were
corresponding to snow-melt events in the winter and/or early spring
over the entire observation period (Figure 2). For example, the
highest stream flow (i.e., 39.5 m3/s) was recorded in early spring of
2023 (i.e., the first week of April). Other peak stream flows were
observed in March 2022 and 2023, corresponding to snow-melt

FIGURE 1
The Lower Whitemans Creek (LWC) sub-watershed in southwestern Ontario (Canada) with the fivemain observation sites on themain water course
within the sub-watershed (i.e., S1 to S5) and four tributary observation sites (i.e., TF1 to TF4). The map shows the main river within the sub-catchment
(i.e., Whitemans Creek). The background map, spatial data, and crop use were adopted from OpenStreetMap and Agriculture and Agri-Food Canada
(AAFC) - Annual Crop Inventory (AAFC, 2023).
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events. In addition, the daily average stream flow was high during
the winter of 2022 and 2023 where it reached to approximately
16.3 m3/s in February 2023 (Figure 2). Over the observation period,
the total precipitation was 1763 mm while the average of the total
annual precipitation amount was approximately 785 mm. In
general, the total rainfall depth was the highest in the fall of
2021 with a total depth of 311.3 mm while the fall of 2022 was
the driest season over the observation period with a total rainfall
depth of 108.3 mm (Figure 2). The highest daily total rainfall depth
was recorded in the Summer of 2023 (i.e., July 2023) with a total
depth of 43.5 mm. Following to this rainfall event, the second
highest rainfall depths were 39.2 and 38.5 mm that were
measured in February 2022 and April 2023, respectively,
resulting in the highest stream flow records during the
observation period. The average daily air temperature ranged
between −17.6°C and 26.7°C over the observation period where
the minimum and maximum air temperatures were observed in
January and June 2022, respectively. In addition, there was no major
variability in the annual pattern of the air temperature (similar to the
sinusoidal wave) where the maximal and minimal air temperatures
were approximately 24 and -14°C during the summer and winter,
respectively (Figure 2).

2.4 Surface water quality parameters

In the current study, the selection and classification of the
measured water quality parameters followed established
environmental standards and guidelines such as those outlined
by the Canadian Water Quality Guidelines, the U.S.
Environmental Protection Agency, and the World Health
Organization. For example, the standard reference/acceptable
limit of NO−

3 -N concentration in surface water was marked at

2.95 mg NO−
3 -N/L according to the Canadian Water Quality

Guideline for the Protection of Aquatic Life (CWQGPAL) (Steele
and Veliz, 2007; Canadian Council of Ministers of the Environment,
2011; Canadian Council of Ministers of the Environment, 2012). For
the Cl− concentration in surface water, the standard reference was
selected based on the guidelines determined by the Canadian
Council of Ministers of the Environment (CCME) (CCME,
2011). According to the CCME, the aesthetic guidelines for
drinking water was chosen to be 250 mg/L which was
determined based on numerous considerations towards human
health, Cl− taste thresholds, and the corrosion possibilities of the
drinking water distribution networks and systems (Health Canada,
1987). The guidelines for the Cl− concentration in surface water
were then revised to consider the protection of freshwater aquatic
life, setting guidelines of 120 mg/L and 640 mg/L for chronic (short-
term) and acute (long-term) toxicological effects, respectively
(Health Canada, 1999; CCME, 2011). In general, these
environmental standards and guidelines define the acceptable
limits for water quality parameters in surface water and
groundwater systems.

NO−
3 -N concentration in surface water at the five main

observation locations along the main water course (i.e., S1 to S5)
ranged from 1.10 to 6.05 mg NO−

3 -N/L with an average of 3.78 mg
NO−

3 -N/L (Figure 3a). These observations are consistent with the
NO−

3 -N concentrations reported in other sand and silt plain
agricultural watersheds (Tian et al., 2016; Sigler et al., 2018;
Stelzer and Scott, 2018; Richards et al., 2021; Wang X. et al.,
2022). However, they are relatively lower than the reported
NO−

3 -N concentrations in surface water in a clay agricultural
watershed in southern Ontario (Rixon et al., 2020; Mackie et al.,
2021; May et al., 2023). This is mainly because clay soils have lower
soil permeability, leading to slow water infiltration rate into the soil
which increases the surface runoff that carry NO−

3 -N from fertilizers

FIGURE 2
Daily average stream flow, total precipitation, and average air temperature during the observation period (1 October 2021 – 31 December 2023).
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directly into surface water, leading to higher NO−
3 -N concentrations

in surface water. In addition, tile drains, that are common in clay
agricultural watersheds, represent a major source of NO−

3 -N
transport into surface water (Rixon et al., 2020; May et al., 2023).

Moreover, the average NO−
3 -N concentration in surface water in

the sub-watershed (i.e., 3.78 mg NO−
3 -N/L) is greater than the

CWQGPAL limit (i.e., 2.95 mg NO−
3 -N/L) (Canadian Council of

Ministers of the Environment, 2011; Canadian Council of Ministers
of the Environment, 2012), emphasizing a considerable level of
contamination in the surface water within LWC (Figure 3a). The
NO−

3 -N concentrations in surface water at the five observation sites
were consistent where the peak concentrations took place in
November and December 2021 March 2022 as well as January,
March, and December 2023, following snow-melt events during
winter and early spring. Also, one NO−

3 -N concentration peak was
observed in June 2023 following a rainfall and runoff event during
the summer (Figure 3a). Such snow-melt and rainfall events are
governing controllers on NO−

3 -N transport because it is highly
mobile and dissolvable in water where it can be rapidly
transported from the soil matrix to the main water course with

high surface runoff conditions. These observations are comparable
with the main outcomes of previous NO−

3 -N transport investigations
in agricultural watersheds (Miller et al., 2015; Singh and Craswell,
2021; D’Haene et al., 2022; Yang et al., 2024).

Cl− concentration in the surface water at the five observation
sites on the main channel varied from 21.25 to 59.76 mg/L with an
average of 38.40 mg/L (Figure 3b). These Cl− concentrations are
comparable with those concentrations reported specifically in
Ontario, Canada, and generally across North America (Steele and
Aitkenhead-Peterson, 2011; Stets et al., 2018; Sorichetti et al., 2022;
Castiblanco et al., 2023). In addition, the range of the Cl−

concentration in the LWC sub-watershed is below the limits of
the aesthetic guidelines for drinking water (i.e., 250 mg/L) and both
the short- and long-term guidelines for aquatic life (i.e., 120 and
640 mg/L, respectively). For the five observation locations along the
main channel, the Cl− concentrations were consistent where the
peak concentrations were observed in January, March, and
December 2023 when snow-melt events during winter and early
spring took place (Figure 3b). These high concentrations of Cl− are
probably linked to the winter since the application of road salt is

FIGURE 3
Surface water quality parameters at the five main observation sites (i.e., from S1 to S5) over the observation period (1 October 2021–31 December
2023): (a) NO−

3-N, and (b) Cl− concentrations. Water quality datasets were collected by Arce-Rodriguez, 2024; Zeuner et al., 2025.
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commonly used in the sub-watershed during the snowfall events. In
addition, salts from applying synthetic and manure-based fertilizers
can contribute to the high Cl− concentrations in surface water in the
sub-watershed (David et al., 2016; Merchán et al., 2018; Park et al.,
2018). These observations are generally consistent with the main
observations of previous studies pertaining to Cl− transport in
stream water in different watersheds (Mullaney et al., 2009;
Perera et al., 2013; Granato et al., 2015). This is also compatible
with the fact that road salt is considered the main source of Cl−

transport in different watersheds in north America especially the
Great Lakes Basin (Chapra et al., 2009; Oswald et al., 2019; Mackie
et al., 2022). Further observations about the NO−

3 -N and Cl−

concentrations in surface water at the tributary observation sites
be found in the Supplementary Material Section
(Supplementary Figure S1).

3 Methods

3.1 Machine learning (ML) regression models

In the current study, 8 ML regression algorithms were trained
and tested to predict the NO−

3 -N and Cl− concentrations in surface
water in the sub-watershed using a group of input variables
including meteorological, hydrological, field, and water physico-
chemical parameters. These ML algorithms were the linear
regression (LR) (Chou et al., 2018; El Bilali and Taleb, 2020),
regression trees (RT) (Kuzmanovski et al., 2015; Qun’ou et al.,
2021), support vector machine (SVM) (Cervantes et al., 2020; Xu
et al., 2020), artificial neural network (ANN) (Hafeez et al., 2019;
Kim et al., 2021), Gaussian process regression (GPR) (Richardson
et al., 2017; Daemi et al., 2019), ensemble bagged trees (Zhang et al.,
2022), ensemble boosted trees (Melesse et al., 2020), and random
forest (Zhou et al., 2019) models. These models were selected
because they are commonly used in the literature with a
demonstrated history of accurate prediction capabilities and
robust performance especially for small-sized datasets (Ashari
et al., 2013; Aggarwal, 2016; Gondia et al., 2022). Each model
relies on specific methodologies to predict the output variables
where the suitability of each model depends mainly on the
nature of the dataset and the possible detection of the interplay
relationships between the model input and output variables. The
main methodologies, applicability, advantages, and limitations of
the employed ML regression models are briefly explained in the
Supplementary Material Section.

3.2 Evaluation metrics of ML
regression models

Five different evaluation metrics were applied to assess the
performance of the 8 ML regression models in predicting the
NO−

3 -N and Cl− concentration in surface water within the LWC
sub-watershed. These evaluation metrics are the coefficient of
determination (R2) (Equation 1), root mean squared error
(RMSE) (Equation 2), mean absolute error (MAE) (Equation 3),
mean absolute percentage error (MAPE) (Equation 4), and variance
of errors (σ2) (Equation 5). These evaluationmetrics were chosen for

measuring the performance of the predictive models as they are
commonly employed in previous ML regression studies (Kovacs
et al., 2022; Sajib et al., 2023; Sajib et al., 2024). Further details about
the definition and rational behind these evaluation metrics can be
found in the Supplementary Material Section.

R2 � ∑n
i�1 Yi − �Y( ) Ŷi − ~Y( )�����������∑n

i�1 Yi − �Y( )2√ ������������∑n
i�1 Ŷi − ~Y( )2√⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦2 (1)

RMSE �
������������∑n

i�1 Yi − Ŷi( )2
n

√
(2)

MAE � ∑n
i�1 Yi − Ŷi

∣∣∣∣ ∣∣∣∣
n

(3)

MAPE � 1
n
∑n

i�1
Yi − Ŷi

Yi

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ (4)

σ2 � 1
n
∑n

i�1 ei − �e( )2 (5)

Where: Yi = observed (actual) output variable, Ŷi = predicted
(modelled) output variable, �Y = mean of the observed values of the
output variable, ~Y = mean of the predicted values of the output
variable, ei = error (difference between observed and predicted
output variable), �e = average error between observed and
predicted output, and n = total number of observations.

3.3 Data analysis and pre-processing

In the current study, 200 observations were obtained from the
main channel and tributary observation sites. Some of these
observations were eliminated from the dataset because some
parameters, such as water physico-chemical parameters, were not
measured within these observations. Additional data pre-processing
was applied on the observations to statistically remove the outliers of
the model variables by employing the box and whiskers method
through developing a box plot for each of the ML regression model
input and output variables at the main channel (Figure 4a) and
tributary (Figure 4b) observation sites. There were 121 remaining
observations from the main channel and 40 remaining observations
for the tributary sites. The total number of observations
(161 observations) is of the same order of magnitude with those
reported in other studies, ranging from 40 to 300 data points (Najah
Ahmed et al., 2019; Bedi et al., 2020; Elsayed et al., 2023b; Sakizadeh
et al., 2024; Subbarayan et al., 2024).

The parameters of the available dataset were divided into four
categories based on their relevancy and application in the ML
regression models (Table 1). The first category includes the
hydrological and meteorological conditions such as the daily flow
rate and the daily precipitation on the day prior to the sampling. The
second category contains field conditions such as the location of
sampling sites (main channel or tributary) and the crop cover with a
percentage of the three primary crops (i.e., corn, soybeans, and
pasture) in the sub-watershed. The third category consists of field
measured physico-chemical parameters including the water
temperature, pH, DO, EC, and ORP. These three categories
represented the input variables (i.e., features) of the ML
regression models. These categories can enhance the ML model
performance and predictive accuracy by accounting for

Frontiers in Environmental Science frontiersin.org07

Elsayed et al. 10.3389/fenvs.2025.1543852

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1543852


hydrological, meteorological, and physico-chemical interactions
influencing surface water quality. The fourth category involves
the surface water quality parameters including NO−

3 -N and Cl−

concentrations. In the current study, nitrate concentration
represents nitrate-nitrogen (NO−

3 -N) concentration in mg
NO−

3 -N/L. The fourth category was chosen to be the model
output variables to describe the most important and prevalent
parameters that can reflect the surface water quality in the sub-
watershed. NO−

3 -N and Cl− are key indicators of agricultural and
anthropogenic influences on surface water quality. NO−

3 -N is a
major contaminant associated with agricultural runoff and
groundwater contamination while Cl− serves as a conservative
tracer to reflect the natural sources (e.g., atmospheric deposition
and salts in rocks and soils) and anthropogenic activities such as
application of soil fertilizers and road salts.

The total number of model variables used for the application of
ML regression algorithms was 13 variables which is comparable with
those reported in previous ML regression studies (between10 and
20 variables) (Knoll et al., 2019; Chang et al., 2021; Mosavi et al.,
2021; Wang et al., 2021; Wells et al., 2021; Elsayed et al., 2022b).
Here, the selected features are those listed in Table 1, including
meteorological and hydrological, field, physico-chemical parameters
as input variables, and water quality parameters as output variables.
The observation period covered more than 2 years of monthly and
event-based sampling where the temporal and spatial variations in
the model features were measured. The sampling campaigns covered
three successive non-growing and two successive growing seasons
(from October 2021 to December 2023). This observation period is
comparable with those reported in other ML investigations (Wagh
et al., 2018; Islam et al., 2021; Perović et al., 2021; Yang et al., 2021).

FIGURE 4
Box plot diagram for the surface water parameters using box and whisker approach for the: (a)main channel and (b) tributary sampling sites. * The
units of surface water parameters are °C for temperature, mg/L for DO, m3/s for daily surface flow, mm for 24-h precipitation, mg NO−

3-N/L for NO−
3-N

concentration, mg/L for Cl− concentration, μS/cm for EC, and mV for ORP.
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The minimum (XMin .), maximum(XMax .), average (mean) ( �X),
standard deviation (σ), coefficient of variation (CV) and coefficient
of skewness (CS) were estimated for the model input and output
variables (Table 2). Based on the statistical analysis, the highest
coefficients of variation and skewness were corresponding to the
daily average stream flow (188.1 and 3.63) and 24-h precipitation
before sampling time (163.8 and 1.94), respectively. This is mainly
due to the high variability in the meteorological and hydrological
conditions in the LWC sub-watershed. Such variability was observed
in other previous studies that investigated the hydrological response
of watersheds in the Great Lakes Basin (Elsayed et al., 2023a; Elsayed
et al., 2024a).

3.4 Modeling approach

Additional analysis was performed on some of the model input
variables to prepare these features for the ML modeling. For
example, the 24-h total precipitation prior to the sampling time

was assumed to be uniform across the sampling locations (i.e., S1 to
S5 and TF1 to TF4) within the sub-watershed for each observation.
This assumption is based on the observations and local knowledge of
the sub-watershed, which indicated no reported variations in
snowfall or rainfall events that could disrupt the uniformity of
precipitation across the nine observation locations. In addition,
LWC is considered a small-sized catchment with minimal spatial
variability in the meteorological conditions including the total
precipitation. The stream flow rate at the observation sites was
estimated using the watershed area ratio method (Gianfagna et al.,
2015) since there was a lack of stage data at these observations
locations which hindered the determination of surface flow rate by
standard stage and rating curve techniques.

One of the key concerns in hydrological and water quality
modeling is the potential collinearity between input variables
which can lead to redundancy and affect the model performance.
In particular, precipitation and stream flow are often correlated as
precipitation serves since a primary driver of stream flow. However,
in the current study, both variables were retained in the application

TABLE 1 Description of the main categories and parameters within the available dataset.

Category definition Input/output
variables

Main parameters in the group Data sources

Hydrological and
meteorological conditions

Input variables • Average daily surface flow
• 24-h precipitation prior to the sampling
time

Weather station (i.e., Brantford Airport) and Environment
Canada

ECCC (2021)

Field conditions Input variables • Location of sampling site (i.e., main
channel or tributary site)

• Crop cover
o Corn
o Soybeans
o Pasture

Field observations and remote sensing (i.e., Agriculture and Agri-
Food Canada -Annual Crop Inventory)

AAFC (2023)

Physico-chemical water
parameters

Input variables • Temperature
• pH
• Dissolved oxygen
• Oxidation-reduction potential
• Electrical conductivity

On-site field measurements

Water quality parameters Output variables • Nitrate-nitrogen concentration in surface
water

• Chloride concentration in surface water

Field sampling and laboratory analysis

TABLE 2 Main statistical parameters of the model input and output variables.

Parameter (Unit) XMin . XMax .
�X σ CV (%) CS

DO (mg/L) 7.7 21.7 13.3 3.0 22.7 0.56

Temperature (°C) 0 22.5 9.0 6.5 72.9 0.56

EC (μS/cm) 281 1,464 540 159 29.4 1.58

ORP (mV) −173 166 40.2 68.9 151.3 −0.98

pH (−) 7.03 8.69 8.01 0.29 3.6 −0.36

Daily average surface flow (m3/s) 0.017 27.7 2.6 4.9 188.1 3.63

24-h precipitation (mm) 0 21.2 3.7 6.0 163.8 1.94

Nitrate-nitrogen (mg NO−
3 -N/L) 0.85 7.8 4.1 1.6 39.1 −0.18

Chloride (mg/L) 21.2 87.5 45.4 15.3 33.8 0.81

* XMin . : Minimum, XMax . : Maximum, �X: Average, σ: Standard deviation, CV : Coefficient of variation, and CS : coefficient of skewness.
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of ML models because they capture distinct hydrological processes
that contribute to water quality variability. Precipitation represents
direct meteorological inputs while stream flow integrates multiple
watershed responses, including antecedent soil moisture conditions,
groundwater contributions, land use impacts, snow-melt events, and
flow routing processes. Excluding stream flow from candidate model
input variables can disregard its role as an aggregated hydrological
response to various environmental drivers. In addition, most ML
models (e.g., tree- and kernel-based models) are inherently more
robust against multi-collinearity compared to simple MLmodels. By
keeping both precipitation and stream flow in the analysis, it is
ensured that ML models can learn from the full spectrum of
hydrological variability, improving their predictive accuracy for
the output variables.

For the crop cover, it was assumed to be uniform at all the
sampling sites for each growing season, since the agricultural fields
dominate the sub-watershed (approximately 73%) with similar crop
patterns and distributions. For example, all sampling sites had a crop
cover of 38, 37, and 11% for the soybeans, corn, and pasture,
respectively, during the growing season of 2022 (i.e., from May
to September 2022). For the growing season of 2023, the crop cover
changed for all sampling locations to be 36, 17, and 15% for corn,
soybeans, and pasture, respectively. During the non-growing
seasons, the crop cover and percentage of each crop within the
sub-watershed was considered to be zero where there were no
agricultural activities in LWC during this period.

The previously mentioned model input variables, in Table 1,
were employed to train the ML regression models to predict the
output variables. The available dataset was divided into two sets
where 70% and 30% of the dataset were used for the training and
testing processes, respectively. Training process is used to familiarize
the ML regression models with the input and output variables while
considering the interplay between these model variables which
assists in increasing the robustness of the ML regression models.
Testing process is applied to determine the prediction accuracy of
the ML model to estimate the output variables given new set of
input variables.

Each ML regression model was used to predict a single output
variable at a time (i.e., separate models for predicting NO−

3 -N and
Cl− concentrations), considering the previously mentioned inputs
variables in Table 1. For each ML regression model, the effect of the
model hyper parameters was assessed to obtain the highest model
prediction accuracy for each output variable. For example, the
learner parameters, number of neurons, hidden layers, ensemble
parameters were changed for the models to achieve the maximum
model prediction capabilities expressed by the optimal evaluation
metrics including R2 and error indicators (e.g., RMSE and MAPE).

The main criteria of selecting the major research points relied on
including a variety of input variables related to hydrological,
meteorological, field conditions beside the physico-chemical
water parameters to predict the NO−

3 -N and Cl− concentrations
in surface water. The model input variables were chosen to be easily
measured and quantified with minimal effort and time. In addition,
the sampling locations were selected to capture the hydrological
responses and nutrient dynamics in both the main and tributary
sites, evaluating the spatial variability of nitrate and Cl−

concentrations in surface water. These sampling locations were
also chosen to examine the changes in NO−

3 -N and Cl−

concentrations along the flow path in surface water, considering
potential pollutant accumulation or dilution effects. Moreover, the
observation period was more than 2 years with monthly sampling to
identify the temporal variation of water quality parameters during
the growing and non-growing seasons within the sub-watershed. For
themodel output variables, NO−

3 -N and Cl− were chosen due to their
strong correlations with hydrological and field parameters while
other water quality parameters (e.g., organic matter and microbial
contamination) may not exhibit similar relationships with the
selected input variables such as crop cover and management
practices. Non-linear interactions and complex biogeochemical
processes may require alternative modeling strategies beyond
regression-based ML such as deep learning techniques and/or
hybrid models (i.e., combination of process-based and data-
driven models). In general, the selection of the model inputs and
outputs was determined based on a combination of hydrological,
geographical, and physico-chemical factors to ensure a
comprehensive assessment of NO−

3 -N and Cl− concentrations
across the sub-watershed.

3.5 Interdependence analysis

An interdependence analysis was performed by developing a
correlation matrix between the model input and output variables to
examine the degree of linearity and strength in relationships
between the model variables. The correlation matrix, or
correlation plot, serves as a key tool for identifying the
relationships between different pairs of the model variables.
Interdependence analysis is essential in complex processes, such
as NO−

3 -N and Cl− transport to surface water, because the behaviour
of each process parameter might be influenced by other parameters.
In general, interdependence and correlation analyses aid in
understanding the underlying mechanisms and relationships
within the contaminant transport process and determining the
crucial factors of the process which can enhance the prediction
accuracy of ML models by eliminating the redundant variables. In
these analyses, a high positive correlation between two model
variables indicates a strong direct relationship, meaning that as
one variable increases, the other also increases, and the reverse is
correct when they decrease. On the other hand, a negative
correlation reflects an inverse relationship, where a decrease in
one variable is associated with an increase in the other. The
interpretation of the correlation strength was determined based
on commonly accepted limits and ranges in previous studies (Evans,
1996; Mukaka, 2012). Weak correlation can be defined when the
correlation coefficient between a pair of model variables is less than
0.39. For moderate correlation, the correlation coefficient is ranged
between 0.40 and 0.59 while strong correlation can be found when
the correlation coefficient is greater than 0.60.

In the current study, the interdependence analysis was
separately carried out on the main channel and tributary
observation sites. In other words, the interdependence between
the model variables was determined for each group of sites to
examine the possible correlations between the process variables at
different sampling locations. Thus, the process variables from the
five main observation sites along the main water course (i.e., S1 to
S5) were investigated to determine the potential correlation among
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these variables within the LWC sub-watershed. In another
interdependence analysis, the process variables from the four
tributary sites (i.e., TF1 to TF4) were examined and used for
quantifying their possible correlations. For the interdependence
and correlation analyses, the Pearson correlation coefficient was
used to evaluate the strength and direction of the relationships
between themodel input and output variables. Pearson correlation is
suitable for dealing with the water quality datasets that often exhibit
linear relationships with other parameters such as hydrological and
meteorological conditions. In addition, it was successfully adopted
in multiple nutrient transport studies in the literature (Wagh et al.,
2018; Elsayed et al., 2023b; Sajib et al., 2024). It is also commonly
used for decision-making and water resources management because
of its straightforward interpretation and practical applications (Sajib
et al., 2023; Elsayed et al., 2024b; Uddin et al., 2024). In comparison
to other correlation approaches (e.g., Spearman correlation),
Pearson correlation can provide valuable insights about the
magnitude of linear dependence between the model variables.

3.6 Feature importance analysis

In the current study, all candidate model input variables were
initially included in the ML models, followed by a feature
importance analysis (i.e., interpretability analysis) for these
variables to assess their significance on the prediction accuracy of
NO−

3 -N and Cl− in surface water using the optimal ML regression

model. This approach can provide a more objective and
comprehensive assessment of input variable contributions rather
than relying solely on feature pre-selection based on prior
assumptions (Knoll et al., 2019; Islam et al., 2021). Although
some regression-based studies employ manual or stepwise
selection methods before developing models, these methods can
be sometimes subjective and biased. Also, such methods lack the
consideration of the hidden patterns and nonlinear interactions
among the environmental variables that can be unique to each
dataset and watershed system. By first including a broad set of
hydrological, meteorological, and field parameters, the ML models
were exposed to all potential explanatory factors. Then, the
subsequent feature importance analysis can aid in systematically
ranking the input variables based on their predictive power, refining
the model’s input selection (Wheeler et al., 2015; Harrison et al.,
2021). This method enhances the interpretability of ML models and
provides valuable insights into key drivers of water quality, which
can be utilized in future monitoring and management strategies by
stakeholders and decision makers (Messier et al., 2019).

This analysis was initially performed by omitting one input
variable at a time to measure the influence of each input variable on
the prediction accuracy of the optimal ML regression model
(Table 3). These analyses were represented by scenarios from
#1 to #9 in Table 3. Then, each group of input variables
(i.e., hydrological and meteorological conditions, water physico-
chemical parameters, field conditions) was removed to assess the
impact of this group on the performance of the optimal ML

TABLE 3 The proposed feature importance scenarios using the optimal regression model and their corresponding model input variables.

Scenario ID Model input variables (Features)
Base scenario Temperature, DO, EC, pH, ORP, surface flow, 24-h precipitation, location of sampling site (main or

tributary), crop cover

Scenario 1 DO, EC, pH, ORP, surface flow, 24-h precipitation, location of sampling site (main or tributary), crop
cover

Scenario 2 Temperature, EC, pH, ORP, surface flow, 24-h precipitation, location of sampling site (main or tributary),
crop cover

Scenario 3 Temperature, DO, pH, ORP, surface flow, 24-h precipitation, location of sampling site (main or tributary),
crop cover

Scenario 4 Temperature, DO, EC, ORP, surface flow, 24-h precipitation, location of sampling site (main or tributary),
crop cover

Scenario 5 Temperature, DO, EC, pH, surface flow, 24-h precipitation, location of sampling site (main or tributary),
crop cover

Scenario 6 Temperature, DO, EC, pH, ORP, 24-h precipitation, location of sampling site (main or tributary), crop
cover

Scenario 7 Temperature, DO, EC, pH, ORP, surface flow, location of sampling site (main or tributary), crop cover

Scenario 8 Temperature, DO, EC, pH, ORP, surface flow, 24-h precipitation, crop cover

Scenario 9 Temperature, DO, EC, pH, ORP, surface flow, 24-h precipitation, location of sampling site (main or
tributary)

Scenario 10 Surface flow, 24-h precipitation, location of sampling site (main or tributary), crop cover

Scenario 11 Temperature, DO, EC, pH, ORP, location of sampling site (main or tributary), crop cover

Scenario 12 Temperature, DO, EC, pH, ORP, surface flow, 24-h precipitation

DO: Dissolved oxygen.

EC: Electrical conductivity.

ORP: Oxidation-reduction potential.
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regression models in predicting the output variables (Tables 1, 3).
This group of simulations were referred as scenarios from #10 to #12
(Table 3). The feature importance analysis can generally assist in
determining the governing factors on the accuracy of model
predictions, recommending the superiority of specific input
variables within the NO−

3 -N and Cl− transport processes.
Ultimately, the individual methodological steps of developing

and validating the appliedMLmodels for predicting NO−
3 -N and Cl−

concentrations in surface water were described in a Figure 5. These
steps included the dataset collection and pre-processing,
identification of model parameters, correlation analysis, model
selection, training, validation, and interpretation as well as the
feature importance analysis. The details associated with each
methodological step are highlighted in Figure 5.

4 Results and discussion

4.1 Interdependence analysis

For the five main observation sites along the main channel, there
was no strong correlation between the Cl− concentration in surface
water and the model input variables including the meteorological,
hydrological, water physico-chemical, and field conditions
(Figure 6). The range of correlation coefficients between
measured Cl− concentration and model input variables
was −0.42 to 0.22, indicating low interdependence between the
Cl− concentration and the meteorological, hydrological, and field

conditions in the LWC sub-watershed. This finding is comparable to
the main outcomes of previous Cl− studies where it was found that
the pathways of Cl− transport was controlled by anthropogenic
drivers (e.g., road salt application) rather than meteorological
variables and field conditions (Kaushal et al., 2005; Perera et al.,
2013; Overbo et al., 2021). For example, some previous studies
demonstrated that the degree of urbanization, ubiquity of septic
systems in the watershed, presence of wastewater treatment facilities
and land use type are the governing factors on the Cl− concentration
in surface water (Betts et al., 2015; Lax et al., 2017; Overbo
et al., 2021).

Similarly to Cl− concentrations, NO−
3 -N concentrations at the

five main channel observation sites were also not strongly correlated
with the model input variables (Figure 6). The correlation coefficient
between the NO−

3 -N concentration in surface water and other model
input variables ranged from −0.32 to 0.38, indicating weak
interdependence between NO−

3 -N concentration and these
features. This observation is consistent with the outcomes of
previous NO−

3 -N transport investigations where it was
demonstrated that there were no clear relationships between
NO−

3 -N concentrations in surface water and meteorological
conditions, hydrological conditions, and field parameters (Wagh
et al., 2018; Gorgoglione et al., 2021; Perović et al., 2021; Elsayed
et al., 2023b; Elsayed et al., 2024a). However, some previous studies
emphasized that the NO−

3 -N concentration in surface water is highly
affected by the timing and amount of fertilizer application in
agricultural fields (Rixon et al., 2020; Mackie et al., 2021; Singh
and Craswell, 2021; D’Haene et al., 2022; Yang et al., 2024). In

FIGURE 5
A flowchart for the individual methodological steps of applying the ML models.
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addition, the interplay between the different model variables and
NO−

3 -N concentration in surface water might not be easily captured
by the correlation matrix because these relationships are not strictly
linear nor involve high interactions between the model variables. In
other words, the relationships between the model variables are
highly non-linear with multi-variable interactions.

For the model input variables, there was a strong positive
correlation between the crop cover (i.e., percentage of the three
primary crops in the sub-watershed) and surface water temperature
with a correlation coefficient of approximately 0.82 (Figure 6). This
is because the growing season in the LWC sub-watershed takes place
mainly during the summer (i.e., starting from May to September)
where the water temperature is relatively high. This observation is
consistent with the outcomes from other studies that analyzed the
interdependence between process variables in agricultural
watersheds (Elsayed et al., 2023a; Elsayed et al., 2024a). Also, the
24-h precipitation prior to sampling time had a strong positive
correlation (0.61) with the average surface flow because of the
influence of rainfall and snowfall events on increasing the stream
flow rate (Figure 2). In addition, the surface water temperature was
inversely correlated with the surface water DO (−0.60) and directly
correlated with EC (0.58). Ultimately, there were no strong
correlations between the rest of the model input variables for
which the correlation coefficients ranged from −0.44 to 0.46.

In general, there were no strong correlations between the model
output variables, especially the NO−

3 -N concentration in surface
water, and the model inputs as well as between the model inputs
themselves, including the hydrological and meteorological
conditions, and the field conditions. These unclear relationships

between the model variables magnifies the importance of
introducing ML regression models to describe the multi-
dimensional interdependence between the process variables
which enhance the understanding of the NO−

3 -N and Cl−

transport processes.

4.2 ML regression models and the
optimal models

Gaussian process regression (GPR) was found to be the optimal
ML regression model to predict the NO−

3 -N concentration in surface
water (Table 4; Figures 7a, b). The evaluation metrics of the GPR
model were 0.99 for R2, 0.30 mg NO−

3 -N/L for RMSE, 0.08 mg
NO−

3 -N/L for σ2, 0.21 mg NO−
3 -N/L for MAE, and 7.8% for MAPE

during the training process. As for typical ML regression models, the
model performance slightly decreased during the testing process
where the evaluation metrics became 0.96 for R2, 0.83 mg NO−

3 -N/L
for RMSE, 0.68 mg NO−

3 -N/L for σ2, 0.60 mg NO−
3 -N/L for MAE,

and 17.1% for MAPE, albeit with an acceptable model prediction
accuracy. The performance of the GPR model is comparable with
the findings of other previousML studies where R2 ≥ 0.9 andMAPE
≤ 20% reflected high prediction accuracy and robustness in the
model performance (Bedi et al., 2020; Yang et al., 2021; Kovacs et al.,
2022; Elsayed et al., 2024b).

The ensemble boosted trees and random forest models yielded
high prediction accuracy for the NO−

3 -N concentration in surface
water (Table 4; Figures 7a, b). The evaluation metrics of the
ensemble boosted trees were 0.99 for R2, 0.51 mg NO−

3 -N/L for
RMSE, 0.24 mg NO−

3 -N/L for σ2, 0.40 mg NO−
3 -N/L for MAE, and

11.5% for MAPE for the training purposes while they decreased to
0.96 for R2, 0.90 mg NO−

3 -N/L for RMSE, 0.72 mg NO−
3 -N/L for σ2,

0.71 mg NO−
3 -N/L for MAE, and 17.9% for MAPE during the model

testing. For the random forest model, the training and testing
evaluation metrics were 0.98 and 0.97 for R2, 0.54 and 0.78 mg
NO−

3 -N/L for RMSE, 0.30 and 0.61 mg NO−
3 -N/L for σ2, 0.42 and

0.60 mg NO−
3 -N/L for MAE, and 15.3% and 17.1% for MAPE,

respectively. In multiple previous studies, the ensemble boosted tree
and random forest models showed strong prediction capabilities in
predicting the water quality parameters such as NO−

3 -N and
phosphorus concentrations (Harrison et al., 2021; Aldrees et al.,
2022; Farazan et al., 2024; Zheng et al., 2024), confirming their
robustness in predicting the output variables in the current study.
The ensemble boosted trees and random forest models generally
gave close descriptive accuracy to the one of the GPR model for
predicting the output variables. However, the GPR model showed
higher superiority and a more robust performance especially in the
training process.

The rest of adopted ML regression models showed high
prediction capabilities of NO−

3 -N concentrations during the
training process where the range of evaluation metrics was
0.92–0.97 for R2, 0.82–1.33 mg NO−

3 -N/L for RMSE,
0.68–1.78 mg NO−

3 -N/L for σ2, 0.56–1.10 mg NO−
3 -N/L for MAE,

and 18.5%–38.2% for MAPE (Table 4). During testing, the
performance of these models declined in predicting the NO−

3 -N
concentrations where the evaluation metrics ranged from 0.54 to
0.96 for R2, 1.27–4.46 mg NO−

3 -N/L for RMSE, 1.61–19.78 mg
NO−

3 -N/L for σ2, 0.95–1.69 mg NO−
3 -N/L for MAE, and 28.1%–

FIGURE 6
Correlation plot for the model input and output variables for the
five main channel observation sites (i.e., S1 to S5).
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48.4% forMAPE (Table 4). The linear regression model had the least
good performance among the applied ML regression models. This is
mainly because the linear regression model was not completely
compatible with the nature of dataset where the model did not have
the capabilities to capture the complex relationships between the
model variables. Also, the linear regression model is a simple
regression approach which is not suitable for the LWC dataset
that has many parameters with high non-linearity and uncertainty.

TheGPR, ensemble boosted trees, and random forest also gave the
best performance in predicting the Cl− concentrations (Table 5;
Figures 7c, d). The optimal ML regression algorithm was the GPR
model where the evaluation metrics were 0.99 for R2, 0.44 mg/L for
RMSE, 0.19 mg/L for σ2, 0.26 mg/L for MAE, and 0.7% for MAPE
during the model training while they were reduced to 0.98 for R2,
5.51mg/L for RMSE, 31.08 mg/L for σ2, 3.73mg/L forMAE, and 8.4%
for MAPE for the testing process. During the model training, the
evaluation metrics of the random forest and ensemble boosted tree
models were 0.99 for R2, 3.12 and 4.14 mg NO−

3 -N/L for RMSE,
9.84 and 13.62 mg/L for σ2, 2.01 and 2.83 mg NO−

3 -N/L for MAE, and
4.8% and 6.1% for MAPE, respectively. These values decreased during
the model testing for the random forest and ensemble boosted trees to
be 0.99 and 0.98 for R2, 4.51 and 6.72 mg NO−

3 -N/L for RMSE,
20.8 and 38.96 mg/L for σ2, 3.61 and 4.96 mg NO−

3 -N/L for MAE, and
8.4% and 10.3% for MAPE, respectively. The three models were
common for yielding the best prediction accuracy of NO−

3 -N and Cl−

concentrations because they were trained using the same input
variables which were compatible with the nature of the dataset and
the involved process variables.

Similar to the prediction of NO−
3 -N concentration in surface

water, the linear regression was the least goodmodel for predicting the
Cl− concentrations especially during the model testing where the
evaluationmetrics were 0.66 for R2, 38.47mg/L for RMSE, 1,473mg/L
for σ2, 11.95 mg/L forMAE, and 28.7% forMAPE. The remainingML

regression model gave good prediction accuracy during the training
process where the range of evaluation metrics was 0.99 for R2,
5.10–6.02 mg/L for RMSE, 26.04–36.5 mg/L for σ2, 3.02–4.71 mg/L
for MAE, and 7.2%–9.3% for MAPE (Table 5). For the model testing,
the performance of these models slightly decreased where the
evaluation metrics ranged from 0.96 to 0.98 for R2, 5.51–9.67 mg/L
for RMSE, 31.08–95.66 mg/L for σ2, 3.73–5.95 mg/L for MAE, and
10.9%–12.8% for MAPE.

The selected 3ML regressionmodels (i.e., GPR, ensemble boosted
trees, and random forest) showed a high prediction accuracy of the
output variables where the predicted NO−

3 -N and Cl− concentration
were well-scattered around the 45°-line in the regression plot
especially for the training process (Figure 7). It should be
mentioned that the GPR model was the most accurate model in
predicting the output variables especially during the model training
which was reflected on the evaluation metrics and the regression
between the observed and predicted NO−

3 -N and Cl− concentrations.
The GPR model also showed the least deviation of the 45°-line
regression line compared to the rest of potential models (Figure 7).
However, for the model training using NO−

3 -N concentrations as the
model output, the ensemble boosted tree and random forest models
tended to underestimate the NO−

3 -N concentration up to 4.0 mg
NO−

3 -N/L while they overestimated the NO−
3 -N concentrations higher

than 4.0mgNO−
3 -N/L (Figure 7). A similar trend was observed during

the model training using Cl− concentrations where the ensemble
booted tree and random forest models overestimated the Cl−

concentrations larger than 70 mg/L. Such underestimations and
overestimations decreased the R2 values and increased the error
metrics of the two models compared to GPR during the training
processes, confirming that the GPR algorithm was the optimal ML
regression model for predicting the two output variables.

Such underestimations and overestimations are clear at either
extremely low or high NO−

3 -N and Cl− concentrations where these

TABLE 4 Evaluation metrics of NO−
3-N concentration in surface water using different ML regression models.

Model Training Testing

R2 RMSE (mg
NO−

3-N/L)
σ2 (mg

NO−
3-N/L)

MAE (mg
NO−

3-N/L)
MAPE
(%)

R2 RMSE (mg
NO−

3-N/L)
σ2 (mg

NO−
3-N/L)

MAE (mg
NO−

3-N/L)
MAPE
(%)

Linear
regression

0.92 1.33 1.78 1.10 38.2 0.54 4.46 19.78 1.69 48.4

Regression
trees

0.97 0.82 0.68 0.61 18.5 0.92 1.27 1.61 0.95 28.1

Support vector
machine

0.97 0.91 0.83 0.56 20.6 0.89 1.41 1.95 1.04 28.5

Gaussian
process

regression

0.99 0.30 0.08 0.21 7.8 0.96 0.83 0.68 0.60 17.1

Artificial
neural network

0.96 1.26 1.59 0.98 34.6 0.93 1.84 3.39 1.57 43.8

Ensemble
bagged trees

0.96 1.03 1.07 0.82 30.4 0.95 2.91 8.46 1.36 40.3

Ensemble
boosted trees

0.99 0.51 0.24 0.40 11.5 0.96 0.90 0.72 0.71 17.9

Random forest 0.98 0.54 0.30 0.42 15.3 0.97 0.78 0.61 0.60 17.1

* The evaluation metrics are the coefficient of determination (R2), root mean square error (RMSE), variance of errors (σ2), mean absolute error (MAE), and mean absolute percentage

error (MAPE).
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values represented the two ends of the normal distribution of the
dataset (i.e., 5% end of the distribution). These extreme data points
were relatively limited and less present in the model training process
compared to the concentrations near the median of the normal
distribution. Moreover, most of the ML regression techniques
inclined towards predicting the output variables closer to the mean
of the target distribution which lowers the model prediction accuracy
at the extremely high values. In addition, these models can sacrifice
the variance to achieve high prediction accuracy as well as low RMSE
value (Li et al., 2020). Moreover, the relationships between model
inputs and outputs are different at the extremes compared to those
near the mean values in many cases, deteriorating the model
prediction accuracy at the extremes. To overcome these challenges
associated with the extremes, more observations of these values can be
collected and included in the training datasets which can improve the
training capabilities of the ML models at the extremes.

Although the evaluation metrics of the ensemble boosted tree
and random forest models were comparable with those obtained by

the GPR model, they were not able to completely capture the actual
variabilities in the NO−

3 -N and Cl− concentrations especially during
the training process (Figure 7). The GPR model was able to perfectly
capture the variability in NO−

3 -N and Cl− concentrations with the
input variables over the observation period at the five main and four
tributary observation locations where the predicted and observed
concentrations were aligned on the 45°-line of the regression plot
(Figure 7). This indicates the robustness of the GPRmodel in tracing
the variations in the output variables under different conditions of
the input variables.

4.3 Feature importance analysis

The GPR model was selected for the feature importance analysis
since it was the optimal model for predicting the NO−

3 -N and Cl−

concentrations in surface water. Accordingly, it was found that the
R2 value was not changed across the proposed scenarios during the

FIGURE 7
Regression plots for the optimal three algorithms for predicting the output variables: (a) training for NO−

3-N concentration, (b) testing for NO−
3-N

concentration, (c) training for Cl− concentration, and (d) testing for Cl− concentration in surface water.
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testing process except for Scenario #8, 11, and 12 when the location
of the sampling site (i.e., main channel or tributary), hydrological
and meteorological conditions (i.e., average flow rate and 24-h
precipitation), and field conditions (i.e., location of the sampling
site and crop cover) were omitted from the input variables,
respectively (Table 6). The R2 value slightly decreased from
0.96 for the base scenario (i.e., including all the input variables)
to 0.94 for Scenario #8 and 12 and 0.95 for Scenario #11 (Table 6). In
addition, the error metrics (e.g., RMSE and MAPE) corresponding

to these scenarios were relatively larger than those of the base
scenario. For example, the MAPE value increased to 20.9% for
Scenario #8, 20.1% for Scenario # 11, and 21.3% for Scenario
#12 compared to the base scenario that had a MAPE value of
17.1% (Table 6). This highlights the importance of including the
location of sampling site as one of the input variables for training
and validating the ML models. In the main channel, the flow rate is
relatively higher than that in tributary sites with a significant in-
stream processes and hydrological dynamics such as mixing and

TABLE 5 Evaluation metrics of Cl− concentration in surface water using different ML regression models.

Model Training Testing

R2 RMSE
(mg/L)

σ2

(mg/L)
MAE
(mg/L)

MAPE
(%)

R2 RMSE
(mg/L)

σ2

(mg/L)
MAE
(mg/L)

MAPE
(%)

Linear regression 0.98 7.71 60.10 5.17 11.7 0.66 38.47 1,473 11.95 28.7

Regression trees 0.99 5.10 26.04 3.11 7.2 0.98 6.16 38.80 4.47 9.8

Support vector
machine

0.99 5.30 28.28 3.02 7.2 0.96 9.67 95.66 5.95 12.8

Gaussian process
regression

0.99 0.44 0.19 0.26 0.7 0.98 5.51 31.08 3.73 8.4

Artificial neural
network

0.99 5.78 33.41 4.71 9.3 0.97 7.86 61.78 5.23 11.6

Ensemble bagged trees 0.99 6.02 36.5 3.90 9.2 0.98 5.74 32.25 4.83 10.9

Ensemble boosted
trees

0.99 4.14 13.62 2.83 6.1 0.98 6.72 38.96 4.96 10.3

Random forest 0.99 3.12 9.84 2.01 4.8 0.98 4.51 20.80 3.61 8.4

TABLE 6 Feature importance analysis of the evaluation metrics for the prediction of NO−
3-N and Cl− in surface water for the testing dataset according to the

proposed simulation scenarios (Table 3).

Model Testing – Nitrate-nitrogen (NO−
3-N) Testing – Chloride (Cl−)

R2 RMSE (mg
NO−

3-N/L)
σ2 (mg

NO−
3-N/L)

MAE (mg
NO−

3-N/L)
MAPE
(%)

R2 RMSE
(mg/L)

σ2

(mg/L)
MAE
(mg/L)

MAPE
(%)

Base
scenario

0.96 0.83 0.68 0.60 17.1 0.98 5.51 31.08 3.73 8.37

Scenario 1 0.96 0.85 0.73 0.62 17.3 0.98 5.75 33.74 3.96 8.84

Scenario 2 0.96 0.87 0.75 0.62 17.7 0.98 5.16 26.22 3.25 7.25

Scenario 3 0.96 0.82 0.66 0.59 15.7 0.97 6.88 48.42 4.83 10.31

Scenario 4 0.96 0.83 0.70 0.58 16.5 0.98 5.91 35.54 3.91 8.58

Scenario 5 0.96 0.79 0.62 0.60 17.2 0.98 5.56 31.61 3.85 8.54

Scenario 6 0.96 0.87 0.77 0.63 18.3 0.98 5.48 30.57 3.56 7.96

Scenario 7 0.96 0.83 0.70 0.62 17.6 0.98 5.74 33.64 4.02 8.91

Scenario 8 0.94 1.02 1.04 0.72 20.9 0.97 7.41 55.65 4.97 10.56

Scenario 9 0.96 0.82 0.67 0.60 17.2 0.98 5.53 31.23 3.83 8.61

Scenario 10 0.96 0.83 0.70 0.66 19.3 0.98 6.33 40.95 4.96 11.15

Scenario 11 0.95 0.91 0.83 0.68 20.1 0.98 5.60 31.85 3.85 8.45

Scenario 12 0.94 1.07 1.14 0.77 21.3 0.97 7.53 57.98 4.98 10.83
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dispersion. In addition, the contributing areas to the main channel
and tributary sites are different and this can change the nitrogen and
Cl− loading rate. It should also be noted that omitting the surface
water EC (in Scenario #3) and pH (in Scenario #4) relatively
decreased the MAPE value to 15.7% and 16.5% compared to the
base scenario while the R2 values did not change with removing these
input variables (R2 = 0.96) (Table 6).

Similar results were observed in the training scenarios where the
sensitivity of model predictions to the location of sampling sites,
hydrological, and field conditions in Scenario #8, 11, and 12 was
higher than that of the testing dataset. Although there was no
significant change in R2 values, that ranged from 0.98 to 0.99, the
MAPE values significantly decreased when the previously
mentioned input variables were eliminated. The MAPE values
were 10.9% for Scenario #8, 13.6% for Scenario #11, and 17.5%
for Scenario #12 compared to the base scenario with anMAPE value
of 7.8% (Supplementary Table S2). Similarly, the other error metrics
of these scenarios were relatively higher than those of the
base scenario.

For the prediction of Cl− concentration in surface water, the R2

value of the proposed scenarios was not significantly changed
compared to the base scenario (R2 = 0.98) during the model
testing where it ranged from 0.97 to 0.98 (Table 6). However, the
MAPE value of Scenarios #3, 8,10, and 12 were slightly increased to
be 10.31, 10.56, 11.15, and 10.83%, respectively, compared to the
base scenario that had MAPE value of 8.37%. This reflects that the
surface water EC, location of the sampling site, water physico-
chemical parameters (e.g., surface water temperature), and the
field conditions can affect the prediction accuracy of the GPR
model in predicting the Cl− concentration in surface water. On
the other hand, the MAPE value decreased in Scenarios #2 (7.25%)
and 6 (7.96%) when the surface water DO, and average flow rate
were excluded from the input variables during the model
testing (Table 6).

In the training dataset, the R2 was determined to be 0.99 for all
the proposed scenarios, including the base scenario, except for
Scenario #10 where the R2 became 0.98 when the water
chemistry and physics parameters were eliminated from the
training dataset (Supplementary Table S2). This decrease in R2

value was reflected on the error metrics where the MAPE
significantly increased from 0.70% for the base scenario to 9.32%
for Scenario #10, highlighting the importance of including the
physico-chemical water parameters.

4.4 Overall insights about the ML models

4.4.1 Selection of ML regression models
Based on the results of the ML regression model, it was

emphasized that the GPR algorithm was the optimal model for
predicting the NO−

3 -N and Cl− concentrations in surface water in the
LWC sub-watershed over the observation period. This model
resulted in the highest R2 value and the least error metrics
among the 8 ML regression models employed in the current
study. The R2 value was 0.99 for predicting the output variables
during the model training while it slightly decreased to 0.98 and
0.96 during the model testing of the Cl− and NO−

3 -N concentrations,
respectively. Such high prediction accuracy reflects the robustness of

the GPR model in capturing the variations in the output variables
over more than 2 years of observations.

In general, the GPR model was the optimal model for predicting
the output variables because it is extremely suitable for small and
medium-sized datasets (i.e., total number of observations = 161)
(Richardson et al., 2017). In addition, GPR is an effective technique
for dealing with themodel input and output variables with high non-
linearity and uncertainty which is common in the nutrient and Cl−

transport processes (Elsayed et al., 2024a). GPR techniques also
consider the distributions over function instead of a single function,
presenting a distribution of likely outcomes rather than predicting a
single point estimate (the approach that followed in simple
regression models) which can reduce the uncertainty of output
variables (Daemi et al., 2019).

Ensemble boosted tree and random forest were the next best
models after the GPR model. They yielded relatively high
prediction accuracy where the range of R2 was 0.98–0.99 for the
training dataset and 0.96–0.98 for the testing dataset during the
prediction of Cl− and NO−

3 -N concentrations in surface water. This
is mainly because these models can enhance the prediction
accuracy by reducing the mis-prediction rates in model
variables with the minimal number of iterations (Zhou et al.,
2019). They also can develop robust models by avoiding the
weak models involved in the ensemble models and increase the
contribution of potential candidates for better prediction of the
output variables. Moreover, they can capture the complex
relationships between the model variables which is common in
the nutrient transport applications in surface water. Ultimately,
they can effectively deal with noisy datasets with multiple non-
linear and uncertain parameters which is appropriate and
compatible with the dataset of the LWC sub-watershed
(Melesse et al., 2020).

On the other hand, some ML regression models, such as linear
regression, were not optimal choices for predicting the output
variables using the given input variables. This is mainly because
the linear regression model is a simple algorithm to detect the
complicated correlations and interdependences between the model
variables (Chou et al., 2018). The linear regression model is not
suitable for high-dimensional datasets with high uncertainty and
non-linearity (Qun’ou et al., 2021). Thus, it is highly recommended
to implement more complex models, such as the GPR, ensemble
boosted trees, and random forest algorithms, over the linear
regression for accurate prediction of NO−

3 -N and Cl−

concentrations in surface water in the LWC sub-watershed.
These outcomes are consistent with the major findings of
previous ML investigations in a clay agricultural watershed
(Elsayed et al., 2023b; Elsayed et al., 2024a), highlighting the
complexity of contaminant transport processes in different
agricultural settings which requires complex ML algorithms (e.g.,
ensemble models) than simple models (e.g., linear regression) for
better prediction of surface water quality parameters. These models
can be employed by stakeholders and decision makers for better
quantification of Cl− and NO−

3 -N levels in the main watercourse
within the sub-watershed. Furthermore, additional investigations on
different agricultural settings are required to generalize and confirm
the applicability of such complex ML models in predicting
numerous water quality parameters not only in surface water but
also in groundwater and tile drains.
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4.4.2 Applicability and transferability of ML models
ML regression models can be used to predict water quality

parameters in both surface and groundwater across any agricultural
watershed. These output variables may include nitrogen,
phosphorus, and Cl− concentrations while incorporating various
input variables specific to each watershed, such as hydrological,
meteorological, and field conditions. However, the effectiveness and
reliability of different ML regression models can vary depending on
the environmental characteristics of the watershed. For example, the
optimal ML regression models could have strong predictive abilities
in other agricultural watersheds with features similar to those of the
LWC sub-watershed, such as meteorological conditions (e.g.,
precipitation), geology (e.g., sandy soils), and geography (e.g.,
within the Great Lakes Basin). The quality, resolution, and
frequency of available datasets also significantly impact the
development of reliable and practical models.

Also, diverse monitoring datasets are needed to develop, train,
validate, and analyze the ML regression models. These models can
potentially be employed by decision makers and stakeholders to
assess the risk of nutrient and Cl− transport from agricultural fields
to surface water. In addition, these MLmodels can be used to predict
the water quality at unmonitored locations, fill the missing
observations of water quality parameters, and identify the
governing parameters of the water quality. By monitoring and
using the easily observable input variables, such as field
conditions, ML models can quantify the contamination levels in
surface water. For example, well-trained ML models coupled with
continuous monitoring of the physico-chemical water parameters
(e.g., temperature and pH) using real-time sensors can assist in
obtaining continuous time-series of water quality parameters at the
location of these sensors. Accordingly, these models can overcome
the challenges of quantifying water quality concentrations using the
standard sampling methods, reducing the time, effort, and cost
associated with these typical sampling methods.

In this study, a comprehensive dataset with a wide range of
variables, including meteorological, hydrological, and field
conditions, was used to evaluate the potential of ML regression
models in predicting NO−

3 -N and Cl− concentrations in surface
water. Such high-quality, diverse datasets may not be available in
other agricultural watersheds. For example, in some watersheds, the
number of relevant features may be insufficient for accurate
predictions, and the frequency or resolution of data collection
may limit the effectiveness of the ML models. These challenges
are key limitations in applying ML models as predictive tools for
estimating water quality parameters in surface water. Therefore, it is
essential to apply these optimal models across various agricultural
watersheds, using comprehensive datasets that cover hydrological,
meteorological, and field conditions, in order to extend their
applicability and overcome the limitations of ML models.

The application of the optimal ML regression models employed
in the current study can be extended to include additional datasets
from other agricultural watersheds with distinct input and output
variables. Moreover, the scope of ML models can be expanded to
cover the prediction of groundwater quality parameters. Also, the
importance and interpretability analyses can be extended to other
datasets that were collected from different agricultural catchments.
The proposed ML regression models can be re-trained using new
datasets to predict the Cl− and NO−

3 -N concentrations in surface

water, assisting in better understanding of the mechanisms of
contaminant transport in surface water. Also, the applicability of
these models can be extended to consider additional output variables
if these models got exposed to larger dataset with multiple water
quality parameters. This should enhance the generalization of the
adopted ML regression models to different datasets pertaining to
water quality monitoring in surface water.

4.4.3 Major contributions, limitations, and future
research steps

In the current study, unlike previous ML studies that focused on
a single water quality parameter or a single monitoring site, an
integrated multi-site and multi-variable approach was adopted to
predict both NO−

3 -N and Cl− concentrations in surface water across
nine distinct observation sites within an agricultural watershed. Such
approach enhanced the robustness of the ML models and the
corresponding outcomes which can provide a more
comprehensive description of the spatial variability of water
quality parameters in agricultural watersheds. In addition, our
study was capable of bridging the data-driven modeling and
water quality interpretation. In other words, while most of
regression-based ML studies focus mainly on model performance,
our study included conducting a feature importance analysis to
identify the most influential factors that can contribute to water
quality predictions in surface water. This allowed better
understanding of the underlying hydrological and land-use
processes driving water quality changes, demonstrating
meaningful insights in both ML advancements and practical
watershed management. The scope of the current study also
covered addressing some challenges associated with agricultural
watersheds which are highly dynamic systems influenced by
seasonal variability, fertilizer applications, and
hydrometeorological conditions. By incorporating a diverse set of
input variables (e.g., hydrological and meteorological conditions),
the outcomes of this study were more oriented towards investigating
the prediction capabilities of regression-based ML models in
agricultural watersheds. This can aid in more precise forecasting
of water quality parameters in agricultural watersheds, providing
critical insights for pollution mitigation and sustainable land
management practices.

Although the optimal ML models demonstrated high predictive
performance in the Lower Whitemans Creek sub-watershed, their
generalization to other watersheds with different hydrological and
meteorological conditions remains one of the most critical
challenges associated with employing these models in water
quality prediction. This is mainly because these ML models are
highly dependent on the quality of the training datasets, and their
performance may decline when applied to other regions with
limited, biased, or inconsistent datasets. Moreover, watersheds
with different pollutant transport mechanisms (e.g., wetlands)
may require additional and/or different input variables as well as
model re-validation and adjustment.

Such limitations create remarkable room for multiple research
directions and attempts for further investigation into water quality
prediction. For example, future studies can explore the applicability
ofMLmodels on a broader range of water quality parameters such as
phosphorus concentration in surface water. In addition, the scope of
these ML models can be expanded to monitor the water quality
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parameters in groundwater. Moreover, larger datasets covering
multiple hydrological cycles, spatial and seasonal variations
should be incorporated to assess model effectiveness over longer
observation periods. Also, hybrid modeling approaches that
combine ML with process-based hydrological models can offer
more interpretable and physically meaningful predictions,
bridging the gap between data-driven models and well-
established water quality modeling frameworks. Such future
research directions formulate more comprehensive assessment of
the robustness of ML models in different water quality contexts.

5 Conclusion

In the current study, different groups of ML regression models
were systematically employed on a 2-year dataset obtained from a
sand plain agricultural sub-watershed in southwestern Ontario,
Canada to predict the NO−

3 -N and Cl− concentrations in surface
water in five main channel and four tributary sampling sites using a
group of input variables such as hydrological, meteorological, and
field conditions. Based on various evaluation metrics, it was
demonstrated that the GPR algorithm was the optimal model for
predicting the two output variables. The R2 value of the GPR model
for the NO−

3 -N concentration in surface water was 0.99 (for training)
and 0.96 (for testing) while it was 0.99 (for training) and 0.98 (for
testing) for Cl− concentration. In addition, the ensemble bagged tree
and random forest models gave high prediction accuracy that was
comparable to that obtained by the GPR model especially for the
testing datasets. Moreover, a feature importance analysis was
conducted to determine the significance of model input variables
on the prediction accuracy of the two output variables. Accordingly,
it was found that the field conditions, especially the location of
sampling sites (main channel and tributary sites), are the governing
input variables of accurate prediction of the NO−

3 -N and Cl−

concentrations in surface water. This study provides meaningful
insights into the practical benefits of using ML models to
complement traditional field monitoring in agricultural
watersheds, offering more efficient and precise predictions of
water quality parameters in surface water. The major findings of
this study underscore that ML regression models can significantly
enhance the accuracy and responsiveness of environmental
decision-making processes to avoid the deterioration of surface
water quality.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Author contributions

AE: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Software, Visualization, Writing–original

draft. JL: Conceptualization, Funding acquisition, Project
administration, Resources, Supervision, Validation, Writing–review
and editing. AB: Conceptualization, Funding acquisition, Project
administration, Resources, Supervision, Validation, Writing–review
and editing. ML: Funding acquisition, Project administration,
Resources, Supervision, Validation, Writing–review and editing,
Conceptualization. PG: Funding acquisition, Project administration,
Resources, Supervision, Validation, Writing–review and editing,
Conceptualization.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This work was supported
by the Ontario Ministry of the Environment, Conservation and
Parks (MECP) and Natural Sciences and Engineering Research
Council of Canada (NSERC–Alliance; Grant # 401934).

Acknowledgments

The authors would like to acknowledge Grand River
Conservation Authority (GRCA) for access to data and land. The
authors would like to thank Floyd Davis for access to the land and
support during the field sampling.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fenvs.2025.1543852/
full#supplementary-material

Frontiers in Environmental Science frontiersin.org19

Elsayed et al. 10.3389/fenvs.2025.1543852

https://www.frontiersin.org/articles/10.3389/fenvs.2025.1543852/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenvs.2025.1543852/full#supplementary-material
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1543852


References

Aggarwal, C. C. (2016). Data mining: the textbook. Berlin: Springer, 285–426.

Agriculture and Agri-Food Canada (AAFC) (2023). Annual crop inventory 2022.
Available online at: https://open.canada.ca/data/en/dataset/199e4ab6-832b-4434-ac39-
e4887d7cc4e5.

Ahmed, A. N., Othman, F. B., Afan, H. A., Elsha, A., Ming Fai, C., Shabbir Hossain,
M., et al. (2019). Machine learning methods for better water quality prediction.
J. Hydrology 578, 124084. doi:10.1016/j.jhydrol.2019.124084

Ahmed, M. H., and Lin, L. S. (2021). Dissolved oxygen concentration predictions for
running waters with different land use land cover using a quantile regression forest
machine learning technique. J. Hydrology 597, 126213. doi:10.1016/j.jhydrol.2021.
126213

Akhtar, N., Izzuddin, M., Ishak, S., Bhawani, S. A., and Umar, K. (2021). Various
natural and anthropogenic factors responsible for water quality degradation: a review.
Water 13 (19), 2660. doi:10.3390/w13192660

Aldrees, A., Hassan, H., Faisal, M., and Mohamed, A. M. (2022). Prediction of water
quality indexes with ensemble learners: bagging and boosting. Process Saf. Environ. Prot.
168 (August), 344–361. doi:10.1016/j.psep.2022.10.005

Arabgol, R., Sartaj, M., and Asghari, K. (2016). Predicting nitrate concentration and
its spatial distribution in groundwater resources using support vector machines (SVMs)
model. Environ. Model. Assess. 21 (1), 71–82. doi:10.1007/s10666-015-9468-0

Arce-Rodriguez, J. (2024). Nitrate transport in a sand plain aquifer in the Lake Erie
Basin. MASc thesis. University of Guelph, 190. Available online at: https://hdl.handle.
net/10214/28354.

Asadollah, S. B. H. S. H., Sharafati, A., Motta, D., and Yaseen, Z. M. (2021). River
water quality index prediction and uncertainty analysis: a comparative study of machine
learning models. J. Environ. Chem. Eng. 9 (1), 104599. doi:10.1016/j.jece.2020.104599

Ashari, A., Paryudi, I., and Tjoa, A. M. (2013). Performance comparison between
naïve bayes, decision tree and k-nearest neighbor in searching alternative design in an
energy simulation tool. Int. J. Adv. Comput. Sci. Appl. 4 (11), 33–39. doi:10.14569/ijacsa.
2013.041105

Balson, T., and Ward, A. S. (2022). A machine learning approach to water quality
forecasts and sensor network expansion: case study in the Wabash River Basin,
United States. Hydrol. Process. 36 (6), 1–15. doi:10.1002/hyp.14619

Bedi, S., Samal, A., Ray, C., and Snow, D. (2020). Comparative evaluation of machine
learning models for groundwater quality assessment. Environ. Monit. Assess. 192 (12),
776. doi:10.1007/s10661-020-08695-3

Behrouz, M. S., Yazdi, M. N., and Sample, D. J. (2022). Using Random Forest, a
machine learning approach to predict nitrogen, phosphorus, and sediment event mean
concentrations in urban runoff. J. Environ. Manag. 317, 115412. doi:10.1016/j.jenvman.
2022.115412

Betts, A., Gharabaghi, B., McBean, E. d., Levison, J., and Parker, B. (2015). Salt
vulnerability assessment methodology for municipal supply wells. J. Hydrol. 531,
523–533. doi:10.1016/j.jhydrol.2015.11.004

Bhattarai, A., Dhakal, S., Gautam, Y., and Bhattarai, R. (2021). Prediction of nitrate
and phosphorus concentrations using machine learning algorithms in watersheds with
different land use. Water 13 (21), 3096. doi:10.3390/w13213096

Canadian Council of Ministers of the Environment (2011). Selected tools to evaluate
water monitoring networks for climate change adaptation.

Canadian Council of Ministers of the Environment (2012). Canadian water quality
guidelines for the protection of aquatic life: nitrate. Can. Counc. Minist. Environ.
Available online at: http://ceqg-rcqe.ccme.ca/download/en/197.

Castiblanco, E. S., Groffman, P. M., Duncan, J., Band, L. E., Doheny, E., Emma, T. F.,
et al. (2023). Long-term trends in nitrate and chloride in streams in an exurban
watershed. Urban Ecosyst. 26, 831–844. doi:10.1007/s11252-023-01340-0

Cervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L., and Lopez, A. (2020). A
comprehensive survey on support vector machine classification: applications, challenges
and trends. Neurocomputing 408, 189–215. doi:10.1016/j.neucom.2019.10.118

Chang, C. F., Garcia, V., Tang, C., Vlahos, P., Wanik, D., Yan, J., et al. (2021).
Linking multi-media modeling with machine learning to assess and predict lake
chlorophyll a concentrations. J. Gt. Lakes. Res. 47 (6), 1656–1670. doi:10.1016/j.jglr.
2021.09.011

Chapra, S. C., Dove, A., and Rockwell, D. C. (2009). Great Lakes chloride trends: long-
term mass balance and loading analysis. J. Gt. Lakes. Res. 35 (2), 272–284. doi:10.1016/j.
jglr.2008.11.013

Chou, J., Ho, C., and Hoang, H. (2018). Determining quality of water in reservoir
using machine learning. Ecol. Inf. 44, 57–75. doi:10.1016/j.ecoinf.2018.01.005

Chow, R., Scheidegger, R., Doppler, T., Dietzel, A., Fenicia, F., and Stamm, C. (2020).
A review of long-term pesticide monitoring studies to assess surface water quality
trends. Water Res. X 9, 100064. doi:10.1016/j.wroa.2020.100064

Daemi, A., Kodamana, H., and Huang, B. (2019). Gaussian process modelling with
Gaussian mixture likelihood. J. Process Control 81, 209–220. doi:10.1016/j.jprocont.
2019.06.007

David, M. B., Mitchell, C. A., Gentry, L. E., and Salemme, R. K. (2016). Chloride
sources and losses in two tile-drained agricultural watersheds. J. Environ. Qual. 45,
341–348. doi:10.2134/jeq2015.06.0302

D’Haene, K., Waele, J. D., Neve, S. D., and Hofman, G. (2022). Agriculture,
Ecosystems and Environment Spatial distribution of the relationship between nitrate
residues in soil and surface water quality revealed through attenuation factors. Agric.
Ecosyst. Environ. 330 (January), 107889. doi:10.1016/j.agee.2022.107889

El Bilali, A., and Taleb, A. (2020). Prediction of irrigation water quality parameters
using machine learning models in a semi-arid environment. J. Saudi Soc. Agric. Sci. 19
(7), 439–451. doi:10.1016/j.jssas.2020.08.001

Elsayed, A., Ghaith, M., Yosri, A., Li, Z., and El-Dakhakhni, W. (2024b). Genetic
programming expressions for effluent quality prediction: towards AI-drivenmonitoring
and management of wastewater treatment plants. J. Environ. Manag. 356 (October
2023), 120510. doi:10.1016/j.jenvman.2024.120510

Elsayed, A., Hurdle, M., and Kim, Y. (2021). Comprehensive model applications for
better understanding of pilot-scale membrane-aerated biofilm reactor performance.
J. Water Process Eng. 40, 101894. doi:10.1016/j.jwpe.2020.101894

Elsayed, A., Rixon, S., Levison, J., Binns, A., and Goel, P. (2023b). Application of
classificationmachine learning algorithms for characterizing nutrient transport in a clay
plain agricultural watershed. J. Environ. Manage. 345, 118924. doi:10.1016/j.jenvman.
2023.118924

Elsayed, A., Rixon, S., Levison, J., Binns, A., and Goel, P. (2024a). Machine learning
models for prediction of nutrient concentrations in surface water in an agricultural
watershed. J. Environ. Manag. 372, 123305. doi:10.1016/j.jenvman.2024.123305

Elsayed, A., Rixon, S., Zeuner, C., Levison, J., Binns, A., and Goel, P. (2023a). Text
mining-aided meta-research on nutrient dynamics in surface water and groundwater:
popular topics and perceived gaps. J. Hydrology 626 (PB), 130338. doi:10.1016/j.jhydrol.
2023.130338

Elsayed, A., Siam, A., and El-Dakhakhni, W. (2022b). Machine learning classification
algorithms for inadequate wastewater treatment risk mitigation. Process Saf. Environ.
Prot. 159, 1224–1235. doi:10.1016/j.psep.2022.01.065

Elsayed, A., Yu, J., Lee, T., and Kim, Y. (2022a). Model study on real-time aeration
based on nitrite for effective operation of single-stage anammox. Environ. Res. 212,
113554. doi:10.1016/j.envres.2022.113554

Environment and Climate Change Canada (2021). Canada-US Great Lakes water
quality agreement. Government of Canada. Available online at: https://www.canada.ca/
en/environment-climate-change/services/great-lakes-protection/canada-united-states-
water-quality-agreement.html.

Environment and Climate Change Canada (ECCC) (2017). Phosphorus and excess
algal growth.

Evans, J. D. (1996). Straightforward statistics for the behavioral sciences. Pacific Grove:
Thomson Brooks/Cole Publishing Co.

Farazan, S. Z., Paudyal, D., Chadalavada, S., and Alam, M. J. (2024). Temporal
dynamics and predictive modelling of streamflow and water quality using advanced
statistical and ensemble machine learning techniques.Water 16 (15), 2107. doi:10.3390/
w16152107

Gardner, S. G., Levison, J., Parker, B. L., and Martin, R. C. (2020). Groundwater
nitrate in three distinct hydrogeologic and land-use settings in southwestern Ontario,
Canada. Hydrogeology J. 28, 1891–1908. doi:10.1007/s10040-020-02156-4

Gianfagna, C. C., Johnson, C. E., Chandler, D. G., and Hofmann, C. (2015).
Watershed area ratio accurately predicts daily streamflow in nested catchments in
the Catskills, New York. J. Hydrology Regional Stud. 4, 583–594. doi:10.1016/j.ejrh.2015.
09.002

Gondia, A., Ezzeldin, M., and El-dakhakhni, W. (2022). Machine learning – based
decision support framework for construction injury severity prediction and risk
mitigation. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 8 (3), 1–17.
doi:10.1061/AJRUA6.0001239

Gorgoglione, A., Castro, A., Iacobellis, V., and Gioia, A. (2021). A comparison of
linear and non-linear machine learning techniques (PCA and SOM) for characterizing
urban nutrient runoff. Sustainability 13 (4), 2054–2119. doi:10.3390/su13042054

Granato, G. E., DeSimone, L. A., Barbaro, J. R., and Jeznach, L. C. (2015).Methods for
evaluating potential sources of chloride in surface waters and groundwaters of the
conterminous United States. US Geological Survey.

Ha, N. T., Nguyen, H. Q., Truong, N. C. Q., Le, T. L., Thai, V. N., and Pham, T. L.
(2020). Estimation of nitrogen and phosphorus concentrations from water quality
surrogates using machine learning in the Tri an Reservoir, Vietnam. Environ. Monit.
Assess. 192 (12), 789. doi:10.1007/s10661-020-08731-2

Hafeez, S., Wong, M. S., Ho, H. C., Nazeer, M., Nichol, J., Abbas, S., et al. (2019).
Comparison of machine learning algorithms for retrieval of water quality indicators in
case-II waters: a case study of Hong Kong. Remote Sens. 11, 617. doi:10.3390/
rs11060617

Harrison, J. W., Lucius, M. A., Farrell, J. L., Eichler, L. W., and Relyea, R. A. (2021).
Prediction of stream nitrogen and phosphorus concentrations from high-frequency

Frontiers in Environmental Science frontiersin.org20

Elsayed et al. 10.3389/fenvs.2025.1543852

https://open.canada.ca/data/en/dataset/199e4ab6-832b-4434-ac39-e4887d7cc4e5
https://open.canada.ca/data/en/dataset/199e4ab6-832b-4434-ac39-e4887d7cc4e5
https://doi.org/10.1016/j.jhydrol.2019.124084
https://doi.org/10.1016/j.jhydrol.2021.126213
https://doi.org/10.1016/j.jhydrol.2021.126213
https://doi.org/10.3390/w13192660
https://doi.org/10.1016/j.psep.2022.10.005
https://doi.org/10.1007/s10666-015-9468-0
https://hdl.handle.net/10214/28354
https://hdl.handle.net/10214/28354
https://doi.org/10.1016/j.jece.2020.104599
https://doi.org/10.14569/ijacsa.2013.041105
https://doi.org/10.14569/ijacsa.2013.041105
https://doi.org/10.1002/hyp.14619
https://doi.org/10.1007/s10661-020-08695-3
https://doi.org/10.1016/j.jenvman.2022.115412
https://doi.org/10.1016/j.jenvman.2022.115412
https://doi.org/10.1016/j.jhydrol.2015.11.004
https://doi.org/10.3390/w13213096
http://ceqg-rcqe.ccme.ca/download/en/197
https://doi.org/10.1007/s11252-023-01340-0
https://doi.org/10.1016/j.neucom.2019.10.118
https://doi.org/10.1016/j.jglr.2021.09.011
https://doi.org/10.1016/j.jglr.2021.09.011
https://doi.org/10.1016/j.jglr.2008.11.013
https://doi.org/10.1016/j.jglr.2008.11.013
https://doi.org/10.1016/j.ecoinf.2018.01.005
https://doi.org/10.1016/j.wroa.2020.100064
https://doi.org/10.1016/j.jprocont.2019.06.007
https://doi.org/10.1016/j.jprocont.2019.06.007
https://doi.org/10.2134/jeq2015.06.0302
https://doi.org/10.1016/j.agee.2022.107889
https://doi.org/10.1016/j.jssas.2020.08.001
https://doi.org/10.1016/j.jenvman.2024.120510
https://doi.org/10.1016/j.jwpe.2020.101894
https://doi.org/10.1016/j.jenvman.2023.118924
https://doi.org/10.1016/j.jenvman.2023.118924
https://doi.org/10.1016/j.jenvman.2024.123305
https://doi.org/10.1016/j.jhydrol.2023.130338
https://doi.org/10.1016/j.jhydrol.2023.130338
https://doi.org/10.1016/j.psep.2022.01.065
https://doi.org/10.1016/j.envres.2022.113554
https://www.canada.ca/en/environment-climate-change/services/great-lakes-protection/canada-united-states-water-quality-agreement.html
https://www.canada.ca/en/environment-climate-change/services/great-lakes-protection/canada-united-states-water-quality-agreement.html
https://www.canada.ca/en/environment-climate-change/services/great-lakes-protection/canada-united-states-water-quality-agreement.html
https://doi.org/10.3390/w16152107
https://doi.org/10.3390/w16152107
https://doi.org/10.1007/s10040-020-02156-4
https://doi.org/10.1016/j.ejrh.2015.09.002
https://doi.org/10.1016/j.ejrh.2015.09.002
https://doi.org/10.1061/AJRUA6.0001239
https://doi.org/10.3390/su13042054
https://doi.org/10.1007/s10661-020-08731-2
https://doi.org/10.3390/rs11060617
https://doi.org/10.3390/rs11060617
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1543852


sensors using Random Forests Regression. Sci. Total Environ. 763, 143005. doi:10.1016/
j.scitotenv.2020.143005

Health Canada (1987). Guidelines for Canadian drinking water quality: guideline
technical document. Chloride.

Health Canada (1999). Guidelines for Canadian drinking water quality: guideline
technical document. Chloride.

Imani, M., Hasan, M.M., Bittencourt, L. F., McClymont, K., and Kapelan, Z. (2021). A
novel machine learning application: water quality resilience prediction Model. Sci. Total
Environ. 768, 144459. doi:10.1016/j.scitotenv.2020.144459

Islam, A. R. M. T., Chandra, S., Chowdhuri, I., Salam, R., Islam, S., Zahid, A., et al.
(2021). Application of novel framework approach for prediction of nitrate
concentration susceptibility in coastal multi-aquifers, Bangladesh. Sci. Total Environ.
801, 149811. doi:10.1016/j.scitotenv.2021.149811

Jung, C., Ahn, S., Sheng, Z., Ayana, E. K., Srinivasan, R., and Yeganantham, D. (2021).
Evaluate river water salinity in a semi-arid agricultural watershed by coupling ensemble
machine learning technique with SWAT model. J. Am. Water Resour. Assoc. 58,
1175–1188. doi:10.1111/1752-1688.12958

Kaushal, S. S., Groffman, P. M., Likens, G. E., Belt, K. T., Stack, W. P., Kelly, V. R., et al.
(2005). Increased salinization of fresh water in the northeastern United States. Proc.
Natl. Acad. Sci. U.S.A. 102, 13517–13520. doi:10.1073/pnas.0506414102

Khoi, D. N., Quan, N. T., Linh, D. Q., Nhi, P. T. T., and Thuy, N. T. D. (2022). Using
machine learning models for predicting the water quality index in the La buong river,
vietnam. Water 14, 1552–1612. doi:10.3390/w14101552

Kim, T., Yang, T., Gao, S., Zhang, L., Ding, Z., Wen, X., et al. (2021). Can artificial
intelligence and data-driven machine learning models match or even replace process-
driven hydrologic models for streamflow simulation?a case study of four watersheds
with different hydro-climatic regions across the CONUS. J. Hydrology 598, 126423.
doi:10.1016/j.jhydrol.2021.126423

Knoll, L., Breuer, L., and Bach, M. (2019). Large scale prediction of groundwater
nitrate concentrations from spatial data using machine learning. Sci. Total Environ. 668,
1317–1327. doi:10.1016/j.scitotenv.2019.03.045

Kouadri, S., Elbeltagi, A., Reza, A., Islam, T., and Kateb, S. (2021). Performance of
machine learning methods in predicting water quality index based on irregular data set:
application on Illizi region (Algerian southeast). Appl. Water Sci. 11 (12), 190–220.
doi:10.1007/s13201-021-01528-9

Kovacs, D. J., Li, Z., Baetz, B. W., Hong, Y., Donnaz, S., Zhao, X., et al. (2022).
Membrane fouling prediction and uncertainty analysis using machine learning: a
wastewater treatment plant case study. J. Membr. Sci. 660, 120817. doi:10.1016/j.
memsci.2022.120817

Kuzmanovski, V., Trajanov, A., Leprince, F., Džeroski, S., and Debeljak, M. (2015).
Modeling water outflow from tile-drained agricultural fields. Sci. Total Environ. 505,
390–401. doi:10.1016/j.scitotenv.2014.10.009

Larocque, M., Levison, J., Gagné, S., and Saleem, S. (2019). “Groundwater use for
agricultural production – current water budget and expected trends under climate
change,” in Final report submitted to MAPAQ and OMAFRA. Université du Québec à
Montréal and University of Guelph. Montréal (Québec) and Guelph (Ontario), 67.

Lax, S., Peterson, E., and Van der Hoven, S. (2017). Stream chloride concentrations as
a function of land use: a comparison of an agricultural watershed to an urban
agricultural watershed. Environ. Earth Sci. 76 (20), 708–712. doi:10.1007/s12665-
017-7059-x

Li, X., Li, Z., Huang, W., and Zhou, P. (2020). Performance of statistical and machine
learning ensembles for daily temperature downscaling. Theor. Appl. Climatol. 140,
571–588. doi:10.1007/s00704-020-03098-3

Liang, K., Jiang, Y., Qi, J., Fuller, K., Nyiraneza, J., and Meng, F. R. (2020).
Characterizing the impacts of land use on nitrate load and water yield in an
agricultural watershed in Atlantic Canada. Sci. Total Environ. 729, 138793. doi:10.
1016/j.scitotenv.2020.138793

Mackie, C., Lackey, R., Levison, J., and Rodrigues, L. (2022). Groundwater as a source
and pathway for road salt contamination of surface water in the Lake Ontario Basin: a
review. J. Gt. Lakes. Res. 48 (1), 24–36. doi:10.1016/j.jglr.2021.11.015

Mackie, C., Levison, J., Binns, A., and O’Halloran, I. (2021). Groundwater-surface
water interactions and agricultural nutrient transport in a Great Lakes clay plain system.
J. Gt. Lakes. Res. 47 (1), 145–159. doi:10.1016/j.jglr.2020.11.008

Marshall, R., Levison, J., Parker, B., and Mcbean, E. (2022). Septic system impacts on
source water: two novel field tracer experiments in fractured sedimentary bedrock.
Sustainability 14, 1959. doi:10.3390/su14041959

May, H., Rixon, S., Gardner, S., Goel, P., Levison, J., and Binns, A. (2023).
Investigating relationships between climate controls and nutrient flux in surface
waters, sediments, and subsurface pathways in an agricultural clay catchment of the
Great Lakes Basin. Sci. Total Environ. 864, 160979. doi:10.1016/j.scitotenv.2022.160979

Melesse, A. M., Khosravi, K., Tiefenbacher, J. P., Heddam, S., Kim, S., Mosavi, A., et al.
(2020). River water salinity prediction using hybrid machine learning models.Water 12
(10), 2951–3021. doi:10.3390/w12102951

Merchán, D., Casalí, J., Valle, J. D., Lersundi, D., Campo-bescós, M. A., Giménez, R.,
et al. (2018). Runoff, nutrients, sediment and salt yields in an irrigated watershed in

southern Navarre (Spain). Agric. Water Manag. 195, 120–132. doi:10.1016/j.agwat.
2017.10.004

Messier, K. P., Wheeler, D. C., Flory, A. R., Jones, R. R., Patel, D., Nolan, B. T., et al.
(2019). Modeling groundwater nitrate exposure in private wells of North Carolina for
the Agricultural Health Study. Sci. Total Environ. 655, 512–519. doi:10.1016/j.scitotenv.
2018.11.022

Miller, M. P., Tesoriero, A. J., Capel, P. D., Pellerin, B. A., Hyer, K. E., Burns, D. A.,
et al. (2015). Quantifying watershed-scale groundwater loading and in-stream fate of
nitrate using high-frequency water quality data.Water Resour. Res. 52, 330–347. doi:10.
1002/2015WR017753

Ministry of the Environment, Conservation and Parks (2021). Canada-ontario Great
lakes agreement. Government of Ontario. Available online at: https://www.ontario.ca/
document/canada-ontario-great-lakes-agreement.

Mosavi, A., Hosseini, F. S., Choubin, B., Goodarzi, M., Dineva, A. A., and Sardooi, E.
R. (2021). Ensemble boosting and bagging based machine learning models for
groundwater potential prediction. Water Resour. Manag. 35 (1), 23–37. doi:10.1007/
s11269-020-02704-3

Mukaka, M. M. (2012). A guide to appropriate use of correlation coefficient in
medical research. Malawi Med. J. 24 (3), 69e71.

Mullaney, J. R., Lorenz, D. L., and Arnston, A. D. (2009). Chloride in groundwater and
surface water in areas underlain by the glacial aquifer system, northern United States.
Reston, VA: US Geological Survey.

Najah Ahmed, A., Binti Othman, F., Abdulmohsin Afan, H., Khaleel Ibrahim, R.,
Ming Fai, C., Shabbir Hossain, M., et al. (2019). Machine learning methods for better
water quality prediction. J. Hydrology 578, 124084. doi:10.1016/j.jhydrol.2019.124084

Osman, A. R. M. (2017). Water use conflict: a characterization and water quantity
study in an agriculturally stressed sub-catchment in Southern Ontario. MASc thesis,
Univ. Guelph, 190. Available online at: http://hdl.handle.net/10214/12134.

Oswald, C. J., Giberson, G., Nicholls, E., Wellen, C., and Oni, S. (2019). Spatial
distribution and extent of urban land cover control watershed-scale chloride retention.
Sci. Total Environ. 652, 278–288. doi:10.1016/j.scitotenv.2018.10.242

Overbo, A., Heger, S., and Gulliver, J. (2021). Evaluation of chloride contributions
frommajor point and nonpoint sources in a northern U.S. state. Sci. Total Environ. 764,
144179–179. doi:10.1016/j.scitotenv.2020.144179

Pandey, P., Gupta, A. P., Dutta, J., and Thakur, T. K. (2023). “Role of artificial
intelligence in water conservation with special reference to India,” in Emerging
technologies for water supply, conservation and management. Editors E. Balaji,
G. Veeraswamy, P. Mannala, and S. Madhav (Cham, Switzerland: Springer). doi:10.
1007/978-3-031-35279-9_4

Park, Y., Kim, Y., Park, S., Shin, W., and Lee, K. (2018). Water quality impacts of
irrigation return flow on stream and groundwater in an intensive agricultural
watershed. Sci. Total Environ. 630, 859–868. doi:10.1016/j.scitotenv.2018.02.113

Perera, N., Gharabaghi, B., and Howard, K. (2013). Groundwater chloride response in
the Highland Creek watershed due to road salt application: a re-assessment after
20 years. J. Hydrol. 479, 159–168. doi:10.1016/j.jhydrol.2012.11.057

Perović, M., Šenk, I., Tarjan, L., Obradović, V., and Dimkić, M. (2021). Machine
learning models for predicting the ammonium concentration in alluvial groundwaters.
Environ. Model. Assess. 1, 1–17. doi:10.1007/s10666-020-09731-9

Persaud, E., Levison, J., Ali, G., and Robinson, C. (2023). Using isotopic tracers to enhance
routine watershed monitoring – insights from an intensively managed agricultural
catchment. J. Environ. Manag. 344, 118364. doi:10.1016/j.jenvman.2023.118364

Portuguez-maurtua, M., Arumi, J. L., Lagos, O., Stehr, A., and Arquiñigo, N. M.
(2022). Filling gaps in daily precipitation series using regression and machine learning
in inter-andean watersheds. Water 14 (11), 1799. doi:10.3390/w14111799

Qiao, Z., Sun, S., Jiang, Q., Xiao, L., Wang, Y., and Yan, H. (2021). Retrieval of total
phosphorus concentration in the surface water of miyun reservoir based on remote
sensing data and machine learning algorithms. Remote Sens. 13 (22), 4662. doi:10.3390/
rs13224662

Qun’ou, J., Lidan, X., Siyang, S., Meilin, W., and Huijie, X. (2021). Retrieval model for
total nitrogen concentration based on UAV hyper spectral remote sensing data and
machine learning algorithms – a case study in the Miyun Reservoir, China. Ecol. Indic.
124, 107356. doi:10.1016/j.ecolind.2021.107356

Richards, G., Gilmore, T. E., Mittelstet, A. R., Messer, T. L., and Snow, D. D. (2021).
Baseflow nitrate dynamics within nested watersheds of an agricultural stream inNebraska,
USA. Agric. Ecosyst. Environ. 308 (June 2020), 107223. doi:10.1016/j.agee.2020.107223

Richardson, R. R., Osborne, M. A., and Howey, D. A. (2017). Gaussian process
regression for forecasting battery state of health. J. Power Sources 357, 209–219. doi:10.
1016/j.jpowsour.2017.05.004

Rixon, S., Levison, J., Binns, A., and Persaud, E. (2020). Spatiotemporal variations of
nitrogen and phosphorus in a clay plain hydrological system in the Great Lakes Basin.
Sci. Total Environ. 714, 136328. doi:10.1016/j.scitotenv.2019.136328

Rixon, S., May, H., Persaud, E., Elsayed, A., Levison, J., Binns, A., et al. (2024).
Subsurface influences on watershed nutrient concentrations and loading in a clay
dominated agricultural system. J. Hydrology 645, 132140. doi:10.1016/j.jhydrol.2024.
132140

Frontiers in Environmental Science frontiersin.org21

Elsayed et al. 10.3389/fenvs.2025.1543852

https://doi.org/10.1016/j.scitotenv.2020.143005
https://doi.org/10.1016/j.scitotenv.2020.143005
https://doi.org/10.1016/j.scitotenv.2020.144459
https://doi.org/10.1016/j.scitotenv.2021.149811
https://doi.org/10.1111/1752-1688.12958
https://doi.org/10.1073/pnas.0506414102
https://doi.org/10.3390/w14101552
https://doi.org/10.1016/j.jhydrol.2021.126423
https://doi.org/10.1016/j.scitotenv.2019.03.045
https://doi.org/10.1007/s13201-021-01528-9
https://doi.org/10.1016/j.memsci.2022.120817
https://doi.org/10.1016/j.memsci.2022.120817
https://doi.org/10.1016/j.scitotenv.2014.10.009
https://doi.org/10.1007/s12665-017-7059-x
https://doi.org/10.1007/s12665-017-7059-x
https://doi.org/10.1007/s00704-020-03098-3
https://doi.org/10.1016/j.scitotenv.2020.138793
https://doi.org/10.1016/j.scitotenv.2020.138793
https://doi.org/10.1016/j.jglr.2021.11.015
https://doi.org/10.1016/j.jglr.2020.11.008
https://doi.org/10.3390/su14041959
https://doi.org/10.1016/j.scitotenv.2022.160979
https://doi.org/10.3390/w12102951
https://doi.org/10.1016/j.agwat.2017.10.004
https://doi.org/10.1016/j.agwat.2017.10.004
https://doi.org/10.1016/j.scitotenv.2018.11.022
https://doi.org/10.1016/j.scitotenv.2018.11.022
https://doi.org/10.1002/2015WR017753
https://doi.org/10.1002/2015WR017753
https://www.ontario.ca/document/canada-ontario-great-lakes-agreement
https://www.ontario.ca/document/canada-ontario-great-lakes-agreement
https://doi.org/10.1007/s11269-020-02704-3
https://doi.org/10.1007/s11269-020-02704-3
https://doi.org/10.1016/j.jhydrol.2019.124084
http://hdl.handle.net/10214/12134
https://doi.org/10.1016/j.scitotenv.2018.10.242
https://doi.org/10.1016/j.scitotenv.2020.144179
https://doi.org/10.1007/978-3-031-35279-9_4
https://doi.org/10.1007/978-3-031-35279-9_4
https://doi.org/10.1016/j.scitotenv.2018.02.113
https://doi.org/10.1016/j.jhydrol.2012.11.057
https://doi.org/10.1007/s10666-020-09731-9
https://doi.org/10.1016/j.jenvman.2023.118364
https://doi.org/10.3390/w14111799
https://doi.org/10.3390/rs13224662
https://doi.org/10.3390/rs13224662
https://doi.org/10.1016/j.ecolind.2021.107356
https://doi.org/10.1016/j.agee.2020.107223
https://doi.org/10.1016/j.jpowsour.2017.05.004
https://doi.org/10.1016/j.jpowsour.2017.05.004
https://doi.org/10.1016/j.scitotenv.2019.136328
https://doi.org/10.1016/j.jhydrol.2024.132140
https://doi.org/10.1016/j.jhydrol.2024.132140
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1543852


Sajib, A. M., Diganta, M. T. M., Moniruzzaman, M., Rahman, A., Dabrowski, A. I.,
Uddin, M. G., et al. (2024). Assessing water quality of an ecologically critical urban canal
incorporating machine learning approaches. Ecol. Inf. 80, 102514. doi:10.1016/j.ecoinf.
2024.102514

Sajib, A. M., Diganta, M. T. M., Rahman, A., Dabrowski, T., Olbert, A. I., and Uddin,
M. G. (2023). Developing a novel tool for assessing the groundwater incorporating
water quality index andmachine learning approach.Groundw. Sustain. Dev. 23, 101049.
doi:10.1016/j.gsd.2023.101049

Sakizadeh, M., Zhang, C., and Milewski, A. (2024). Spatial distribution pattern and
health risk of groundwater contamination by cadmium, manganese, lead and nitrate in
groundwater of an arid area. Environ. Geochem. Health 46 (3), 80–25. doi:10.1007/
s10653-023-01845-9

Shah, M. I., Alaloul, W. S., Alqahtani, A., Aldrees, A., Musarat, M. A., and Javed, M. F.
(2021). Predictive modeling approach for surface water quality: development and
comparison of machine learning models. Sustainability 13, 7515. doi:10.3390/
su13147515

Sigler, W. A., Ewing, S. A., Jones, C. A., Payn, R. A., Brookshire, E. N. J., Klassen, J. K.,
et al. (2018). Connections among soil, ground, and surface water chemistries
characterize nitrogen loss from an agricultural landscape in the upper Missouri
River Basin. J. Hydrology 556, 247–261. doi:10.1016/j.jhydrol.2017.10.018

Singh, B., and Craswell, E. (2021). Fertilizers and nitrate pollution of surface and
ground water: an increasingly pervasive global problem. SN Appl. Sci. 3 (4), 1–24. doi:10.
1007/s42452-021-04521-8

Sorichetti, R. J., Raby, M., Holeton, C., Benoit, N., Carson, L., Desellas, A., et al. (2022).
Chloride trends in Ontario ’ s surface and groundwaters. J. Gt. Lakes. 48, 512–525.
doi:10.1016/j.jglr.2022.01.015

Steele, M. K., and Aitkenhead-Peteerson, R. (2011). Long-term sodium and chloride
surface water exports from the Dallas/Fort Worth region. Sci. Total Environ. 409 (16),
3021–3032. doi:10.1016/j.scitotenv.2011.04.015

Steele, R., and Veliz, M. (2007). Water quality in the ausable bayfield maitland valley.
Retrievedfrom. Available online at: http://www.sourcewaterinfo.on.ca/images/
uploaded/uploadedDownloads/WC_Chap2_Mar_08.pdf.

Stelzer, R. S., and Scott, J. T. (2018). Predicting nitrate retention at the groundwater-
surface water interface in sandplain streams. J. Geophys. Res. Biogeosciences 123 (9),
2824–2838. doi:10.1029/2018JG004423

Stets, E. G., Lee, C. J., Lytle, D. A., and Schock, M. R. (2018). Increasing chloride in
rivers of the conterminous U . S. and linkages to potential corrosivity and lead action
level exceedances in drinking water. Sci. Total Environ. 613–614, 1498–1509. doi:10.
1016/j.scitotenv.2017.07.119

Subbarayan, S., Thiyagarajan, S., Karuppannan, S., and Panneerselvam, B. (2024).
Enhancing groundwater vulnerability assessment: comparative study of three machine
learning models and five classification schemes for Cuddalore district. Environ. Res. 242
(July 2023), 117769. doi:10.1016/j.envres.2023.117769

Syeed, M. M. M., Hossain, S., Karim, R., Faisal, M., Hasan, M., and Hayat, R. (2023).
Surface water quality profiling using the water quality index, pollution index and
statistical methods: a critical review. Environ. Sustain. Indic. 18 (January), 100247.
doi:10.1016/j.indic.2023.100247

Tian, S., Youssef, M. A., Richards, R. P., Liu, J., Baker, D. B., and Liu, Y. (2016).
Different seasonality of nitrate export from an agricultural watershed and an urbanized
watershed in Midwestern USA. J. Hydrology 541, 1375–1384. doi:10.1016/j.jhydrol.
2016.08.042

Uddin, G., Nash, S., Rahman, A., Dabrowski, T., and Olbert, A. I. (2024). Data-driven
modelling for assessing trophic status in marine ecosystems using machine learning
approaches. Environ. Res. 242 (July 2023), 117755. doi:10.1016/j.envres.2023.117755

Varadharajan, C., Appling, A. P., Arora, B., Christianson, D. S., Hendrix, V. C.,
Kumar, V., et al. (2022). Can machine learning accelerate process understanding and
decision relevant predictions of river water quality?Hydrol. Process. 36 (4), 1–22. doi:10.
1002/hyp.14565

Wagh, V., Panaskar, D., Muley, A., Mukate, S., and Gaikwad, S. (2018). Neural
network modelling for nitrate concentration in groundwater of Kadava River basin,
Nashik, Maharashtra, India. Groundw. Sustain. Dev. 7, 436–445. doi:10.1016/j.gsd.2017.
12.012

Wang, R., Kim, J. H., and Li, M. H. (2021). Predicting stream water quality under
different urban development pattern scenarios with an interpretable machine learning
approach. Sci. Total Environ. 761, 144057. doi:10.1016/j.scitotenv.2020.144057

Wang, S., Wang, Y., Wang, Y., and Wang, Z. (2022a). Assessment of influencing
factors on non-point source pollution critical source areas in an agricultural watershed.
Ecol. Indic. 141 (35), 109084. doi:10.1016/j.ecolind.2022.109084

Wang, X., Xu, Y. J., and Zhang, L. (2022b). Watershed scale spatiotemporal nitrogen
transport and source tracing using dual isotopes among surface water, sediments and
groundwater in the Yiluo River Watershed, Middle of China. Sci. Total Environ. 833
(March), 155180. doi:10.1016/j.scitotenv.2022.155180

Wells, M. J., Gilmore, T. E., Nelson, N., Mittelstet, A., and Böhlke, J. K. (2021).
Determination of vadose zone and saturated zone nitrate lag times using long-Term
groundwater monitoring data and statistical machine learning. Hydrology Earth Syst.
Sci. 25 (2), 811–829. doi:10.5194/hess-25-811-2021

Wheeler, D. C., Nolan, B. T., Flory, A. R., Dellavalle, C. T., and Ward, M. H. (2015).
Modeling groundwater nitrate concentrations in private wells in Iowa. Sci. Total
Environ. 536, 481–488. doi:10.1016/j.scitotenv.2015.07.080

Wong, A. (2011). Water use inventory report for the Grand River watershed. GRCA.

Xu, T., Coco, G., and Neale, M. (2020). A predictive model of recreational water
quality based on adaptive synthetic sampling algorithms and machine learning. Water
Res. 177, 115788. doi:10.1016/j.watres.2020.115788

Yang, Y., Shang, X., Chen, Z., Mei, K., Wang, Z., Dahlgren, R. A., et al. (2021). A
support vector regression model to predict nitrate-nitrogen isotopic composition using
hydro-chemical variables. J. Environ. Manag. 290 (November 2020), 112674. doi:10.
1016/j.jenvman.2021.112674

Yang, Y., Yuan, Y., Xiong, G., Yin, Z., Guo, Y., Song, J., et al. (2024). Patterns of
nitrate load variability under surface water-groundwater interactions in
agriculturally intensive valley watersheds. Water Res. 267 (August), 122474.
doi:10.1016/j.watres.2024.122474

Yu, J., Tian, Y., Wang, X., and Zheng, C. (2021). Using machine learning to reveal
spatiotemporal complexity and driving forces of water quality changes in Hong Kong
marine water. J. Hydrology 603, 126841. doi:10.1016/j.jhydrol.2021.126841

Zeuner, C., Levison, J., and Larocque, M. (2025). Insights on nitrate transport in a
shallow, sandy aquifer at various temporal and spatial scales. Front. Environ. Sci.

Zhang, Z., Huang, J., Duan, S., Huang, Y., Cai, J., and Bian, J. (2022). Use of
interpretable machine learning to identify the factors influencing the nonlinear linkage
between land use and river water quality in the Chesapeake Bay watershed. Ecol. Indic.
140, 108977. doi:10.1016/j.ecolind.2022.108977

Zheng, Y., Wei, J., Zhang,W., Zhang, Y., Zhang, T., and Zhou, Y. (2024). An ensemble
model for accurate prediction of key water quality parameters in river based on deep
learning methods. J. Environ. Manag. 366 (July), 121932. doi:10.1016/j.jenvman.2024.
121932

Zhou, P., Li, Z., Snowling, S., Baetz, B. W., Na, D., and Boyd, G. (2019). A random
forest model for inflow prediction at wastewater treatment plants. Stoch. Environ. Res.
Risk Assess. 33 (10), 1781–1792. doi:10.1007/s00477-019-01732-9

Frontiers in Environmental Science frontiersin.org22

Elsayed et al. 10.3389/fenvs.2025.1543852

https://doi.org/10.1016/j.ecoinf.2024.102514
https://doi.org/10.1016/j.ecoinf.2024.102514
https://doi.org/10.1016/j.gsd.2023.101049
https://doi.org/10.1007/s10653-023-01845-9
https://doi.org/10.1007/s10653-023-01845-9
https://doi.org/10.3390/su13147515
https://doi.org/10.3390/su13147515
https://doi.org/10.1016/j.jhydrol.2017.10.018
https://doi.org/10.1007/s42452-021-04521-8
https://doi.org/10.1007/s42452-021-04521-8
https://doi.org/10.1016/j.jglr.2022.01.015
https://doi.org/10.1016/j.scitotenv.2011.04.015
http://www.sourcewaterinfo.on.ca/images/uploaded/uploadedDownloads/WC_Chap2_Mar_08.pdf
http://www.sourcewaterinfo.on.ca/images/uploaded/uploadedDownloads/WC_Chap2_Mar_08.pdf
https://doi.org/10.1029/2018JG004423
https://doi.org/10.1016/j.scitotenv.2017.07.119
https://doi.org/10.1016/j.scitotenv.2017.07.119
https://doi.org/10.1016/j.envres.2023.117769
https://doi.org/10.1016/j.indic.2023.100247
https://doi.org/10.1016/j.jhydrol.2016.08.042
https://doi.org/10.1016/j.jhydrol.2016.08.042
https://doi.org/10.1016/j.envres.2023.117755
https://doi.org/10.1002/hyp.14565
https://doi.org/10.1002/hyp.14565
https://doi.org/10.1016/j.gsd.2017.12.012
https://doi.org/10.1016/j.gsd.2017.12.012
https://doi.org/10.1016/j.scitotenv.2020.144057
https://doi.org/10.1016/j.ecolind.2022.109084
https://doi.org/10.1016/j.scitotenv.2022.155180
https://doi.org/10.5194/hess-25-811-2021
https://doi.org/10.1016/j.scitotenv.2015.07.080
https://doi.org/10.1016/j.watres.2020.115788
https://doi.org/10.1016/j.jenvman.2021.112674
https://doi.org/10.1016/j.jenvman.2021.112674
https://doi.org/10.1016/j.watres.2024.122474
https://doi.org/10.1016/j.jhydrol.2021.126841
https://doi.org/10.1016/j.ecolind.2022.108977
https://doi.org/10.1016/j.jenvman.2024.121932
https://doi.org/10.1016/j.jenvman.2024.121932
https://doi.org/10.1007/s00477-019-01732-9
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1543852

	Regression-based machine learning models for nitrate and chloride prediction in surface water in a small agricultural sand  ...
	1 Introduction
	2 Study area and data collection
	2.1 Site description
	2.2 Dataset collection and description
	2.3 Hydrological and meteorological conditions
	2.4 Surface water quality parameters

	3 Methods
	3.1 Machine learning (ML) regression models
	3.2 Evaluation metrics of ML regression models
	3.3 Data analysis and pre-processing
	3.4 Modeling approach
	3.5 Interdependence analysis
	3.6 Feature importance analysis

	4 Results and discussion
	4.1 Interdependence analysis
	4.2 ML regression models and the optimal models
	4.3 Feature importance analysis
	4.4 Overall insights about the ML models
	4.4.1 Selection of ML regression models
	4.4.2 Applicability and transferability of ML models
	4.4.3 Major contributions, limitations, and future research steps


	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


