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Climatic feedbacks and ecosystem impacts related to dust in the Arctic include
direct radiative forcing (absorption and scattering), indirect radiative forcing (via
clouds and cryosphere), semi-direct effects of dust on meteorological
parameters, effects on atmospheric chemistry, as well as impacts on
terrestrial, marine, freshwater, and cryospheric ecosystems. This review
discusses our recent understanding on dust emissions and their long-range
transport routes, deposition, and ecosystem effects in the Arctic. Furthermore,
it demonstrates feedbackmechanisms and interactions between climate change,
atmospheric dust, and Arctic ecosystems.
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1 Introduction

During the last 4 decades, the warming in the Arctic has been nearly four times faster
than the overall warming in the rest of the Earth (Rantanen et al., 2022), a phenomenon
called Arctic amplification (AA) (Ghatak and Miller, 2013; Gong et al., 2017; Gaston, 2020;
Rantanen et al., 2022). There are several Arctic-specific feedback processes (Arnold et al.,
2016), which are both a consequence and a driver of the observed AA (e.g., Dai et al., 2019;
Serreze et al., 2009). However, warming is not homogeneous across the Arctic, but instead
dependent on scale, location and season (Westergaard-Nielsen et al., 2018; You et al., 2021).
For example, in Greenland, warming has been largest in the west (Abermann et al., 2023),
yet many weather stations along the Greenlandic coast show no clear trend in increasing
surface temperatures (Cappelen et al., 2021). On a regional scale, areas in the Eurasian
sector of the Arctic Ocean have warmed even up to seven times as fast as the globe
(Rantanen et al., 2022).

The United Nations (UN) General Assembles and the UN Coalition to Combat
Desertification (UNCCD) (UNEP, 2016; UNCCD, 2022) reiterated that the global
frequency, intensity, and duration of Sand and Dust Storms (SDS) have increased in
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the last decade and that SDS have natural and human causes that can
be exacerbated by desertification, land degradation, drought,
biodiversity loss, and climate change. UNCCD and FAO (2024)
also highlighted that emerging SDS source areas have been
associated with the warming of the Arctic and high latitude
regions, the seasonal or permanent drying of inland waters and
river deltas, or are following large-scale deforestation and wildfires,
or even the ploughing of a single field. Loss of snow cover, retreat of
glaciers, and increase in drought intensity due to climate change can
lead to surface conditions that increase the likelihood of creation,
continuation and expansion of SDS source areas.

Aeolian dust refers to particles that originate from the Earth’s
surface and are light enough to be suspended by wind and
turbulence in the atmosphere, carried by the wind for significant
distances, but heavy enough to be deposited by sedimentation.
Additionally to air quality impacts, dust affects both weather and
climate, but is also driven by those: dust life cycle, i.e., emissions,
atmospheric transport, and deposition, are dependent on soil
properties, weather and climatic conditions. Long-range transport
(LRT) of dust to the Arctic and impacts of high-latitude and Arctic
dust emissions is an emerging topic, also recognized as an important
climate driver in the Polar Regions (IPCC, 2019; AMAP Arctic
climate change update 2021; IPCC, 2021; IPCC, 2023). Each

component of the dust cycle is influenced by natural processes
(e.g., desertification, permafrost thaw, glacier melt and retreating
snow-covered surfaces in general) and anthropogenic activities (e.g.,
degradation of agricultural and eroded lands, deforestation,
construction, mining, and landfills). The dust cycle facilitates the
exchange of particles among Earth’s major systems, e.g.,
atmosphere, lithosphere, hydrosphere, cryosphere, and biosphere,
enabling dust to traverse ecosystems. A well-known example is
Saharan dust fertilizing Amazonia by providing annually about
22,000 tonnes of phosphorus and other nutrients for the area
(Yu et al., 2015). Even Greenland’s ice-free areas have long been
identified as locally important dust sources (Hobbs, 1942; Wientjes
et al., 2011; Bullard and Mockford, 2018).

Aeolian dust, depending on the disciplinary context, can refer to
all primary emitted particles to the atmosphere from the Earth’s
surface, or only to the inorganic (mineral) fraction of dust. Dust can
also contain organic (e.g., soil organic matter, bacteria, fungi, fungi,
algae, pollens, spores, insect and plant fragments), synthetic
substances (e.g., fertilizers and microplastics), and adsorbed
nutrients and heavy metals. During the transport of dust particles
in the atmosphere, they can also undergo chemical and physical
transformations, whereas labile fractions of nutrients and metals can
be found within the organic fractions (Brahney et al., 2024). For

FIGURE 1
Climate and ecosystem related interactions of aeolian dust in the Arctic. These include direct radiative forcing (absorption and scattering), indirect
radiative forcing (clouds and cryosphere), and effects on atmospheric chemistry and on terrestrial, marine, fresh water, and cryospheric ecosystems. In
addition, semi-direct effects of dust on meteorological parameters (e.g., atmospheric pressure, temperature profile and cloudiness) affect the radiative
balance in the atmosphere. Dust deposition can supply ecosystems with macro and micronutrients, acid-neutralizing capacity, heavy metals,
microbes and other biota, synthetic materials, and light-absorbing particles.
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clarity, dust is defined here as a terrestrial sediment, sized <100 μm
which is transported in aeolian suspension.

We focus here on interactions between climate, the life-cycle of
dust, and ecosystems (flora and fauna), in the northern high-
latitudes ≥50°N and Arctic ≥60°N (Figure 1). Climate and
ecosystem relevant feedbacks include direct radiative forcing
(absorption and scattering) and indirect radiative forcing
(modified cloud properties through seeding cloud droplets and
ice crystals) and any kind of dust impact by dry and wet
deposition on snow- and ice-covered surfaces. Atmospheric
chemistry is affected since dust can serve as a sink for radiatively
important atmospheric trace gases. Terrestrial, marine,
freshwater, and cryospheric ecosystems can show increased
productivity and carbon uptake through deposition of dust
delivering nutrients like iron and phosphorus. Scattering of
solar shortwave (SW) radiation cools the climate, whereas SW
absorption warms the climate. Both the scattering and absorption
of terrestrial longwave (LW) radiation warm the climate as both
decrease the transparency of the atmosphere to terrestrial LW
radiation (Kok et al., 2023). The semi-direct effect (Hansen et al.,
1997) represents the thermodynamic effect of dust, absorbing
solar radiation, on meteorological parameters (e.g., atmospheric
pressure, temperature profile and cloudiness) which in turn
affects the radiative balance in the atmosphere. It tends to
increase the static stability of the atmospheric boundary layer
and suppress convection and cloud formation, so as a result
allows more solar radiation to penetrate to the surface and
counteracts the direct effect.

Dust provides a positive radiative forcing on the order of a few
tens of Wm-2 at the top of the atmosphere through the shortwave
and longwave scattering and absorption, and the albedo decreases of
snow and ice surfaces. High-latitude dust contributes significantly to
this forcing, especially during summer and autumn (Kylling et al.,
2018; Markowicz et al., 2022). High-latitude emissions thus lead to
highly effective regional climate forcing (Kylling et al., 2018). In
contrast, high-latitude dust constitutes a negative forcing on the
order of a few tenths of Wm-2 due to depletion of the liquid water
path and change of cloud phase of lower level mixed-phase clouds
(Shi et al., 2022; Kawai et al., 2023). Clouds at high latitudes
frequently persist in a supercooled state (Murray et al., 2021). In-
situ observations and models have shown that HLD serving as a
highly potential INP converts cloud droplets to ice crystals, leading
to dramatic reduction of a cloud’s liquid water content while
reducing its albedo and exposing the surface underneath.
Increased downward longwave radiation results in positive
climate feedback. HLD has been shown to be highly effective
biogenic ice-nucleating material while dust from the most
prominent low latitudes is abiotic (Tobo et al., 2019; Meinander
et al., 2022). During transport, dust scatters and absorbs SW and LW
radiation, modifies cloud properties, mixes with other aerosols and
serves as a sink for radiatively important atmospheric trace gases
(Kok et al., 2023; Mahowald, 2011). When deposited, dust darkens
snow and ice and stimulates ecosystem productivity and carbon
dioxide drawdown through the delivery of iron and phosphorus.
These mechanisms both cool and warm the climate system, the net
effect of which is uncertain and accordingly, the sign and magnitude
of radiative perturbations arising from increases in dust since the
pre-industrial era are also uncertain. This means that it is unknown

whether global dust changes have enhanced or opposed
anthropogenic warming (Kok et al., 2023).

2 Dust sources

The Earth’s largest and most persistent dust sources are known
to locate in the Northern Hemisphere, mainly in a broad “dust belt”
that extends from the west coast of North Africa, over the Middle
East, Central and South Asia, to China (Prospero et al., 2002). A new
dust source area appeared recently at the bottom of the Aral Sea that
dried out during the last 50 years (Chen et al., 2022). Dust from low
latitudes also reaches the Arctic through atmospheric transport.
There are, however, important large dust sources also in the
Southern Hemisphere, located in Australia, Africa and South
America. Dust emission sources located at the northern high
latitudes have been added to the discussion more recently
(Bullard et al., 2016; Meinander et al., 2022), where the term for
northern “high latitude dust” (HLD) has been defined to consider
high latitudes as areas ≥50°N (Bullard et al., 2016). “Arctic dust,” in
turn, has been used for dust emissions from latitudes ≥60°N (e.g.,
Meinander et al., 2022; Matsui et al., 2024). Moreover, Meinander
et al. (2022) have recently presented evidence for a “northern HLD
belt”, defined as the area north of 50° N, with a “transitional HLD-
source area” extending at latitudes 50°–58°N in Eurasia and
50°–55° N in Canada and a “cold HLD-source area” including
areas north of 60° N in Eurasia and north of 58° N in Canada,
with currently “no dust source” area between the HLD and low-
latitude dust (LLD) belt, except for British Columbia.

Bullard et al. (2016) have estimated that high-latitude sources
cover >500,000 km2. Meinander et al. (2022), in turn, presented
source intensity (SI) values, which show the potential of soil surfaces
to act as sources for dust scaled to values from 0 to 1 concerning
globally most productive sources, using the Global Sand and Dust
Storms Source Base Map (G-SDS-SBM, Vukovic, 2019). They
estimate that northern high-latitude land areas with higher (SI ≥
0.5), very high (SI ≥ 0.7), and the highest potential (SI ≥ 0.9) for dust
emission cover >1,670 000 km2, >560,000 km2, and >240,000 km2,
respectively. In the Arctic HLD region (≥60° N), in turn, land area
with SI ≥ 0.5 is 5.5% (1,035 059 km2), area with SI ≥ 0.7 is 2.3%
(440,804 km2), and area with SI ≥ 0.9 is 1.1% (208,701 km2). Hence,
the estimates from Bullard et al. (2016) agree with the estimate of
Meinander et al. (2022) of very high potential area for dust
emissions, both estimating an area of >500,000 km2.

Typical high latitude dust emissions originate from ice-proximal
areas, including glacier forefields and riverbeds, glacial lake areas,
sandy beaches and deserts, and large old pumice areas around
volcanoes (Bullard and Austin, 2011; Bullard and Mockford,
2018; van Soest et al., 2022; Bullard et al., 2023; Baddock et a.
2024). For example, a recent study showed that dust emissions occur
in the High Arctic desert environment of Peary Land, NE
Greenland, indicating that aeolian dust emissions are likely a
ubiquitous phenomenon along the majority of proglacial river
systems draining the Greenland Ice Sheet (Baddock et al., 2024).
In the northern high latitudes, Iceland has been identified as the
most active source for dust emissions (Bullard et al., 2016;
Meinander et al., 2022). When ice and snow melt or permafrost
thaws as a consequence of warming, new land areas will be revealed,
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and these appear as potential new dust emission sources (Meinander
et al., 2022).

3 Dust emissions and timing

There has been great interest in understanding the role of
aeolian dust emissions in climate by modulating solar radiation
and cloud properties (e.g., Barr et al., 2023). Bullard et al. (2016)
estimated that HLD sources emit at least 80–100 Tg yr−1 of dust to
the atmosphere (~5% of the global dust budget), which they expect
to increase under future climate change scenarios. Other model
results by Groot Zwaaftink et al. (2016) and Meinander et al. (2022)
indicate that Arctic dust emissions amount to roughly 1%–3% of
global dust emissions. In addition, it has been estimated that
1.5–31 Tg of dust aerosols are transported from lower latitudes
to the Arctic region (Böö, 2023). Moreover, dust emissions have
increased in the Arctic during 1981–2020 according to model
simulations by Matsui et al. (2024).

The northern hemisphere dust emission rates vary in response
to environmental conditions, such as seasonal variation in wind
shear, soil moisture content, snow cover and temperature, where,
e.g., snow cover can decline dust emissions (Bullard et al., 2016; Di
Biagio et al., 2018; Meinander et al., 2022). However, Arctic winter
storms and snow-dust storms occur in Iceland (Dagsson-
Waldhauserova et al., 2015; Dagsson-Waldhauserova et al., 2019).
In 1949–2011, Iceland had on average 34–135 dust days per year
(days per year in Iceland with conventionally used synoptic codes for
dust observations) with the highest frequency in winter and spring
in the southern parts of Iceland, and in May-October in the
Northeast Iceland (Dagsson-Waldhauserova et al., 2013; 2014).
Similar frequencies as in the NE Iceland have been reported from
Alaska and Greenland (Crusius et al., 2011; Bullard et al., 2023). The
long-term seasonal variations of local dust storms in Iceland during
1949–2011 (Dagsson-Waldhauserova et al., 2014), reveal that in
southern Iceland March, April and May are the months where dust
events have been most frequent, while in NE Iceland they occur
mainly in summer and early autumn (May–September).

4 Dust transport paths

East Asia and Africa are important sources of dust observed
at higher latitudes in the Arctic, as confirmed by analysis of ice
cores, aerosol samples, satellite observations and numerical
modeling (e.g., Groot Zwaaftink et al., 2016; Đorđević et al.,
2019). Dust has been suggested to travel more than 20,000 km
from a Chinese origin to the French Alps (Grousset et al., 2003),
and over 5,000 km from Africa to Finland with water vapor
transport as the driving force (Meinander et al., 2023). In fact,
during the last 4 decades, 78% of atmospheric rivers occurring
over northwest Africa have been associated with extreme dust
events over Europe (Francis et al., 2022). LRT dust in Finland has
been found to originate from the Sahara, Aral-Caspian and
Middle East (Varga et al., 2023). Records of LRT dust
reaching Finland during 1980–2022 (Varga et al., 2023), reveal
that March, April and May are the months where dust events
have been most frequent. Saharan dust transport across the

eastern side of the North Atlantic Ocean towards the Arctic,
associated with ice melt over the deposition area in Greenland,
was reported by Francis et al. (2018).

Dust from high latitudes is often transported over shorter
distances in the Arctic (Groot Zwaaftink et al., 2016), but it can
also reach lower latitudes (Crusius et al., 2011; Cvetkovic et al.,
2022). In Svalbard, dust emissions from a proglacial river plain
(Adventdalen) indicate the presence of a highly emissive source for
sediments in such environments (Rasmussen et al., 2023). Iceland
receives long-range transported Saharan dust once or twice a year on
average (Varga et al., 2021), while local Icelandic dust has been
collected, e.g., in Svalbard (Moroni et al., 2018). Long-term model
simulations have confirmed large amounts of Icelandic dust
transport to the ocean, but also to Greenland, Svalbard and
Europe (Groot Zwaaftink et al., 2017). Svalbard, in turn, has
been reported to receive LRT dust mostly from Africa, Asia and
Eurasia (Groot Zwaaftink et al., 2016; Di Mauro et al., 2023).

5 Dust deposition and impacts on
ecosystems

5.1 Deposition

Aeolian dust is deposited on soils, lakes, streams, seas and
oceans, on ice and snow, as well as on vegetation, across the
Arctic region (Bowen and Vincent, 2021). Ecosystem
implications are highly dependent on the dust amounts and
specific particle properties, e.g., mineral composition (Baldo
et al., 2020; Varga et al., 2021) and nutrient concentrations
(Arnalds et al., 2014) and timing of deposition. For wet and dry
dust deposition, the ecosystem effects may vary depending on the
location, season and geographical scale (e.g., Meinander et al., 2022;
2023). With increasing altitude, contributions from remote sources,
especially Africa and Asia, are increasing and LRT dust therefore
becomes more important for dust loads in the Arctic (Groot
Zwaaftink et al., 2016). Kavan et al. (2024), in turn, have
reported a correlation between dust deposition and the altitude
of sampled dust in Svalbard stating that with higher altitude lower
deposition amounts were found, implying a high
probability for LRT.

For global dust emissions and their Arctic deposition,
Meinander et al. (2022) calculated that when total annual
global dust emissions for <30 µm particles are 3,000 Mt
(megatonnes), then deposition on Arctic snow is 7.6 Mt, on
Arctic Sea ice 4.7 Mt and on Arctic Sea surface 21 Mt. In
comparison, Arctic dust with a total emission of 30 Mt has
4 Mt deposition on Arctic snow, 3 Mt on Arctic sea ice, and
12 Mt on Arctic Sea surface. Simulations by Groot Zwaaftink
et al. (2016) on the other hand, indicated that over 83% of dust
deposited on Arctic sea ice originates from HLD sources, since
due to limited convection, larger particle sizes and enhanced
efficiency of removal, dust emitted in these source regions is
mostly deposited closer to the source. Also, for coarse particles,
one could expect an increasing contribution from nearby sources.
Moreover, Icelandic top sediments show coarser particle size
distributions compared to the high dust-emitting crusts from
mid-latitude arid regions (González-Romero et al., 2024).
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5.2 Dust contributions to ecosystems

Dust can affect the ecosystems through numerous mechanisms,
for example,:

1. Dust as a light absorbing particle in cryospheric ecosystems.
Dust can impact via an “ice-albedo feedback”, which increases
cryospheric melt and the effective snow grain size as a result of
a darker (low albedo) surface, and may shorten the melt period
and influence water availability (Painter et al., 2012; Meinander
et al., 2013; Skiles et al., 2018; Boy et al., 2019). In contrast,
insulation and prevention of snow and ice from melting is
observed with a sufficiently thick layer of particles (Wittmann
et al., 2016). Natural debris flows have also prevented large ice
masses from melting in Iceland (Ben-Yehoshua et al., 2020;
Kavan et al., 2024). The cryosphere also includes cryoconite
(Di Mauro et al., 2017), a mixture of mineral and organic
material covering glacial ice, playing important roles in
biogeochemical cycles and lowering the albedo of a glacier
surface formed by dust, small rock particles, soot, andmicrobes
(Piotr et al., 2022).

2. Dust as a nutrient and factor affecting atmospheric carbon
dioxide fixation.Dust can supply macro- andmicronutrients to
marine (Gaston, 2020; Meinander et al., 2022), freshwater
(Scholz and Brahney, 2022), and terrestrial ecosystems
(Aciego et al., 2017; Ponette-González et al., 2018). Dust
can enrich surface soils with a wide range of nutrients (P,
K, Mg, Na, Ca, Fe, Cu,Mn andMo) and some elements have an
indirect effect on the availability of other elements (McTainsh
and Strong, 2006). HLD of volcanic origin, e.g., from Iceland
and Alaska, is rich in bioavailable iron with significantly higher
solubility (up to 30%) than the typical low latitude dust with
low pH (Baldo et al., 2020). This can impact primary
productivity and nitrogen fixation in the North Atlantic and
Pacific Oceans and lead to additional carbon uptake. Iron
deposition on the ocean can be higher around Iceland than
west of Africa (Arnalds et al., 2014). Impacts of phosphorus
minerals on ice algal blooms have also been documented
(McCutcheon et al., 2021). The highest dust deposition rates
in Iceland have been found in the areas with the highest
densities of bird nests (Gunnarsson et al., 2015).

3. Dust is a factor affecting acidity. Dust has been found to
contribute to the alkalization of precipitation pH (Grider
et al., 2023), and to altering the surface water pH,
depending on the chemical composition (Brahney et al., 2024).

4. Dust as a distributor of biota. Dust can deliver microorganisms
(Dastrup et al., 2018), microfauna (Rivas Jr et al., 2018) and
organic material (Field et al., 2010) to the recipient ecosystems.
Diatoms and organic material can be transported during snow-
dust storms in Iceland (Dagsson-Waldhauserova et al., 2015).

5. Dust as a provider of toxins. Dust can bring toxins to the
ecosystems (Fubini and Fenoglio, 2007).

6. Dust as a contributor for soil formation. Dust can be an
important contributor to pedogenesis, i.e., the phenomenon
leading to soil formation (Munroe et al., 2024).

7. Dust as a modifier of atmospheric radiation, clouds and
precipitation. Dust aerosols absorb and scatter solar
irradiance (Kok et al., 2023) and act as cloud condensation

nuclei (CCN) and ice nucleating particles (INPs) (Creamean
et al., 2022; Barr et al., 2023; Kok et al., 2023) having a direct
and indirect effect on Arctic climate. Varga et al. (2023) found
that during 1980–2022 all winter LRT dust events reaching
Finland were associated with freezing rain. Indirect ecosystem
effects of dust in the Arctic ecosystems include impacts on the
availability of light and water (atmospheric radiation, cloud
formation and precipitation).

Anderson et al. (2017) have stated that dust input to soils and
lakes may have substantial ecological impacts in Greenland, while in
Iceland, deforestation of large native woodlands by Vikings only up
to 120 years after the settlement led to almost total elimination of
forests (Aradottir and Arnalds, 2001). Final ecosystem collapse
occurred with the arrival of colder climate and massive erosion
where the vegetated ecosystem was turned into desert, existing until
today in large parts of Iceland and forming a large source of high-
latitude dust.

6 Discussion and future perspectives

This brief review examines feedback and interactions between
climate change, dust life-cycle, and ecosystems in northern high-
latitudes and the Arctic. The multiple mechanisms related to dust
emissions, transport and deposition both cool and warm the climate
system, with an uncertain net effect. Dust plays a significant role in
terrestrial and aquatic ecosystems, e.g., by providing nutrients, and
with impacts on the availability of light and water. Due to Arctic
warming, HLD dust emissions can be expected to increase. For
example, Matsui et al. (2024) found that the globally simulated dust
emission flux in the Arctic (>60°N) increased by 20% from 1981 to
1990 to 2011–2020.

Reanalysis data sets, which combine modeling and remote
sensing data, estimate that 1.5–31 Tg of dust aerosols are
transported from lower latitudes to the Arctic region (Böö, 2023).
The contributions of LLD and HLD complicates the interpretation
of how much different sources contribute to the dust loadings and
corresponding temporal and spatial deposition patterns. Another
challenge is that low latitude dust source emissions of road and
agricultural dust is barely characterized at all (Kristensson
et al., 2024).

In future research, cross-sectional networking of atmospheric
high latitude dust experts (measurement, modeling and remote
sensing communities) with soil and cryospheric experts should
be utilized for identification of current and future dust source
locations and particle properties (on the ground, when
windlifted, during transport and when deposited). Optical
properties of various dust types need to be investigated to
estimate their climatic significance. For example, for dark
Icelandic dust, the imaginary part of the complex refractive
index (i.e., absorption properties) at 660–950 nm has been
found 2–8 times higher than most of the northern Africa and
eastern Asia dust samples (Baldo et al., 2023), and dust
deposition amounts in the Arctic have been estimated larger
in terms of mass than those of BC (Meinander et al., 2022), and
the absorption potential of Icelandic dust similar to BC
(Peltoniemi et al., 2015).
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In the future, dust emissions from northern soils are expected to
increase, e.g., due to increase of bare ground as a result of glacier
retreat, permafrost thaw and melt of snow- and ice-covered surfaces.
There is an urgent need also for a better understanding (e.g., Matsui
et al., 2024; Romanello et al., 2024) of the complex counterbalancing
feedbacks related to Arctic dust, e.g., shortwave and longwave cloud
radiative effects (CREs), induced by the increase in temperature
(temperature feedback) and by the increase in dust emission flux and
atmospheric burden (emission feedback). For example, Matsui et al.
(2024) found that an increase in dust emission weakened the
sensitivity of ice nucleation in Arctic lower tropospheric clouds
to warming by 40%, as compared to the case without Arctic dust
emission increase.
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