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Rapid and accurate soil salinity (SS) analysis is essential for effective management
of salinized agricultural lands. However, the potential of utilizing periodic remote
sensing satellite data to improve the accuracy of regional SS inversion requires
further exploration. This study proposes a novel inversion approach that
combines multi-temporal images captured near the SS field sampling period
(September 5–10, 2020). Focusing on Wudi County, China, we analyzed three
time-series Sentinel-2 images obtained near the sampling period to determine
the inversion time window. Images within the window were synthesized into four
combined-temporal images through three arithmetic operation strategies and
one band combination strategy. SS-related spectral variables derived from both
single and combined-temporal images were selected using Random Forest (RF),
ReliefF, and Support Vector Machine Recursive Feature Elimination algorithms
(SVM-RFE). Subsequently, inversionmodels were developed and compared using
an Extreme Learning Machine. The optimal model was then applied to map
regional SS distribution. The results demonstrate that: (1) combined-temporal
models consistently outperformed single-temporal models, particularly those
employing the band combination strategy, showing a 0.25–0.53 higher mean
Relative Percentage Deviation (RPD); (2) models utilizing RF for variable selection
exhibited superior stability and efficiency, with a mean RPD 0.02 to 0.04 higher
than models using other algorithms; (3) the ELM model with band combination
image and RF variable selection achieved the highest validation precision
(Coefficient of Determination = 0.72, Root Mean Square Error = 0.87 dS/m,
RPD = 1.93); (4) the final SS inversionmap revealed a spatial gradient of increasing
salinity in farmland from the southwestern area toward the northeastern coastal
region, with 46.7% of farmland exhibiting yield-affecting salinity levels. These
findings provide empirical insights into the development of soil remote sensing
techniques and supporting agricultural-environmental management strategies.
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1 Introduction

Soil degradation and compaction caused by salinization pose
significant challenges to land use and ecosystem health, particularly
in arid, semi-arid, and coastal regions (Nawar et al., 2014; Ivushkin
et al., 2019b; He et al., 2023). This issue has become a growing global
agricultural concern (Bian et al., 2021), with soil salinization
expanding at an estimated rate of 2 million hectares annually
(Abbas et al., 2013). The Yellow River Delta, a region with
substantial development potential (Li et al., 2023), is particularly
affected by salinization, with nearly half of its land area experiencing
varying degrees of salt accumulation (Zhang Z. et al., 2023).
Consequently, understanding the salinity status in this region is
crucial for effective agricultural management and sustainable
development. In recent years, precision and smart agriculture
have become central to global agricultural advancements (Ayaz
et al., 2019; Nyaga et al., 2021), driving the need for accurate and
timely soil salinity (SS) monitoring data. Satellite remote sensing has
emerged as the primary tool for SS measurement, offering significant
advantages including large-area coverage, high temporal resolution,
and cost-effectiveness (Vermeulen and Van Niekerk, 2017;
Abuelgasim and Ammad, 2019). However, the accuracy of
remote sensing-based SS quantification is influenced by various
factors such as vegetation type, crop growth stage, and soil moisture
content (Scudiero et al., 2014; Dong and Na, 2021), resulting in
regional and temporal variations in estimation accuracy. These
limitations highlight the necessity for ongoing refinement of
salinity inversion techniques to improve the reliability of remote
sensing predictions.

Two primary approaches have been developed to enhance the
precision of remote sensing-based SS inversion. The first method
transitions from broad regional salinity modeling to more refined,
sub-type-specific models (Bouaziz et al., 2011; Taghadosi et al., 2019;
Nguyen et al., 2020). This approach involves segmenting areas based
on factors such as land use, crop types, or vegetation cover, enabling
the development of customized salinity inversion models for each
sub-type. By analyzing the relationship between SS and spectral
characteristics within these sub-segments, model construction
precision is significantly improved (Allbed et al., 2014). For
instance, Qi et al. (2021) focused on a coastal corn cultivation
area in mid-July, integrating three data sources for SS inversion.
Similarly, Ivushkin et al. (2019a) inverted salinity information for
agricultural fields at Wageningen University’s experimental farm in
the Netherlands in late April. Mukhamediev et al. (2023) further
developed salinity inversion models for three distinct land
types—corn fields, sandy areas, and mixed arable lands—in
southern Kazakhstan. This refined approach, which customizes
models to specific regional salinity spectra, strengthens the
connection between spectral data and salinity, thereby improving
inversion accuracy. However, this method typically relies on
individual satellite images, limiting the utilization of periodic
satellite data.

The second approach involves the use of multi-temporal remote
sensing imagery, which has shown significant advancements in
recent years (Wu et al., 2014; Fathololoumi et al., 2020). By
combining or fusing images captured at different time intervals,
researchers have enhanced the precision of salinity models. For
example, Whitney et al. (2018) developed a time-series vegetation

index from 2007 to 2013 using MODIS imagery to monitor SS in
California’s San Joaquin Valley, demonstrating superior performance
compared to single-image models. Similarly, Wang et al. (2023) utilized
Sentinel-2 MSI images from the Yellow River Delta in eastern China,
applying non-negative matrix factorization to combine images from
bare soil periods in spring and autumn (2018–2021) with vegetation-
covered images from October. This approach minimized vegetation
interference in topsoil salinity estimates, significantly improving model
accuracy. Such methods, which often rely on multi-temporal data
spanning months or years, enrich spectral information and
strengthen the correlation between reflectance and salinity (Lobell
et al., 2007; Furby et al., 2010), helping to isolate SS from
confounding factors (Lobell et al., 2010). However, a key limitation
is that multi-temporal images often cover extended intervals, potentially
leading to temporal mismatches with soil sampling periods and
introducing irrelevant data. Given that SS measurements are
typically obtained within days or weeks, this temporal discrepancy
poses challenges for real-time, accurate salinity prediction.
Furthermore, SS exhibits significant spatial and temporal variability
(Sun et al., 2022), with short-term fluctuations influenced by crop
growth, rainfall, and agricultural practices, complicating spectral data
interpretation. Further research is needed to leverage spectral features
that change over short periods, minimizing external factor impacts and
enhancing inversion accuracy.

Recent research has shifted from broad regional models to more
detailed, type-specific approaches to improve SS inversion accuracy.
However, many studies still rely on single-temporal images, limiting
spectral information and underutilizing the periodic benefits of satellite
imagery. Additionally, multi-temporal studies often use images with
large temporal gaps that may not align with the sampling periods,
affecting real-time salinity prediction accuracy (Morshed et al., 2016). SS
can also fluctuate significantly over short periods due to precipitation,
irrigation, fertilization, and cultivation practices. To maximize the
periodic advantages of satellite data, it is essential to use multi-
temporal imagery closely matching the sampling period. This
approach better captures temporal variations, reduces external factor
influences, and enhances real-time SS inversion accuracy.

To improve regional SS inversion accuracy, this study focuses on
salinized farmland in Wudi County, Shandong Province, China. By
leveraging the periodic advantages of remote sensing satellites, the
study aims to: (1) identify an appropriate inversion time window
before and after sampling and combine multi-temporal spectral data
within this window to enrich salinity spectral information; (2)
evaluate the effectiveness of various spectral variable selection
algorithms; and (3) develop an accurate SS inversion model and
generate detailed salinity spatial distribution map. These outcomes
will provide precise soil salinization data for agricultural
management, environmental protection, and sustainable
utilization of salinized farmland resources.

2 Materials and methods

2.1 The study area and technical flow

2.1.1 Overview of the study area
Wudi County is located in easternmainland China (Figure 1A) and

occupies the northwestern edge of Shandong Province (Figure 1B),
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adjacent to the Yellow River Delta. This region possesses significant
developmental potential but faces substantial challenges from soil
salinization (37°4′–38°16′N, 117°31′–118°04′E). The terrain gradually
slopes from southwest to northeast, with elevations ranging between
2 and 8 m. The climate is influenced by both the East Asian monsoon
circulation and marine effects from Bohai Bay, classified as a northern
temperate East Asian monsoon climate. This climatic regime is
characterized by distinct wet and dry seasons: hot, rainy summers
and cold, arid winters. The annual mean temperature is 14.9°C, with
average precipitation (575.4 mm) significantly lower than annual
evaporation (1881.8 mm). The northern coastal zone is
predominantly composed of salt pans, while southern areas are
dominated by croplands and built-up regions. The primary soil type
in farmland areas is coastal solonchaks. Dryland crops, primarily wheat
and maize, are cultivated locally in a rotation system, with wheat
typically grown as a winter crop and maize as a summer
crop. Irrigation heavily relies on groundwater, where widespread
groundwater salinization—combined with unique climatic
conditions—has led to salt accumulation in surface soils. This has
resulted in severe soil compaction and widespread farmland
salinization, significantly reducing crop productivity.

2.1.2 The technical flow of the study
To investigate the impact of combining multi-temporal images

on SS inversion accuracy, this study implements the workflow

illustrated in Figure 2. The methodology comprises five key steps:
(1) collection and processing of both field-measured and remote
sensing data; (2) identification of the optimal SS inversion time
window and construction of combined images using various
temporal integration strategies; (3) selection of SS-related spectral
variables through multiple feature selection algorithms; (4)
development and comparative analysis of inversion models; and
(5) spatial mapping and validation of salinity distribution patterns.

2.2 Field sampling and data processing

Field sampling was conducted in the agricultural areas of Wudi
County from September 5 to 10, 2020. During this period, cotton
was in the boll splitting and shedding stage, while corn was in the
grain filling and ripening stage, both exhibiting rapid growth
variations. Additionally, frequent irrigation activities occurred
due to high evapotranspiration rates. These conditions resulted in
significant variations in soil and crop spectra, highlighting the
importance of utilizing multi-temporal remote sensing imagery
for effective SS monitoring. A total of 100 sampling sites were
systematically distributed across the study area’s farmland, with
precise locations determined using GPS coordinates. To minimize
sampling errors and enhance data representativeness, a 2 m × 2 m
sampling area was roughly established at each site, centered on the

FIGURE 1
Geographic location of the study area and samples. (A) China; (B) Shandong Province; (C) Distribution of sampling points for farmland in
Wudi County.
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GPS coordinates. Following the five-point sampling method, soil
electrical conductivity (EC, dS/m) measurements were taken at
0–10 cm depth using a portable soil conductivity meter (EC 110,
Spectrum Technologies, United States) at the center and four
corners of each sampling area. The average of the five
measurements was calculated as the final EC value for each
sampling point (Qi et al., 2022). To ensure data quality, outliers
exceeding three times the average Mahalanobis distance (Chen et al.,
2021) were removed using the Mahalanobis distance method, which
accounts for the correlation between EC values and spectral data.
This process resulted in 90 high-quality sample points retained for
further analysis, with their spatial distribution illustrated
in Figure 1C.

2.3 Multi-temporal images acquisition and
processing

This study employed multispectral imagery from the Sentinel-
2A and Sentinel-2B satellites, both equipped with the Multispectral
Instrument (MSI), as the primary remote sensing data sources.
These satellites provide 13 spectral bands spanning the visible to
short-wave infrared spectrum, with consistent central wavelengths
and spatial resolutions of 10, 20, and 60 m. While each individual
satellite has a 10-day revisit period, the combined operation of
Sentinel-2A and 2B reduces the temporal resolution to 5 days,
enabling more detailed monitoring of agricultural activities and

land cover dynamics. Focusing on the sampling period, six scenes of
Level-2A images (geometrically and atmospherically corrected) with
minimal cloud cover were acquired from the European Space
Agency (ESA) website (https://dataspace.copernicus.eu) for three
specific dates: September 1, 6, and 16 (Table 1). The coastal aerosol
band (Band 1) and cirrus band (Band 10), primarily designed for
nearshore water monitoring and cirrus cloud detection respectively,
were excluded from the soil surface parameter inversion analysis.
The remaining 11 spectral bands were resampled to a 10-meter
resolution using three-dimensional convolution interpolation in the
Sentinel Application Platform (SNAP). The six scenes were
mosaicked into three single-temporal composite images (Image 1,
Image 2, and Image 3) using ENVI 5.3 software. These images were
subsequently cropped and classified by land use type to isolate
farmland areas within the study region. Finally, spectral reflectance
values corresponding to each sampling point were extracted using
ArcGIS 10.2 software for subsequent analysis.

2.4 Image and spectral construction

2.4.1 Identification of the appropriate
inversion window

The multi-temporal images contain extensive information,
much of which is redundant for SS analysis. Therefore, the
critical challenge lies in selecting the most relevant features that
contribute to improving SS inversion precision. To address this, we

FIGURE 2
The workflow of this study.

Frontiers in Environmental Science frontiersin.org04

Duan et al. 10.3389/fenvs.2025.1533419

https://dataspace.copernicus.eu/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1533419


employed two correlation-based metrics: (1) the individual correlation
coefficient between each spectral band and SS, and (2) the total absolute
correlation sum of all bands with SS. These metrics enable the
identification of images containing the most significant salinity
information. Based on the image acquisition times, an appropriate
inversion window was determined. Images within this window were
considered more suitable for extracting salinity information under
varying environmental conditions, providing a robust foundation for
subsequent image combination and analysis.

2.4.2 Reconstruction of combined-
temporal images

To effectively capture salinity information frommultiple images
within the identified time window, four spectral combination
strategies were designed from diverse perspectives to reconstruct
combined-temporal images. These strategies comprise three
arithmetic operations and one band combination approach. The
specific procedures are as follows, where n represents the number of
single-temporal images, and Ri denotes the reflectance of a specific
spectral band across different periods.

(1) Combined-Temporal Image 1 (Image C1) – Arithmetic Mean
of Multi-Temporal Bands

The arithmetic mean, a fundamental measure of central tendency,
uniformly distributes spectral data to represent the average level of salinity
spectra. The new reflectance (R) is calculated as shown in Equation 1.

R � 1
n
∑n
i�1
Ri (1)

(2) Combined-Temporal Image 2 (Image C2) – Geometric Mean
of Multi-Temporal Bands

The geometric mean is particularly effective for analyzing relative
magnitudes and accommodating variations within the dataset. This
approach mitigates the influence of outliers and provides a more
robust representation of salinity spectrum variations. The new
reflectance (R) is calculated as shown in Equation 2.

R �
�����∏n
i�1

Ri
n

√
(2)

(3) Combined-Temporal Image 3 (Image C3) – Improved
L2 Norm of Multi-Temporal Bands

The L2 norm, widely employed in machine learning and data
analysis, serves as a valuable tool in spectral analysis by compressing

and centralizing salinity spectral information across different time
points. To account for significant deviations in reflectance values, a
correction coefficient of 1/n2 is incorporated to enhance the calculation
accuracy. The new reflectance (R) is calculated as shown in Equation 3.

R �
������
1
n
∑n
i�1
Ri

2

√
(3)

(4) Combined-Temporal Image 4 (Image C4) – Multi-Temporal
Band Combination

The salinity features captured by different spectral bands exhibit
multidimensional characteristics, with even the same band
containing temporally varying salinity information. By analyzing
the correlation between spectral bands and SS across multiple
temporal images, the most sensitive bands for each spectral
channel were identified and retained.

Using the four strategies described above, the new reflectance
values for the 11 spectral bands were sequentially calculated. These
values were then stacked in ENVI software and reconstructed into
four combined-temporal images for subsequent analysis.

2.4.3 Construction of spectral indexes
To strengthen the relationship between spectral data and

measured soil EC values, 34 spectral indexes were derived for
each image to directly or indirectly represent salinity levels
(Ivushkin et al., 2017; Guo et al., 2019). These indexes include
15 vegetation indexes, such as the Salinity Index 1 (SI1) and Salinity
Index 2 (SI2), and 18 salinity indexes, including the Normalized
Difference Vegetation Index (NDVI) and Difference Vegetation
Index (DVI). Additionally, red-edge bands, which exhibit
heightened sensitivity to salinity in vegetated areas (Kaplan and
Avdan, 2019), were incorporated to enhance salinity
characterization, exemplified by the Salinity Index 1 Red Edge 1
(SI1re1). The calculation formulas for these indexes were detailed
in Table 2.

2.5 Statistical method

2.5.1 Selection of SS characteristic
spectral variables

Variable selection represents a critical step in data modeling and
machine learning processes, primarily aimed at identifying the most

TABLE 1 Multi-temporal image information.

Satellite Sensing
time

Scene Geographic
code

Cloud
cover (%)

Image Spatial
resolution

Band

Sentinel-2B 2020-9–1 Scene 1 T50SNG 0.01 Image 1

10 m, 20 m, 60 m Band 2, Band 3, Band 4, Band 5, Band 6, Band
7, Band 8, Band 8A, Band 9, Band 11, Band 12

Scene 2 T50SNH 0.04

Sentinel-2A 2020-9–6 Scene 3 T50SNG 4.68 Image 2

Scene 4 T50SNH 9.94

Sentinel-2A 2020-9–16 Scene 5 T50SNG 11.24 Image 3

Scene 6 T50SNH 0.04
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influential variables for enhancing model predictive
performance. Variable selection methods can be broadly
categorized into three types: wrapper, filter, and embedded
approaches (Chandrashekar and Sahin, 2014). In this study,
we employed three distinct algorithms—Random Forest (RF),
ReliefF, and Support Vector Machine Recursive Feature
Elimination (SVM-RFE)—to identify key variables from
spectral datasets derived from both single-temporal and
combined-temporal images. These datasets included
11 spectral bands and 34 spectral indexes. These algorithms
effectively reduce data redundancy (Wang et al., 2019) and
streamline the construction of inversion models. All methods
were implemented using MATLAB R2016b software.

2.5.1.1 RF selection algorithm
RF variable selection is an embedded ensemble learning

algorithm that constructs multiple decision trees through random
sampling of both data instances and variables. This method
inherently evaluates the importance of each variable within the
decision tree framework and identifies the most relevant features
(Tan et al., 2023). The algorithm’s key parameter is the number of
trees, which was set to 150 in this study, with a minimum of five leaf
nodes per tree.

2.5.1.2 ReliefF selection algorithm
ReliefF is a widely recognized filter-based variable selection

algorithm, particularly effective for identifying significant

TABLE 2 Spectral indexes calculation equations.

Spectral index Equation References

Salinity index Salinity index SI
�����
B × R

√
Khan et al. (2005)

Salinity index red edge i SIrei
�������
B × Rei

√
Wang et al. (2019)

Salinity index 1 SI1
�����
G × R

√
Douaoui et al. (2006)

Salinity index 2 SI2
�������������
G2 + R2 + NIR2

√

Salinity index 3 SI3
�������
G2 + R2

√

Salinity index 1 red edge i SI1rei
�������
G × Rei

√
Wang et al. (2019)

Salinity index 2 red edge i SI2rei
��������������
G2 + Rei2 + NIR2

√

Salinity index 3 red edge i SI3rei
��������
G2 + Rei2

√

Salinity index I S1 B/R

Salinity index II S2 (B − R)/(B + R)

Salinity index III S3 (G × R)/B

Intensity Index 1 Int1 (G + R)/2

Intensity Index 2 Int2 (G + R + NIR)/2

Salinity index-11 SI-11 (SWIR1 × SWIR2) Zhang et al. (2023a)

Vegetation index Normalized difference vegetation index NDVI (NIR − R)/(NIR + R) Douaoui et al. (2006)

Difference vegetation index DVI NIR − R

Ratio vegetation index RVI NIR/R Foody et al. (2001)

Enhanced difference vegetation index EDVI NIR + SWIR1 − R Zhang et al. (2023a)

Enhanced ratio vegetation index ERVI (NIR + SWIR2)/R

Green-red vegetation index GRVI (G − R)/(G + R)

Enhanced vegetation index EVI 2.5 × (NIR − R)/(NIR + 6 × R − 7.5 × B + 1) Huete et al. (2002)

Soil adjusted vegetation index SAVI 1.5 × (NIR − R)/(NIR + R + 0.5) Wang et al. (2022a)

Enhanced normalized difference vegetation index ENDVI (NIR + SWIR2 − R)/(NIR + SWIR2 + R) Guo et al. (2019)

Modified soil adjusted vegetation index MSAVI ((2 × NIR + 1) −
��������������������������
(2 × NIR + 1)2 − 8 × (NIR − R)

√
)/2

Normalized difference vegetation index GNDVI (NIR − G)/(NIR + G) Allbed et al. (2014)

Normalized difference vegetation index red edge i NDVIrei (NIR − Rei)/(NIR + Rei)

Canopy salinity response index CRSI
������������������(NIR × R) − (G × B)√

/
������������������(NIR × R) + (G × B)√

Scudiero et al. (2015)

Note: In the Sentinel-2, imagery, the bands are as follows: B refers to the blue band (Band 2), G to the green band (Band 3), R to the red band (Band 4), Rei to the red edge bands (Band 5, Band 6,

Band 7), NIR, to the near-infrared band (Band 8), SWIR1 to the short wave infrared 1 band (Band 11), and SWIR2 to the short wave infrared band 2 (Band 12).
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variables in high-dimensional datasets. In regression applications,
ReliefF assesses a variable’s contribution by analyzing weight value
differences between each sample and its nearest similar samples
(neighbors) (Xi et al., 2023). A greater difference in weight values
relative to the target variable indicates a stronger impact of the
variable. In this study, the algorithm parameters were configured
with six nearest neighbors and 50 randomly selected samples.

2.5.1.3 SVM-RFE selection algorithm
SVM-RFE is a wrapper-based variable selection algorithm that

iteratively trains a support vector machine while progressively
eliminating variables with minimal impact on model
performance (Guo et al., 2022). In this study, the algorithm was
configured with the following parameters: an initial score of 45 for
each spectral variable, where the score for a variable removed in the
nth iteration was calculated as 45 - n until no variables remained.
The penalty parameter was set to 4, the radial basis function was
employed as the kernel function with a bandwidth of 0.2, and epsilon
was set to 0.01.

To ensure comparability across the results from the three
algorithms, the variable importance values generated by RF, the
variable weights from ReliefF, and the variable scores from SVM-
RFE were normalized to a common scale of variable importance.
These normalized values served as consistent evaluation metrics for
subsequent analysis and comparative assessment of the results.

2.5.2 Building and preferring of SS inversion model
This study employed 90 measured salinity samples and selected

spectral variables, divided into training and test sets at a 2:1 ratio.
The Extreme Learning Machine (ELM) algorithm, implemented in
MATLAB R2016b, was used to develop SS inversion models. The
ELM network architecture consists of an input layer, at least one
hidden layer, and an output layer. While the weights between the
input and hidden layers are randomly initialized, the weights
between the hidden and output layers are systematically trained.
This streamlined training process significantly enhances the model’s
learning efficiency and generalization capabilities, making ELM a
widely adopted method in soil property analysis (Acar et al., 2020;
Zhao et al., 2022). In this study, the number of neurons in the input
layer corresponds to the number of input variables, while the hidden
layer is configured with 10 neurons using a sigmoid activation
function. The output layer contains a single neuron.

Model performance was evaluated on both training and test sets
using the Coefficient of Determination (R2) and Root Mean Square
Error (RMSE), where higher R2 values and lower RMSE values
indicate superior model performance. Additionally, the Relative
Percentage Deviation (RPD) was calculated for the test set to
further assess the model’s generalization ability. Based on
established criteria (Wang Y. et al., 2022), model predictive
capability is classified as poor when RPD <1.4, moderate when
1.4 ≤ RPD <1.8, and excellent when RPD ≥1.8 (Wang Y. et al., 2022).

2.5.3 Mapping and validation of SS spatial
distribution

Using the best-performing inversion model, SS was mapped for
the study area. Referring to the classification criteria for salinized
soils proposed by the U.S. Salinity Laboratory staff (Richards, 1954),
soil salinity maps were classified into the following categories of

criteria: Salinity effects mostly negligible (EC = 0–2 dS/m), Yields of
very sensitive crops maybe restricted (EC = 2–4 dS/m), Yields of
many crops restricted (EC = 4–8 dS/m), Only tolerant crops yield
satisfactorily (EC = 8–16 dS/m), and Only a few very tolerant crops
yield satisfactorily (EC ≥ 16 dS/m). Furthermore, to validate the
remote sensing model’s accuracy, we conducted a comparative
analysis with geostatistical interpolation results. Specifically, an
inverse distance weighting (IDW) map was generated using the
limited field sampling data from the study area (Chen et al., 2021).
This IDW-derived map was then systematically compared with the
remote sensing inversion map through spatial statistical evaluation.

3 Results

3.1 Description of sample point salinity

Figure 3 presents the statistical characteristics of SS for samples
collected in Wudi County. The EC values ranged from 0.37 to
6.25 dS/m (mean = 1.60 dS/m). Notably, the training set (n = 60,
mean EC = 1.66 dS/m) and test set (n = 30, mean EC = 1.77 dS/m)
exhibited nearly identical statistical distributions to the entire
dataset. Crucially, no statistically significant differences were
detected in the interquartile ranges among the three datasets,
confirming homogeneous sample distribution patterns. This
stratification consistency ensured representative data partitioning,
thereby effectively reducing potential estimation bias during both
model calibration and validation phases.

3.2 Appropriate SS inversion time windows
and image spectral construction

To determine an appropriate inversion time window,
correlation analysis was conducted as shown in Figure 4. The

FIGURE 3
Soil EC statistics of the sample sets.

Frontiers in Environmental Science frontiersin.org07

Duan et al. 10.3389/fenvs.2025.1533419

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1533419


temporal correlation patterns between spectral bands and SS showed
general consistency across the three single-date images. With
increasing wavelengths of Sentinel-2 bands, the correlation with
SS transitioned from positive to negative before returning to positive
values in longer wavelengths. Maximum positive correlations were
observed in Band 4 (Red) and Band 5 (Red Edge 1), while peak
negative correlations centered on Band 8 (Near Infrared). Notably,
Image two demonstrated the strongest positive correlations
(highlighted by solid red borders), particularly in Bands 2–5
(Visible to Red Edge1) and Bands 11–12 (Shortwave Infrared).
Conversely, Image three showed the most pronounced negative
correlations (highlighted by solid red borders), primarily in Bands
6–9 (Red Edge to Near Infrared). The enhanced sensitivity of these
specific bands in Images two and three compared to equivalent
bands in other images suggests that the spectral reflectance-SS
relationship is not static. Environmental factors such as soil
moisture, organic matter content, and land cover may affect this
relationship and render it variable over time.

The total correlation between SS and all bands was quantified for
each image. Image one showed correlations ranging from −0.22 to
0.51, with a cumulative absolute correlation sum of 3.57. Image two
demonstrated a broader correlation interval (−0.36–0.69) and a
higher cumulative sum (5.14), indicating enhanced salinity
sensitivity. Image three exhibited correlations from −0.53 to 0.62,
with a cumulative sum of 5.02. This analysis confirms that Images
two and three exhibit significantly stronger correlations with SS than
Image 1, both at individual band and full-image scales.
Consequently, the period spanning September 6–16 was
identified as the appropriate time window for SS inversion.
Subsequently, Images two and three within the window are
reconstructed using the four methods mentioned earlier to obtain
the combined-temporal images. In addition, not all proximate
images can be effectively combined; rigorous time window
analysis remains critical for identifying suitable candidates.

3.3 SS informativeness of combined-
temporal images

To assess whether the spectral informativeness of SS in the
combined-temporal images was enhanced, a correlation analysis
between the images and SS was conducted, as illustrated in Figure 5.

The combination of Image two and Image three using four distinct
strategies led to a significant increase in the correlation between the
combined-temporal images and SS, compared to the individual
images within the time window. Specifically, the total absolute
correlation for the 11 spectral bands in Image C1 increased by
0.12–0.24, in Image C2 by 0.06–0.18, in Image C3 by 0.23–0.35, and
Image C4 demonstrated the most substantial improvement, ranging
from 0.74 to 0.86. These results clearly indicate that combining
images from the appropriate time window enhances correlation and
further enriches the information content related to salinity.

The multi-temporal band combination strategy (Image C4)
proved to be the most effective, as it integrated the most relevant
bands from both Image two and Image 3. In contrast, the arithmetic-
based combination strategies (Images C1, C2, and C3) exhibited
more modest improvements. While the overall performance of these
images improved, certain bands displayed a slight reduction in
sensitivity. For instance, in Image C1, the correlation of Band
five was higher than in Image three but slightly lower than in
Image 2, whereas Band eight showed the opposite trend, being
higher than in Image two but lower than in Image 3.

3.4 The characteristic spectral variable of SS

To mitigate the impact of variable quantity on model
performance, this study fixed the number of output variables at
six during the variable selection process, a point at which modeling
effectiveness became relatively stable. Figure 6 illustrates the top six
spectral variables prioritized by three feature selection algorithms
across the seven image datasets.

For different variable selection algorithms, distinct methods
exhibited significant differences. The RF algorithm demonstrated
broader coverage in variable selection, particularly emphasizing
vegetation indices that indirectly conveyed SS information, such
as NDVIre1, GNDVI, and MSAVI, as well as reflectance in the
Red Edge one band (Band 5) and the Shortwave Infrared one
band (Band 11). The combined selection frequency of these
related variables reached 42.9%. In contrast, the ReliefF
algorithm prioritized reflectance in the Shortwave Infrared
bands (Bands 11 and 12) alongside various salinity indices
that directly characterized salinity information, including S3,
SI1re1, and SI3re1, achieving a total selection frequency as

FIGURE 4
The correlation between single-temporal spectra and SS.
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high as 57.1%. The SVM-RFE algorithm showed a preference for
both vegetation indices (NDVIre1 and NDVIre2) and salinity
indices (S1, S2, and SI1re1), with the total selection frequency of
these variables reaching 47.6%. These findings highlight that, due
to differences in their selection mechanisms, the three algorithms

exhibited distinct preferences and focal points in feature
variable selection.

Regarding different images, particularly before and after
image combination, the variables selected by the three
algorithms were relatively dispersed in single-temporal images,

FIGURE 5
The correlation between combined-temporal spectra and SS.

FIGURE 6
Characteristic spectral variables. Variable output results for (A) RF, (B) ReliefF and (C) SVM-RFE.
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with limited commonalities among the spectral variables of
different images. The most frequently selected variables
included GNDVI, Int1, NDVIre2, Band 11, S3, and Band 12,
with a total selection frequency of only 33.3% in single-temporal
images. Conversely, for all combined-temporal images, the
selected variables were more concentrated, with the most
frequently selected spectral variables being NDVIre1, SI1re1,
Band 5, SI1re3, and Band 12, yielding a selection frequency of
55.6%. This indicates a significant shift in spectral variable
selection before and after image combination, reflecting
changes in the spectral data related to SS information content.

A cross-selection analysis was conducted to identify spectral
variables consistently explaining soil salinization across different
images and selection algorithms. Supplementary Figure S1 in the
supplementary material presents the cumulative importance of
all variables identified in this study. NDVIre1, GNDVI, SI1re1,
S3, SI3re1, and MSAVI ranked highest in importance,
contributing significantly to the interpretation of SS in
vegetated regions, particularly NDVIre1. These results are
likely more reliable than single-variable selection based on a
single image, as they demonstrate the stability and robustness of
the selected variables across different time points and algorithmic
approaches. Notably, many key variables included indices
derived from red edge bands, underscoring their strong
potential for SS monitoring.

3.5 Optimal SS quantitative inversion model

Using the characteristic spectral variables (shown in Figure 6)
and SS data, ELM SS inversion models were developed and
validated. The results are presented in Figure 7.

3.5.1 Evaluation of model performance based on
different images

Analysis of models built using different images revealed that
those based on single-temporal images produced the following
performance metrics on the test set: R2 values ranged from
0.44 to 0.62, RMSE values ranged from 1.00 to 1.23 dS/m, and
RPD values ranged from 1.35 to 1.67. These results indicate
moderate model performance, suggesting room for improvement.
When combining Image two and Image 3, models built with the
combined-temporal images showed significant improvements in
both the training and test sets. Specifically, validated R2 values
increased to between 0.62 and 0.72, RMSE values decreased to
between 0.87 and 0.98 dS/m, and RPD values rose to between
1.71 and 1.93. Compared to single-temporal models, the combined-
temporal models exhibited R2 increases ranging from 0.02 to 0.36,
RMSE reductions from 0.02 to 0.42 dS/m, and RPD increases from
0.04 to 0.58. These findings highlight the significant improvements in
accuracy achieved by combining images, enhancing the model’s
effectiveness for remote sensing SS predictions.

FIGURE 7
Quantitative remote sensing SS inversion models.
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Figures 8A–C provide the performance statistics for different
images on the test set. In a comprehensive evaluation of individual
image performances, the ELM model utilizing Image C4 exhibited
outstanding results on both the training and validation datasets. The
validated R2 values ranged from 0.69 to 0.72, RMSE values ranged
from 0.87 to 0.89 dS/m, and RPD values ranged from 1.87 to 1.93, all
exceeding the threshold of 1.8. Compared to other combined-
temporal models, the Image C4 model achieved a higher mean
RPD, with an increase of 0.09–0.15, and outperformed the single-
temporal models with a mean RPD increase of 0.25–0.53. This
suggests that Image C4 is the most effective for predicting SS with
minimal prediction errors. Following Image C4, the model based on
Image C3 also demonstrated strong performance, with RPD values
ranging from 1.77 to 1.84. Other models ranked in descending order
of prediction effectiveness include Image C1 (RPD = 1.72–1.82),
Image C2 (RPD = 1.71–1.77), Image 2 (RPD = 1.63–1.67), Image 3
(RPD = 1.53–1.56), and Image 1 (RPD = 1.35–1.40). Notably, most
models constructed using Image one had RPDs below the threshold
of 1.4, R2 values ranging from 0.44 to 0.48, and RMSE values between
1.19 and 1.23, indicating relatively poor performance.

3.5.2 Evaluation of model performance based on
variable selection algorithms

Figures 8D-F provide the performance statistics for different
images on the test set. Among the models developed using various
variable selection algorithms, the RF algorithm demonstrated the
highest performance for SS prediction. Models based on RF variable

selection achieved R2 values between 0.48 and 0.72, RMSE values
ranging from 0.87 to 1.19 dS/m, and RPD values between 1.40 and
1.93 on the test set. Compared to other variable selection methods,
the mean RPD of RF-based models was 0.02–0.04 higher. Following
RF, the SVM-RFE algorithm ranked second (R2 = 0.44–0.71,
RMSE = 0.88–1.23, RPD = 1.35–1.89), while the ReliefF
algorithm ranked third (R2 = 0.46–0.69, RMSE = 0.89–1.23,
RPD = 1.36–1.87). Interestingly, although SVM-RFE
outperformed ReliefF in terms of RPD variation range when
considering the mean metric, the mean RPD for SVM-RFE was
1.66, which was slightly lower than the 1.68 of the ReliefF algorithm.
This suggests that, while individual models based on the SVM-RFE
variable selection algorithm performed better, the overall
performance of models using the ReliefF algorithm was superior.

3.5.3 Evaluation of model performance based on
images and variable selection methods

From the above analysis, the models with an RPD exceeding the
threshold of 1.8 include the Image C4-RF-ELM, Image C4-ReliefF-
ELM, and Image C4-SVM-RFE-ELM models. All of these models
utilize the optimal predictive Image C4, suggesting that the choice of
image has a more significant impact on model performance than the
selection of the variable selection method. Specifically, the models
that combine Image C4 with the RF variable selection algorithm
show the best fit on both the training and validation datasets, with
the lowest prediction errors. For the test set, the R2 value reaches
0.72, the minimum RMSE is 0.87 dS/m, and the RPD peaks at 1.93,

FIGURE 8
Validated model performance statistics for image and variable selection algorithms. (A) R2, (B) RMSE and (C) RPD for different images; (D) R2, (E)
RMSE and (F) RPD for different algorithms.
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with a scatter plot that closely clusters around the 1:1 line
(Supplementary Figure S2). This model was then used to map
regional SS. Additionally, the models using SVM-RFE and
ReliefF as variable selection algorithms achieved RPD values of
1.87 and 1.89, respectively, with their scatter plots also showing a
high degree of concentration. These results indicate that these
models also perform well in SS inversion and provide satisfactory
prediction accuracy.

3.6 SS spatial distribution analysis and
validation

3.6.1 Spatial distribution analysis
The Image C4-RF-ELM model was used to map the SS

distribution in the study area (Figure 9A) and to classify the
proportion of farmland at each salinity level (Figure 10). The SS
inversion map of Wudi County reveals a clear salinity gradient,
increasing from the southwestern areas towards the northeastern
coastal low-lying regions, which aligns with the actual
environmental conditions. Approximately 53.3% of the farmland
had soil salinity that had a negligible effect on crops, primarily
distributed around southwestern townships, southeastern sectors,
and riparian zones in the western region. In contrast, 46.7% of
cultivated lands exhibited varying degrees of salinization,
predominantly concentrated in central areas and northeastern
coastal regions where seawater intrusion has created scattered
saline-alkali patches. Notably, 33.1% of farmland faced

productivity constraints for salt-sensitive crops, 8.1% significantly
inhibited yields for most crops, while the remaining 5.5%
maintained satisfactory productivity only for salt-tolerant cultivars.

3.6.2 Verification of inversion result
The IDW interpolation results and classification statistics are

shown in Figures 9B, 10. The IDW interpolation and remote sensing
inversion results indicate that the spatial distribution patterns of
salinized farmland exhibit no significant discrepancies. Both maps,
for instance, reveal a gradient of increasing salinization intensity
extending from the southwest to the northeast. However, the
remote sensing approach estimated a smaller total area of
saline-alkali soils while demonstrating a stronger capability in
delineating more refined spatial distribution patterns of
salinization. In conclusion, the findings demonstrate that the
remote sensing inversion model, based on multi-temporal
combined imagery, provides precise and reliable predictions of
salinized soil distribution patterns in the study region. This
methodology offers valuable insights for optimizing local
agricultural cultivation strategies and crop allocation.

4 Discussion

4.1 Validity of combined-temporal images

This study demonstrated that combiningmulti-temporal remote
sensing images near the sampling period significantly enhanced the

FIGURE 9
Spatial distribution of SS in the study area. (A) Remote sensing inversion map; (B) IDW interpolation map.
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precision and stability of SS inversion compared to single-image
analysis. This improvement can be attributed to three key factors.

Firstly, in September, frequent agricultural activities—such as
cultivation, irrigation, and natural precipitation—caused short-term
fluctuations in stress factors like soil moisture (Fathololoumi et al.,
2020). These changes affected the condition and spectral responses
of saline soils (Metternicht and Zinck, 2003). Figure 11 illustrates the
mean reflectance change across all sample points between two
images taken 10 days apart within the appropriate inversion time

window. Heavy rainfall before the second image (weather data are
shown in Supplementary Table S1 of the supplementary material)
significantly altered land surface moisture content and spectral
characteristics, particularly in Bands 6–9. This shift may explain
why Near Infrared bands in the September 16 image correlated more
strongly with salinity than those in the September 6 image. Such
variability underscores the importance of accounting for temporal
and environmental factors in spectral data for soil salinity
assessment, reinforcing the value of multi-temporal analysis in

FIGURE 10
Percentage of area for each SS level in the study area.

FIGURE 11
Spectral variations within appropriate time window due to environmental factors.
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capturing dynamic salinity spectral characteristics. This approach
aligns with the broader trend of using multi-temporal imagery for
agricultural information extraction, such as wheat growth
monitoring (Qu et al., 2021; Feng et al., 2024). Similarly, in SS
prediction, capturing spectral variations at different stages is
essential. By integrating multi-temporal images and applying
effective feature selection methods, external influences like
weather and human activities can be filtered out (Tagarakis and
Ketterings, 2017), isolating true salinity information. This method
enables more precise retrieval of spectral data for assessing
salinization (Lobell et al., 2007; Lobell et al., 2010; Furby et al.,
2010; Wu et al., 2014; Whitney et al., 2018; Fathololoumi et al., 2020;
Wang et al., 2023). Our study confirmed that incorporating
temporal spectral changes significantly improves SS information
extraction.

Secondly, previous studies have primarily relied on long-time-
series remote sensing images, which often involve significant
workloads and operational complexity. While cloud-based remote
sensing platforms such as Google Earth Engine accelerate processing
workflows, directly synthesizing long-time-series images without
selecting an appropriate inversion window may overlook abrupt soil
salinity changes, introducing information unrelated to soil salinity.
Research has shown that the shorter the time interval between image
acquisition and sampling, the higher the mapping accuracy (Luo
et al., 2023). Based on this, our study fully considers the temporal
variability of soil salinity spectra by selecting only images captured
within a week before or after the sampling period. This approach
enhances operational feasibility while ensuring a comprehensive
capture of soil salinity dynamics within the timeframe. By
minimizing the redundancy of non-salinity-related factors caused
by the time lag between image acquisition and sampling, this
method improves the accuracy of real-time SS monitoring models.

Finally, this study introduces an innovative multi-temporal
band combination strategy that integrates the most salinity-
sensitive bands from each spectral channel across multiple
spatiotemporal images, offering the most robust salinity
expression capability—an aspect not previously addressed in
soil salinity research. Compared to the three arithmetic-based
image generation strategies used in this study, the proposed
method demonstrated superior performance. This is mainly
because arithmetic calculations typically yield salinity
information that falls between two sets of band data. While all
bands undergo collective enhancement, individual bands may
not reach their optimal performance, thereby limiting overall
effectiveness.

4.2 Comparison of spectral variable
selecting algorithms

The selection of effective characteristic spectral variables is
crucial for ensuring the accuracy of SS prediction models, as
different selection methods can significantly influence model
performance (Wang Y. et al., 2022). In this study, three
variable selection algorithms, each based on distinct
theoretical frameworks, were employed to identify
characteristic spectral variables for salinity prediction. The RF
algorithm, known for its robustness (Genuer et al., 2010) and

high tolerance to noise and outliers, is particularly effective in
complex data environments, though it may require extensive
training time when handling numerous features. The SVM-RFE
algorithm, a wrapper selection method, efficiently identifies the
most informative features with fewer variables, yet its
effectiveness heavily depends on parameter settings and
involves considerable computational costs (Li et al., 2021).
The ReliefF algorithm, proficient at detecting interactions
between features, operates efficiently but is more sensitive to
noise and less effective at eliminating redundant features (You
et al., 2014). In remote sensing, atmospheric factors such as water
vapor can interfere with spectral data, particularly in the visible-
near-infrared spectra of soils, where noise may obscure actual
salinity information (Taghdis et al., 2022). In this context, the RF
algorithm demonstrated superior performance compared to the
other two algorithms due to its high resilience to noise, consistent
with prior research findings. For example, Wang et al. (2019) also
concluded that the RF algorithm is highly effective in identifying
characteristic spectral variables for SS. A limitation of this study
is the lack of model validation for the cross-variable results
obtained from different algorithms. Future research should
prioritize addressing this limitation to determine whether
combining spectral variables selected by different algorithms
enhances model robustness.

4.3 Selection of multi-temporal images

This study aimed to enhance salinity mapping precision by
extracting salinity information from dynamic, multi-temporal
spectral data closely aligned with the sampling period. MODIS
satellites, with their 1-day temporal resolution, were initially
considered but deemed unsuitable due to their insufficient spatial
resolution (250–1,000 m) for the fragmented study area. Instead,
Sentinel-2 imagery, offering a 5-day temporal resolution and spatial
resolutions of 10–60 m, was selected for its precision. To align with
the sampling period (5–10 September 2020), Sentinel-2 images from
1 September (pre-sampling), 6 September (during sampling), and
11 September (post-sampling) were initially chosen as Image 1,
Image 2, and Image 3, respectively. However, due to cloud cover on
11 September, the image from 16 September was used as a
replacement. Analysis revealed that the pre-sampling image
(1 September) exhibited a weak correlation with SS, and its
inclusion in image combinations reduced salinity-related
information. Consequently, the period from six to 16 September
was identified as the optimal inversion time window for exploring
image combination strategies. Additionally, the three single-
temporal images were combined using the improved
L2 paradigm strategy. However, the inversion results were less
accurate compared to those obtained from image combinations
within the identified inversion window, even when using the
same variable selection algorithm. This suggests that not all
images near the sampling period are suitable for combination.
Exploring an appropriate time window effectively enhances
accuracy while reducing data processing efforts. Future studies
should assess whether using imagery from dates even closer to
the sampling period, such as 11 September, could further improve
inversion accuracy.
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5 Conclusion

This study utilized three Sentinel-2 MSI time-series images
captured near the sampling period to determine the optimal
inversion time window for SS mapping. Four spectral combination
strategies—arithmetic mean, geometric mean, improved L2 norm, and
spectral band combination—were applied to merge multi-temporal
images within this window. Spectral variables were selected from both
pre-and post-combination images using RF, ReliefF, and SVM-RFE
algorithms and then integrated with the ELM regression algorithm to
develop SS inversion models. The results demonstrated that combining
multi-temporal images near the sampling period significantly improved
the correlation between SS and spectral data, enhancing inversion
accuracy. Selecting images within an optimal time window proved
more efficient than using all available images. Models based on multi-
temporal band combination images exhibited superior validation
performance (R2 = 0.69–0.72, RMSE = 0.87–0.89 dS/m, RPD =
1.87–1.93), with mean RPD values surpassing those of single-
temporal models by 0.25–0.53. Among the spectral variable selection
methods, models using the RF algorithm performed best (validation
R2 = 0.48–0.72, RMSE = 0.87–1.19 dS/m, RPD = 1.40–1.93), achieving
mean RPD values 0.02–0.04 higher than other selection algorithms. The
most critical SS-related spectral variables identified through cross-
selection included NDVIre1, GNDVI, SI1re1, S3, SI3re1, and
MSAVI, with the red edge one band making a particularly
significant contribution. The best-performing model, incorporating a
multi-temporal band combination image with RF-based variable
selection, achieved excellent results (training R2 = 0.75, RMSE =
0.75 dS/m; validation R2 = 0.72, RMSE = 0.87 dS/m, RPD = 1.93).
The inversion map revealed a distinct southwest-to-northeast salinity
gradient, with 46.7% of farmland exhibiting varying degrees of
salinization that impact crop yields. These findings provide valuable
insights for large-scale SS spatial mapping, advancing precision and
smart agriculture, and offering accurate data for managing salinized
farmland and its ecological environment.
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