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Solar photocatalysis has the potential to reduce chemical and microbial
contaminants in water and make it safer for consumption in an effective and
sustainable manner. This has been studied and proven well under laboratory-
scale conditions. In our previous work, the developed solar photocatalyst, Bi-
TiO2-P25 has been tested for its efficiency in reducing total coliform from natural
waters under solar light. Along with the promising results (up to 99% reduction of
total coliform and 99.9% reduction of Escherichia coli in 2 hours), the
uncertainties due to environmental factors associated with the process were
also observed. The reaction rate was largely impacted by the change in sunlight
intensity over the treatment or different initial concentrations of contaminants in
natural water. Therefore, it becomes essential to understand how the
performance would be impacted in such varied conditions to predict the
optimum results. This paper discusses how the treatment time could be
impacted by uncertainties affecting either the kinetic rate constant, or the
initial concentration of bacteria, or both, as well as external factors such as
solar intensity and other randomly varying factors during the treatment.
Mathematically exact results are derived and future development trends, and
challenges are discussed while providing a prospective outlook for the
deployment of solar photocatalysis at pilot scale.
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1 Introduction

Surface water bodies are valuable resources of water supply but highly prone to chemical
and microbial contamination (Walker et al., 2019; Singh et al., 2024; Syeed et al., 2023).
Chemical contamination is primarily caused by untreated industrial wastewater being
discharged into water bodies, introducing pollutants such as dyes, antibiotics, pesticides,
and more. Microbial contamination, on the other hand, is mainly the result of both natural
processes and anthropogenic activities. Once contaminated, the microbial level can rise
rapidly by bacteria multiplication and chemical contamination can lead to several
resistances such as antibiotic resistance, algal blooms, etc. (Stevenson et al., 2015). The
most common microorganisms that can be present in surface waters are total coliforms,
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fecal coliforms, and E. coli (E. coli) due to either the organisms found
in water or animals having access to that surface water body (Cabral,
2010). Effective and sustainable treatment of surface water can not
only utilize that resource but also lead to healthy and safe water
consumption throughout the world. For such treatments,
chlorination has been proven an effective approach for decades
but it has its own limitations; for example, it ends up creating
harmful by-products in water which are toxic to consume (Al-Abri
et al., 2019). To overcome that, Advanced Oxidation Processes
(AOPs) have gained attention in treating water in a more
sustainable manner as they can mineralize the contaminants and
avoid transferring them into solid and/or air phases (Hübner et al.,
2024; Dhamorikar et al., 2024). Among AOPs, photocatalytic
oxidation, in particular, is acknowledged to be highly effective in
degrading both chemical as well as microbial contaminants in water
treatment (Kuspanov et al., 2024; Serik et al., 2024). In order to make
this technique even more sustainable, efforts are being put on to
drive this technology using solar light (Ren et al., 2021).

Previous field studies (Porley et al., 2020) and assessment of
catalyst substrates (Porley and Robertson, 2020) strongly indicate
the possibilities of using this technology in a sustainable manner in
real-world conditions. In a recent paper, a solar photocatalyst, Bi-
TiO2-P25, was developed and tested for its ability to degrade
chemical and microbial contaminants from water under
laboratory-scaled conditions (Arora et al., 2025). Moreover, the
developed photocatalyst offers the added benefit of being low-
cost, as it is made from affordable materials, e.g., TiO2 which is
one of the most stable, versatile and studied photocatalyst (Alimard
et al., 2024). The estimated raw material cost is approximately
5 USD/g, with 1 g of catalyst coating approximately 150 g of
treating substrate (i.e., glass chips). Considering that 150 g of
chips can treat up to 15 L of water, the total treatment amounts
to 0.33 USD/L.

To assess the efficiency of catalyst to degrade chemical organic
contaminant and (E. coli) in laboratory scale tests, 4-Chlorophenol
was chosen to study microbial degradation (Arora et al., 2025). On
achieving efficient results, the study was scaled up, and field trials
were conducted in rural India in March’23, where the photocatalyst
was tested to degrade total coliform and E. coli in real-world water in
the presence of sunlight (Arora et al., 2025). However, field tests
have primarily focussed on microbial contaminant degradation to
adress the specific need of the area.The results unveiled that the
developed catalyst can reduce up to 99% of total coliform and 99.9%
of E. coli in 2 h under direct sunlight. However, the treatment
process was notably influenced by independent variables, including
solar light intensity, bacterial contamination levels, and the
reusability of the photocatalyst. After achieving such promising
results in field trials, it becomes crucial to understand how
environmental uncertainties can affect solar photocatalytic
oxidation and how the technology can be improved to achieve
even better performances. Advancements in this direction will allow
the transfer of technology to a practical scale. For example, the
statistics of the treatment time as a function of uncertainties
affecting the process variables will allow to better quantify the
probability of failure given the size of the reactor and the catalyst
or, vice-versa, design the best reactor size and catalyst by imposing
the level of risk, etc.

In the present work, two types of uncertainties affecting the
reaction process are considered. The first one is the statistical
variability of the reaction parameters, namely, the reaction
constant and the initial concentration of bacteria. The so-called
derived distribution approach is used to study how the statistical
change in one or both parameters - considered belonging to a
given statistical distribution - impacts the statistical distribution of
the treatment time. The second one is the source of variability
directly affecting the reaction dynamics via a continuously
(randomly) changing reaction constant. The latter case
corresponds to environmental noise effects influencing the
reaction process such as variable cloudiness and radiation or
imperfect and inhomogeneous mixing, which technically
transform the reaction kinetics into a stochastic differential
equation of the Langevin type (Cox and Miller, 1977; Gardiner
et al., 1985; Van Kampen, 1992). Furthermore, the theory of
stochastic processes is used to derive mathematically exact
solutions for both the probability density functions of the
concentration at all times and the treatment time.

2 Methodology

2.1 Bi-TiO2-P25 photocatalytic oxidation

The main steps of the low-cost methodology adopting Bi-
TiO2-P25 as the photocatalyst in the laboratory as well as the
field are shown in Figure 1. The process begins with synthesizing
the solar photocatalyst and coating it on recycled glass chips. Amore
detailed description of the synthesis procedure, as well as the
material characterization, is mentioned in the Supplementary
Material. For laboratory analysis, the glass chips were immersed
in the water to be treated and illuminated with light (UV led) of
optimum wavelengths (λ � 365nm and λ = 410 nm). Direct sunlight
was also tested, as a reference case (Arora et al., 2025). In the field,
transparent plastic bottles were used as containers for treatment.
The bottles were filled with water to be treated and 45 g of catalyst-
coated chips were added. The bottles were exposed to sunlight for 2 h
and rotated every 15min to ensure a uniformmixing of water during
treatment (Arora et al., 2025).

For both laboratory experiments and field tests, it is well known
that photocatalytic oxidation for microbial contaminants follows
first-order kinetics (Lebedev et al., 2018; Tran et al., 2023; Masoom
et al., 2024). Accordingly, the corresponding equation describing the
temporal evolution of the concentration for the microbial
contaminant, A, is:

A t( )[ ] � A 0( )[ ] e−K t, (1)
where [A(t)] is the concentration of bacteria at time t, [A(0)] is the
initial concentration (i.e., at time t � 0), and K is the first-order rate
constant. For the sake of brevity, the notation [A(t)] is hereafter
replaced by c(t). Assuming a valueCT as a target concentration to be
reached at the end of the treatment, the treatment time, τ, can be
calculated as

τ � 1
K
log

C0

CT
[ ] (2)
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with C0 the initial concentration of the microbial
contaminant (i.e., C0 � [A(0)]).

2.2 Sources of indeterminate
(random) errors

According to Equations 1 and 2, the reaction and the treatment
time depend on the concentration of one reactant only. However, in
practical situations the reaction is affected by many factors such as
light intensity, catalyst pore size, solubility, catalyst efficiency, band
gap, light distance, type of contaminant, etc. (Kim et al., 2024). The
field studies also uncovered similar observations for instance, the
rate and reaction efficiency significantly depended on environmental
factors such as solar intensity and rotation frequency due to mass
transport effects (Arora et al., 2025). Therefore, besides considering
statistical changes in the initial concentration, it is important to take
into account the sources of variability in the reaction constant to
predict the photocatalyst’s and overall treatment’s efficiency. Two
cases are studied in detail, namely,: i) uncertainty in the initial
concentration for a given rate constant K, and ii) uncertainty in the
rate constant for a given initial concentration, C0, of the
contaminant.

The uncertainty in the initial microbial concentration in the
water (colony-forming unit (CFU) per mL) with which the
treatment begins is given by the pollution process due to

environmental or anthropic origin. As such, the concentration
may have temporal and spatial variability (e.g., location of the
water source). Without describing the current reason for such
variability in the field measurements, in this work, simple
probability density functions to describe the uncertainty in the
initial concentration are accounted for.

The uncertainty in the reaction rate may depend on the
environmental variables governing the treatment process, such as
solar intensity, photocatalyst usage, and lifespan (i.e., the time after
which regeneration is required). The latter effect, however, would
affect the process at much larger timescales and is therefore not
considered in this work. In a previous publication, Arora et al.
(2025) showed that the treatment efficiency depends on the light
wavelength used during the process, as well. Similarly to the previous
case, an analysis based on the probability distribution functions is
performed to study the effects induced by variability in the rate
constant. Additionally, a stochastic approach considering a
continuously changing constant rate is involved (see Section 2.4).

Additional sources of uncertainty in the final treatment time
(Equation 2) are related to the variability of the target concentration,
CT, and the volume of treated water. In this regard, all the
experimental and field measurements were performed using the
same amount of water. Therefore, hereafter any uncertainty related
to possible variation of treatment efficiency in relation to the treated
volume is not considered. Noteworthy, the quantity CT this quantity
usually represents the minimum concentration of bacteria

FIGURE 1
Illustration of the developed low-cost Bi-TiO2-P25 solar photocatalyst, the coating on the recycled glass chips followed by the laboratory, and the
field test set up (modified from Arora et al., 2025).
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considered safe to consume for a drinking water treatment
technology. The value of CT may come from local or worldwide
guidelines. For instance, the World Health Organisation (WHO)
recommends that no coliform (in terms of CFU)must be present per
100 mL of water to match the drinking water standard (World
Health Organization, 2022). Given that the value represents a target
value based on different references, it is not correct to consider it as a
random variate for the same treatment. Accordingly, it is considered
deterministic and set equal to an exemplary value CT � 50 CFU/mL
throughout the analysis.

2.3 Derived distribution approach

The derived distribution approach (Kottegoda and Rosso,
2008) allows calculating the probability distribution function
(pdf) of a variable, y � f(x), where x is a random variable
with known pdf (i.e., px(x)) and f(x) is a monotonic and
derivable function on a certain interval [X1, X2].
Consequently, the variable y is bounded within the interval
[f(x1), f(x2)]. The rule of mass conservation for the pdf.s
allows to write

∫f X2( )

f X1( )
py y( )dy∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ � ∫X2

X1

px x( )dx � 1, (3)

where the presence of the absolute value on the left-hand side term
allows for neglecting the sign of the integral when f(X1)<f(X2).
Accordingly, py(y) can be obtained from px(x) by introducing the
change of variable x � f−1(y) and by recalculating the increment
dx � | 1

f′(x)|dy, i.e.,

∫f X2( )

f X1( )
py y( ) dy∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ � ∫f X2( )

f X1( )
px f−1 y( )( ) 1

f′ x( )
∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ dy � 1. (4)

By comparing the two integrand functions and rearranging the
terms it follows that

py y( ) � px f−1 y( )( ) dx
dy

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ � px f−1 y( )( )
dy
dx

∣∣∣∣∣ ∣∣∣∣∣ , (5)

where the term |dydx| � |f′(x)| is the first derivative of the function
f(x) and represents the Jacobian of the change of variable.
Mathematically, this acts as a scaling factor between one
coordinate set and another, thus ensuring that both statistical
distributions represent actual density functions (i.e., have unit area).

The effect of concurrent variation of both the initial
concentration C0 and the rate constant K can be obtained by
interpreting the derived distribution - e.g., with respect to K - as
conditional to the choice of the other variate, i.e., C0. Then, the
following superstatistics leads to the pdf of the treatment times, τ,
including both variates

pτ τ( ) � ∫
Ω
pτ τ|c0( ) pc0 c0( ) dc0, (6)

where pτ(τ|c0) is the derived distribution of the treatment times
given the pk(k) as per Equation 5 and pc0(c0) is the pdf of the initial
concentration. To notice, τ, c0, and k are related by the deterministic
first-order relationship (Equation (1)), which produces a distortion
of the integration domain Ω, and may result in an integral over
multiple regions (an example of the distorted domain is reported in
Section 3.1, and in Figure 4A).

2.4 Stochastic kinetic reaction

Random temporal changes in the rate constant may affect the
actual treatment time. By considering the possibility thatKmay vary
as a consequence of random fluctuations during the process, the
notation k(t) is put in place, and the first-order reaction
equation becomes

dc t( )
dt

� −k t( ) c t( ), (7)

FIGURE 2
Sample realizations of stochastic trajectories driving the process from the initial concentration C0 to the minimum concentration, CT . The reaction
constant, K, and the variance of the process, σ, refer to the average trajectory drawn in black (deterministic trajectory). The corresponding pdf for the
process, pc(c, t � 3h), and the arrival time, pτ(t), are drawn in red and blue, respectively. (A) process with σ � 1[ CFU

mL h0.5]; (B) process with σ � 4[ CFU
mL h0.5].
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subject to the initial condition that c(0) � C0 and that the
minimal concentration c(τ) � CT is reached at the reaction time,
τ. It is of interest to consider k(t) being affected by random
fluctuations induced by factors affecting the treatment process
(e.g., solar intensity, Section 2.2). As previously discussed, this
can be the case originating from environmental noise caused by
variable cloudiness and non-homogeneous mixing within the
reactor. Accordingly, k(t) � K − Δk(t) is considered, where Δk(t)
represents the displacement (noise) of k(t) from the mean value
〈k(t)〉 � K. The noise term, Δk(t), is taken from a Gaussian
distribution with zero mean (i.e., �Δk(t) � 0) and variance
σ2k � 〈Δk(t)2〉. Consequently, one can write Δk(t) � g(C(t)) ξ(t)
where ξ(t) is a Gaussian uncorrelated (i.e., white) noise with zero
mean and strength g(c(t)). Equation 7 can now be rewritten as

dc t( )
dt

� −K c t( ) + g c t( )( ) c t( ) ξ t( ), (8)

or, equivalently,

dc t( ) � −K c t( ) dt + g c t( )( ) c t( ) dW (9)
where dW � ξ(t)dt represents the Wiener process (Van
Kampen, 1992).

Equations 8 and 9 represent the evolution equation of a stochastic
process continuous in time and space (i.e., concentration) and affected
by multiplicative white Gaussian noise (i.e., the noise term ξ(t) is
multiplied by the state variable c(t)). In this work, the attention is paid
to the case of additive noise, that is when the noise term ξ(t) is not
multiplied by the variable concentration c(t)From a dynamic point of
view, the noise term represents continuous corrections to the reaction
trajectory independent of the concentration. Equation 8 can now be
simplified by considering the particular case of g(c(t)) � σ / c(t),
thus yielding

dc t( )
dt

� −K c t( ) + σ ξ t( ), (10)

where σ is the process variance (Daly and Porporato, 2006). It can be
shown that σ and σk(t) are related by the following relationship

σ � σk t( )
������������
C t( )2 − σc t( )2

t

√
, (11)

where C(t) and σ2c(t) are the mean concentration and its variance,
respectively, at each time t.

Equation 10 is commonly referred to as the Ornstein-Uhlenbeck
stochastic process (Uhlenbeck and Ornstein, 1930; Van Kampen,
1992). An example of numerically generated trajectories for this
process (Equation 10) is given in Figure 2, from which clearly
appears the statistical nature of the concentration and the time to
reach the minimum concentration even when starting from the
same initial concentration C0.

Solving Equation 10 cannot be done with usual methods given
the stochastic nature of the process and therefore the loose
mathematical meaning of the solution c(t). However, a statistical
mechanics approach allows for writing the balance equation for the
evolution of the probability density function, pc(c, t), for the
concentration, c of the contaminant A at all times, t. The balance
equation is known as Chapman-Kolmogorov forward equation
and reads

∂pc c, t( )
∂t

� K
∂

∂c
c pc c, t( ) +D

∂2

∂c2
pc c, t( ),+ I.C and B.Cs. (12)

where D � σ2/ 2. The solution of Equation 12 requires one initial
condition and two boundary conditions. As an initial condition, it is
imposed that all trajectories start from the initial concentration at
time t � 0, i.e., pc(c, 0) � δ(c − C0), with δ(·) being the Dirac delta
distribution. Boundary conditions are taken as pc(CT, t) � 0 and
pc(∞, t) � 0, where c � CT represents the lower boundary at the
minimal concentration at which the treatment stops.

The exact solution for pc(c, t) reads (Daly and Porporato, 2006)

pc c, t( ) �
�������������

K

2πD 1 − e−2K t( )

√
e−

K
2D

c−C0 e−K t( )2
1−e−2K t . (13)

From pc(c, t), it is of interest to find the distribution, pτ(τ), of
the times τ to reach the lower boundary at c � CT. This can be
obtained via the so-called survivor function method, which requires
to calculate

pτ τ( ) � − d

dτ
∫∞

CT

pc c, τ( ) dc. (14)

After some algebra one obtains

pτ τ( ) � C0 eK τ − CT����
2πD

√ K

e2K τ − 1
( )3/2

eK τ− K
2D

C0−eK τCT( )2
e2K τ−1 . (15)

2.5 Numerical simulations

Numerical simulations for testing the derived distribution
approach are performed via a standard MonteCarlo technique
and the MatLab software (MatLab 2023b). In particular, random
generation of either initial concentration c0 or rate constant k is
performed by extracting 1000 values from three different probability
distribution functions (i.e., uniform, log-normal, and Gaussian). The
initial concentration, c0, ranges from C1 = 100 CFU/mL and C2 =
700 CFU/mL, and the rate constant, k, varies between K1 = 0.3 h−1

and K2 = 0.7 h−1, which are consistent with the field measurements
(Arora et al., 2025). The generated values are then accounted for to
calculate the corresponding treatment time, τ, using Equation 2. The
generated distribution of treatment time, pτ(τ), is then graphically
compared to the theoretical distribution calculated using the derived
distribution approach (Equation 5).

As far as the stochastic model is concerned, the effects of changing
the parameters of the distribution of k(t), i.e., the mean value, K, and
the process variance, σ, are investigated. The analysis is performed by
calculating the main statistics of the treatment time pdf, pτ(τ)
(Equation 15), that is the mean treatment time, T � ∫∞

0
t pτ(t) dt,

and the time variance, στ � ∫∞
0
t2 pτ(t) dt.

3 Results and discussions

3.1 Derived distribution of process variates

In this study, three probability distributions are used to study the
statistics of the water treatment method: uniform (Supplementary
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FIGURE 3
The probability distribution function, pτ(τ), of the treatment time, τ, as a result of the derived distribution approach (Equation 5) for all the tested
distributions of the rate constant, k, and the initial concentration, c0. (a1) uniform distribution of the constant rate, k (Supplementary Equation S2) and
pτ(τ) given by Supplementary Equation S2; (a2) uniform distribution of the initial concentration, c0 (Supplementary Equation S3) and pτ(τ) given by
Supplementary Equation S3; (b1) normal distribution of the constant rate, k (Supplementary Equation S8) and pτ(τ) given by Supplementary Equation
S8; (b2) normal distribution of the initial concentration, c0 (Supplementary Equation S9) and pτ(τ) given by Supplementary Equation S9; (c1) log-normal
distribution of the constant rate, k (Supplementary Equation S5) and pτ(τ) given by Supplementary Equation S5; (c2) log-normal distribution of the initial
concentration, c0 (Supplementary Equation S6) and pτ(τ) given by Supplementary Equation S6.
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Equation S1), lognormal (Supplementary Equation S4), and
normal (Supplementary Equation S7) distribution. Except for
the uniform one, which is mainly used as a didactical case here,
these statistical distributions are chosen because of their broad
applicability in describing environmental process uncertainties
(Kottegoda and Rosso, 2008). All the three distributions are
scaled between minimum and maximum values based on
experimental and field measurements (Arora et al., 2025), so
that the condition ∫X2

X1
px(x)/Px dx � 1 holds, where the scaling

factor Px is given by the relationship Px � ∫X2

X1
px(x) dx. The

mathematical relationships of the pdf.s, px(x), analyzed in this
work, alongside the derived distribution of the treatment time,
pτ(τ), are reported in the Supplementary Material
(Supplementary Table S1).

Values for either c0 or k were numerically generated as i.i.d
process from the uniform (Supplementary Equation S1), lognormal
(Supplementary Equation S4), and normal (Gaussian,
Supplementary Equation S7) distribution functions, respectively.
For each generated value, the time τ required to reach CT was
calculated by using the first order rate Equation 2 and the resulting
empirical histogram of values compared with the corresponding
theoretical distribution functions obtained via the derived
distribution approach (Equation 5). For all the tested cases, the
results are shown in Figure 3.

Consider first the case of the uniform distribution (Figure 3A):
from a mathematical point of view, one sees that the reaction
dynamics (exponential) transforms a uniform distribution into
exponential ones (see Supplementary Table S1). Moreover, the

effect of the reaction is that of introducing a skewness in the
distribution of the treatment times, τ. Regardless of the
distribution affecting c0 or k, the effect would be to deform such
distributions by either introducing or modifying the original
skewness and kurtosis values. In general, one expects the skew
effect be positive as far as the uncertainty on k is concerned.
Conversely, the effect on the skewness is negative for that
affecting the initial concentration, c0. Figures 3B, C show that
together with the asymmetry described by the skewness, the
mode of the derived distribution may shift its position quite
remarkably as a function of the other control parameter
(i.e., with c0 or k). This is rather important to consider for
upscaling the treatment to the pilot scale, given that for skew
distributions the mean and the mode of the distributions do not
coincide anymore.

In order to move from the laboratory scale to the pilot scale,
understanding the impact of all uncertainties involved in the process
is critical. These uncertainties play a crucial role in optimizing the
efficiency of water treatment using photocatalytic oxidation. In this
regard, the proposed approach (i.e., the derived distribution,
Equation 5) can be used to assess how uncertainties in c0 and k
propagate to the treatment time required to reach the safer limit of
contaminant concentration by using solar photocatalytic oxidation.
For example, in the discussed case, it can be seen that the treatment
time ranges between 1 and 8 h, i.e., in the best case scenarios (with
high solar intensity, less polluted water, etc.) this treatment can
make water safe to consume in around an hour and in worst cases it
can take as long as 8 h. Therefore, in view of its large-scale

FIGURE 4
The bivariate derived distribution approach (Equation 6) and its application to calculate pτ(τ) in the case of uniform pdf.s for both k and c0. (A) The
initial (red rectangular) and transformed domains of integration, Ω, showing the three sub-domains; (B) The pτ(τ,CT ) at varying the final treatment
concentration,CT ; (C) The surface plot of the bivariate pdf of the treatment time, pτ(k, c0). Shading colors represent the corresponding treatment time, τ.
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application, this suggests introducing controls that restrict the
variability of both the initial concentration c0 and the reaction
rate k to narrow ranges.

The role of the initial concentration deserves some more
attention, though. When the initial concentration of pollutants
increases, the treatment time generally increases as well. This is
because a higher concentration of contaminants requires more time
for the photocatalyst to degrade them effectively. However, at higher
concentrations, saturation effects or inhibition due to excess
pollutant concentration might also reduce the overall efficiency of
the process, thereby altering the expected degradation rate (Hanafi
and Sapawe, 2020; Mangrulkar et al., 2012).

The variability in rate constant primarily depends on two
factors: i) the life span of the photocatalyst and, ii) solar intensity
during the treatment. Uncertainties arising from environmental
noises (such as a change in solar intensities during treatment) or
the photocatalyst’s life could lead to variation in the reaction rate
constant, k. A higher k means the reaction occurs more quickly,
leading to a reduced treatment time. Conversely, a lower k would
result in longer treatment times, as the rate of degradation slows
down. Variations in k could arise from factors such as photocatalyst
activity, light intensity, or environmental conditions (e.g., cloud
cover, precipitation) that affect the reaction rate. The comprehensive
understanding of the system’s dynamics is crucial for predicting and
managing performance variations under real-world conditions,
which often differ significantly from controlled experimental
settings. Such insights enable the fine-tuning of operational
parameters such as catalyst load, light intensity, and flow rates,
thus improving sustained treatment efficiency and scalability.
Ultimately, the proposed framework not only enhances the

FIGURE 5
Probability distribution functions of concentration and treatment time for the Ornstein-Uhlenbeck process under analysis. (A) pdf of the
concentration at different times (K � 0.3, σ � 10); (B) pdf of the treatment time, pτ(τ), for different combinations of themean rate constant, K, and process
variance, σ; (C) shaded plot of the treatment time variance, στ , as a function of the reaction constant and the process variance; (D) the mean treatment
time, T , and its variance, στ , as a function of the initial concentration, C0, for different values of the mean rate constant, K.

FIGURE 6
Experimental measurements (points), time evolution and
associated pdf.s of the solar photocatalyst reaction using different
light sources, i.e., wavelengths (blue for λ = 365 nm, orange for λ =
410 nm, yellow for direct sunlight). Data are plotted against the
theoretical first-order reaction with k � K (thick lines) and the shaded
areas represent the corresponding regions of k � K ± σk . Gray lines
show some stochastic trajectories for each light source. The
corresponding pc(c, t) and pτ(t) are drawn.
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robustness of the technology but also facilitates its deployment in
different environmental contexts, ensuring that the system remains
effective even as operating conditions fluctuate.

As the final point of our analysis, an example of the resulting
derived distribution of the treatment time in the case where both c0
and k vary following a uniform distributionis provided. This
requires the approach shown in Equation 6 and the calculation
of the integral therein. Figure 4A shows that the original rectangular
domain, [K1, K2], [C1, C2], becomes a figure with curved sides in the
space K, τ and three integration domains [{τ1, τ2}, {τ2, τ3}, {τ3, τ4}]
(highlighted by different shading colors), the sum of which defines
the whole domain of integration, Ω, of Equation 6. The result in this
case is analytic and exact

pτ τ( ) �

C1 1 − log
C1

CT
[ ]( ) + CT eK2τ K2τ − 1( )

C2 − C1( ) K2 −K1( ) τ2 τ1 ≤ τ ≤ τ2

CT
eK2τ K2τ − 1( ) − eK1τ K1τ − 1( )

C2 − C1( ) K2 −K1( ) τ2 τ2 < τ ≤ τ3

C2 log
C2

CT
[ ] − 1( ) − CT eK1τ K1τ − 1( )
C2 − C1( ) K2 −K1( ) τ2 τ3 < τ ≤ τ4

0 otherwise

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(16)

with τ1 � 1
K2
log[C1

CT
], τ2 � 1

K2
log[C2

CT
], τ3 � 1

K1
log[C1

CT
], and

τ4 � 1
K1
log[C2

CT
]. The corresponding pdf is shown in Figure 4B for

three different final treatment concentrations, CT, with the shaded
regions of the curve pτ(τ, CT � 50) corresponding to the three
integration domains shown in Figure 4A. Figure 4C shows the
bivariate joint distribution pτ(k, c0) obtained by re-substituting
Equation 2 into Equation 16.

To summarize, the proposed study aims to highlight how
treatment times are influenced by variations in initial
concentration, c0, or the rate constant, k, i.e., two key parameters
in photocatalytic processes. On the contrary, this approach is not
able to see how environmental noise forcing the reaction rate to
change during the treatment would affect the treatment time. This is
discussed in the next section.

3.2 Stochastic reaction dynamics

Examples of probability density functions pc(c, t) for the
concentration at different times are shown in Figure 5A for
different times. Notice, the initial peak distribution coincides
with the Dirac delta function at the initial concentration C0 at
time t � 0. As time evolves, uncertainty due to noise produces
diverging trajectories and so the pdf increases its variance while
losing mass when trajectories arrive at the boundary and the process
stops. Increasing the intensity of the noise produces a higher
variance for pc(c, t).

Although the solution for pc(c, t) is inspiring, for practical
reasons, it is more interesting to focus on the statistics of the
first passage time across the boundary, which corresponds to the

treatment time, τ (Van Kampen, 1992; Daly and Porporato, 2006;
Calvani and Perona, 2023). This time is also stochastic in nature and
its statistical distribution, pτ(t), is given by Equation 15, whose
mean coincides with that of the deterministic dynamics,
i.e., Equation 2. Examples of such pdf.s are shown in Figure 5B
for the different mean rate constant K and process noise intensity σ.
The standard deviation of the distribution pτ , that is στ is obtained
numerically for a range of rate constants and noise intensities
(Figure 5C) and a given initial concentration C0. Notice that, as
the environmental noise, σ, decreases in intensity, the variance of the
treatment time, στ depends on the mean rate constant K, only.
Similarly, the effect of different initial concentrations is shown in
Figure 5D. In this case, the change in στ induced by small variations
in the initial concentration, C0, can be assessed by calculating the
derivative ∂στ/∂C0. This procedure (i.e., sensitivity analysis) can be
performed for any variable and parameters affecting the behavior of
another variable. For the specific case shown in Figure 5D and
regarding the treatment time variance, στ , the closed-form
relationship of στ appears to be quite cumbersome and, as such,
a proper sensitivity analysis can only be performed via numerical
tools. However, a quick insight into the sensitivity analysis can be
graphically assessed in Figure 5C (for variation of k) and Figure 5D
(for variation of C0).

As the last aspect of our analysis, the level of dynamic
environmental noise that may have affected the experimental
data is assessed. From the experimental data, Arora et al. (2025)
evaluated the rate constant of the reaction using a simple regression
line to fit the experimental data on a logarithmic plot and obtain the
mean rate constant, K. By taking the mean deviation of the
experimental data from the theoretical reaction law, a first
approximation of the standard deviation σk that may have
affected the rate constant of the reaction during the experiment
is obtained. Using Equation 11, the strength of the noise σ is
calculated. From the mean concentration C(t) and its measured
standard deviation σC(t) the regions within which the reaction was
expected to evolve for all treatments are drawn. Such curves are
shown in Figure 6 together with the experimental points, and some
exemplary “noisy” trajectories for different treatments
corresponding to different light sources. All clearly stay within
the estimated range of variability (colored zone) predicted by the
stochastic model. The same figure also shows the pdf.s of the
concentration, pc(c, t) at the time t � 3h as well as the
corresponding pdf.s of the treatment time, pτ(t). Notice how the
variance of the distribution for the sunlight treatment is higher with
respect to that of the treatment with a light source of constant
wavelength (e.g., λ � 410nm, orange points and curves in Figure 6),
which resulted in the highest mean rate constant.

In the present analysis, the process noise (rate constant
variability) is considered to be originated by (random) variations
in solar radiation and/or cloud cover, including the presence of
precipitation. Due to the chemical nature, it is taken for granted that
fluctuations in water temperature and pH affect the overall reaction
dynamics. Furthermore, additional factors may impact the reaction
dynamics, particularly for pilot-scale treatments. In this case, the
size, shape, and orientation of the tank to sunlight can induce
variations in concentration, potentially dampened by mechanical
mixing. Determining the single contribution of each factor to the
overall dynamic randomness is quite challenging, yet beyond the
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scope of this work. Nevertheless, the process noise σ in Equation 10
may represent the presence of all the potential randomness sources.
As such, one may proceed by calibrating its value based on available
experimental or field data.

4 Conclusion

Following the field trials of the low-cost Bi-TiO2-P25 solar
photocatalyst conducted in March 2023 in rural India, it was
observed that the catalyst’s efficiency was significantly impacted by
several external factors. Key variables such as the initial concentration of
bacteria in the water and the solar intensity during treatment, which
indirectly affected the reaction rate, played a major role in the process.
This study explores the impact of these uncertainties on solar
photocatalytic water treatment and the statistics of the treatment
times. To model these uncertainties, in case they result from a pure
field source basis, the derived distribution approach was employed,
generating randomly distributed values (uniform, lognormal, and
Gaussian) for the initial contaminant concentration, C0, and the
rate constant, k. Treatment times were then calculated for each set
of values, and their histogram was validated against the theoretical
distribution. This model offers a means to estimate average treatment
times while accounting for uncertainties, provided that the distribution
of the initial bacterial concentration and that of the rate constant are
known and do not change during the treatment. The case of randomly
varying rate constant was treated as environmental noise causing
stochastic reaction dynamics, which was solved exactly as far as the
pdfs of the concentration and the treatment times are concerned. This
second approach is more meaningful to describe field-scale
applications, i.e., where sunlight conditions (and so the rate
constant) are not constant but potentially varying because of
random cloudiness and other type of disturbances.

The two proposed approaches can be very useful in estimating
treatment times during the process, enhancing the practicality of this
technology in real-world applications. Additionally, they provide
insights into the operational challenges posed by varying conditions
and helps to optimize the design of solar photocatalytic systems. An
extension of this study could involve examining the stochastic nature of
water arrival, both in terms of volume and timing, and using this
information to optimize the development of large-scale photocatalytic
water treatment systems. This would be particularly valuable for
designing photocatalytic reservoirs that can handle fluctuating water
inputs and optimize treatment times for large-scale applications.
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