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As environmental sciences increasingly rely on complex datasets, machine
learning (ML) has become crucial for identifying patterns and relationships.
However, the integration of ML into workflows can pose challenges due to
technical barriers or the time-intensive nature of coding. To address these issues,
we developed iMESc, an interactive ML app designed to streamline and simplify
ML workflows for environmental data. Developed in R and built on the Shiny
platform, iMESc enables the integration of supervised and unsupervised ML
methods, along with tools for data preprocessing, visualization, descriptive
statistics, and spatial analysis. The Datalist system ensures seamless transitions
between analytical workflows, while the “savepoints” feature enhances
reproducibility by preserving the analysis state. We demonstrate iMESc’s
flexibility with four workflows applied to a case study predicting nematode
community structure based on environmental data. The classical statistical
approaches, the Redundancy Analysis (RDA) and Piecewise RDA (pwRDA),
explained 30.7% and 53%, respectively. The SuperSOM model achieved an R2

of 0.60 for training and 0.291 for testing, identifying spatial patterns across depth
zones. Finally, a hybrid model combining an unsupervised SOM and followed by
the supervised Random Forest model returned an accuracy of 83.47% for the
training and 80.77% for the test, with Bathymetry, Chlorophyll, andCoarse Sand as
key predictive variables. IMESc permits the customization of plots and saving the
workflows into “savepoints” guarantying reproducibility. iMESc bridges the gap
between the complexity of machine learning algorithms and the need for user-
friendly interfaces in environmental research. By reducing the technical burden of
coding, iMESc allows researchers to focus on scientific inquiry, improving both
the efficiency and depth of their analyses.
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1 Introduction

With the fast-paced advances in technologies for data acquisition, environmental
researchers are now working with increasingly large datasets from diverse sources.
These data volumes present new opportunities for innovative analytical approaches,
beyond the traditional hypothesis-driven methods, including the applications of
machine learning (ML) algorithms (Tahmasebi et al., 2020; Heil et al., 2021). ML has
become a crucial tool in environmental research, but its integration into research workflows
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often involves significant time investment in coding and
troubleshooting. Implementing ML typically requires multiple
steps, including data manipulation, preprocessing (e.g., handling
missing data and unbalanced observations), model training, and
performance evaluation (Fonseca and Vieira, 2023). Each of these
steps depends on specific research objectives, data types, and the
complexity of the ML algorithms, which can result in lengthy trial-
and-error processes.

Beyond the steep learning curve for researchers without
extensive programming skills, even experienced programmers
may face challenges when developing and optimizing ML
workflows. The time spent coding, debugging, and refining
models can be a significant bottleneck, limiting the speed and
flexibility of research progress. Therefore, the development of an
interactive platform that reduces coding time, simplifies workflow
creation, and offers real-time feedback is crucial for improving the
efficiency and accessibility of ML in environmental research
(Wratten et al., 2021). While ML interfaces have been developed
in various scientific fields, such as medicine (Abid et al., 2020),
bioinformatics (Bolduc et al., 2021) and material sciences (Hu et al.,
2022), there remains a gap in tools specifically tailored to the needs
of environmental researchers, who often work with complex
multidimensional datasets. Importantly, many analyses required
in environmental research, especially in ecology, involve unique
challenges such as multicollinearity in environmental variables,
complex spatial and temporal patterns, and species-specific
interactions, making the need for specialized tools even
more pressing.

This article introduces iMESc, an interactive machine learning
app designed to address these challenges in environmental data
analysis (https://github.com/DaniloCVieira/iMESc).While iMESc is
versatile and applicable to a wide range of scientific fields, many of
its functionalities are particularly suited for ecological studies, given
their emphasis on community structure, species-environment
relationships, and multivariate analyses. The app was inspired by
real-world challenges faced by scientists while working in projects
that embrace multiple disciplines (Moreira et al., 2023). Developed
using the R programming language and built on the Shiny package
(Chang et al., 2022), iMESc ensures seamless accessibility and user-
friendly experience for researchers. It offers a suite of analytical
functionalities, including pre-processing tools, exploratory analyses,
and both unsupervised and supervised algorithms, allowing
researchers to efficiently prototype and test various analyical
workflows without the burden of programing. Through iMESc,
users gain the ability to explore complex environmental datasets,
create customized workflows, evaluate model performance through
real-time graphical and tabular outputs, and integrate results across
different analyses. Moreover, iMESc enables efficient data and
analytical documentation within a single file, complying with the
golden scientific standards for promoting reproducibility (Walsh
et al., 2021).

The versality of iMESc workflows and analytical outputs are
exemplified in four workflows which were based on the same dataset
and research objective of predicting the community structure of
free-living marine nematodes from environmental data. The current
study includes a classical Redundancy Analysis (RDA) largely used
in community ecology (Legendre and Legendre, 2012). A second
workflow exploring the Piecewise RDA (pwRDA), which is an

improvement of the RDA aimed at modelling discontinuous
community structures (Vieira et al., 2019). A third workflow
based on a neural network that uses multi-layered self-
Organizing maps (SuperSOM sensu Kohonen, 2001). Finally, a
hybrid modelling approach that combines unsupervised and
supervised machine learning modelling techniques to predict the
community structure of nematodes evaluation (Fonseca and
Vieira, 2023).

2 Methods

2.1 Development

iMESc is built using Shiny (Chang et al., 2022) as the framework
for user interaction and R (version 4.4.2- R Core Team, 2023) for
backend data processing and machine learning functionalities.
iMESc has been developed in a modular design, ensuring that
each component operates independently.

2.2 Interface organization

The modular architecture of iMESc is reflected in its user
interface, which is structured into three main sections: Pre-
Processing Tools, Sidebar Menu, and Main Panel (Figure 1). This
organization facilitates logical navigation flow, enabling users to
interact with distinct modules based on their specific needs.

2.2.1 Pre-processing tools
This section, located in the upper-right corner of the interface,

provides quick access to essential tools for preparing datasets. It
remains accessible at all times, allowing users to manage and refine
their data without needing to navigate away from their current tasks.
The pre-processing tools include:

1. Create a Datalist: Allows users to upload and organize
datasets into a Datalist format (Supplementary Material
SA), supporting attributes like Numeric, Factor, and spatial
data. This structure helps maintain consistency and facilitates
subsequent analysis.

2. Options: Offers basic functions such as renaming, merging
datasets, modifying attribute properties, and
managing Datalists.

3. Filter Observations: Provides criteria-based filtering options
to remove unwanted or low-quality observations. Users can
exclude rows with missing values, zero variance, or specific
IDs, ensuring a refined dataset.

4. Filter Variables: Enables users to filter data variables. This
includes options to remove variables with low variance, high
correlation, or infrequent values, improving data quality.

5. Transformations: Provides a set of transformations for
standardizing or normalizing data distributions. Users can
apply logarithmic transformations, scaling, Hellinger, or
other specialized methods depending on their analysis needs.

6. Data Imputation: Handles missing values by offering multiple
imputation techniques, such as k-nearest neighbor (KNN),
predictive mean matching, and random forest.
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7. Data Partition: Allows users to split data into training and test
sets, with options for balanced or random sampling.

8. Aggregate: Computes summary statistics based on a chosen factor.
Users can calculate group-level metrics, such as mean or sum.

9. Create Palette: Allows users to create and customize color
palettes for visualizations.

10. Savepoint: One of the standout features of iMESc, Savepoint
enables users to capture the entire workspace state as an.rds

FIGURE 1
The iMESc app interface, starting with the suite of Pre-processing tools displayed in the top menu, including options for creating a Datalist, filtering
observations, filtering variables, applying transformations, imputing missing data, data partitioning, aggregation, and creating savepoints. The Sidebar
Menu allows access to other key features, including Data Bank, Descriptive Tools, Biodiversity Tools, Spatial Tools, and both Unsupervised Algorithms
(Self-Organizing Maps, Hierarchical Clustering, and K-means) and Supervised Algorithms (such as Random Forest and Gradient Boosting). The Main
Panel shows visual outputs such as histograms, boxplots, interactivemaps, U-matrix from SOMs, BMU clusters, dendrograms, confusionmatrices, feature
importance rankings, and model comparison plots.
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file. This checkpoint feature allows users to pause and resume
their work seamlessly without losing progress.

2.2.2 Sidebar menu
Positioned on the left, the sidebar menu acts as the main

navigation hub, offering a simple way to access the core modules:

1. Data Bank: Visualize and interact with data tables for different
attributes. Includes summaries for saved models.

2. Descriptive Tools: Provides options for visualizations and
descriptive statistics like boxplots, correlation plots,
Multidimensional Scaling, Principal Component Analysis,
and Redundancy Analysis.

3. Spatial Tools: Generates spatial visualizations, offering maps
with interpolation methods, circles, pies, rasters, and
3D surfaces.

4. Biodiversity Tools: Computes ecological indices and
niche analyses.

5. Unsupervised Algorithms: Includes three modules: Self-
Organizing Maps, Hierarchical Clustering and K-Means.

6. Supervised Algorithms: Include 20 supervised algorithms such
as Random Forest, Support-Vector Machine, and Gradient
Boosting, with validation options like cross-validation.
• Compare Models: Designed to evaluate and contrast the
performance of multiple supervised models.

2.2.3 Main Panel
The central area dynamically updates based on the module

selected from the sidebar. It features tabbed layouts and
interactive widgets for specific analytical tasks, providing relevant
controls, outputs, and visualizations.

2.3 Navigation

iMESc streamlines navigation through buttons, dropdown
menus and panels. They organize the information to be loaded,
effectively guiding users to the next step in their analysis.
Particularly, flash buttons are provided when user interactions
are required, such as to save the work and run an analysis. This
streamlined process also facilitates the transfer of the results between
different analysis.

2.4 Dependencies

iMESc integrates several key R packages for both data
exploration and machine learning (Table 1). Upon first launch,
iMESc checks for necessary libraries and installs them automatically.
Although this initial setup might take some time, it ensures smooth
operation thereafter. The DT package (Xie et al., 2023) is used for

TABLE 1 A summary of the main analyses used in iMESc, detailing the locations in the sidebar menu, the analytical tasks along with their abbreviations, and
corresponding packages.

SideBar menu Analytical task Package

Descriptive tools Pearson’s correlation Base

Kendell’s correlation Base

Spearman’s correlation Base

Principal Component Analysis (PCA) Base

Nonmetric Multidimensional Scaling (MDS) vegan

Redundancy Analyses (RDA) vegan

Piecewise Redundancy Analyses (pwRDA) segRDA

Biodiversity tools Outlying Mean Index (OMI) ade4

Diversity Indexes Vegan

Spatial tools Inverse Distance Weighting (idw) —

Unsupervised Sel-Organizing Maps (SOM) kohonen

Hierarchical Clustering (HC) Factoextra

K-Means class

Supervised Naive Bayes (NB) klaR, caret

Support Machine Vector (SVM) kernlab, caret

K-Nearest neighbor (KNN) stats, caret

Random-Forest (RF) randomForest, caret

Stochastic Gradient Boosting (GBM) gbm, caret

Sel-Organizing Maps (XYF) kohonen, caret
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interactive data exploration, enabling users to dynamically filter and
sort datasets. For data visualization, ggplot2 (Wickham, 2016)
provides flexibility in generating customized plots. The vegan

package (Oksanen, 2019) is employed for ordination and
biodiversity analysis, supporting the exploration of ecological data.

For unsupervised learning, iMESc utilizes the kohonen

package (Wehrens and Kruisselbrink, 2018) for self-organizing
maps (SOM), allowing users to cluster and visualize high-
dimensional data. Additionally, the factoextra package is
used for hierarchical clustering (HC). For supervised learning
tasks, iMESc integrates the caret package (Kuhn, 2008), which
supports the construction and evaluation of predictive models across
20 algorithms, including Random Forest (Liaw and Wiener, 2020),
Support Vector Machines (Karatzoglou et al., 2021), and Gradient
Boosting (Ridgeway, 2020). The use of caret ensures consistency
in model evaluation across all algorithms, allowing users to compare
results in a standardized manner.

For generating maps, iMESc relies on leaflet (Cheng et al.,
2019), ggplot2, plotly (Sievert et al., 2021), and sf (Pebesma,
2018). Leaflet enables interactive mapping and dynamic
exploration of spatial data with features such as zooming and
panning. ggplot2 offers extensive customization for high-
quality, static maps that can be tailored for publication purposes.
plotly provides 3D visualization capabilities, allowing users to
create interactive surface and stack maps. Meanwhile, sf is utilized
for handling and manipulating spatial objects, supporting the
reading, writing, and transformation of vector data and
facilitating spatial analysis and visualization in conjunction
with ggplot2.

2.5 Interoperability

At the core of iMESc’s data management is the concept of a
Datalist, which can include Numeric-Attribute, Factor-Attribute,
and optionally, spatial information. This structure allows users to
maintain consistency and organization across different stages
of analysis.

iMESc is designed to seamlessly import data and export
analysis results in multiple formats, ensuring compatibility
with a wide range of external data sources and tools. For data
import, iMESc supports common file formats such as CSV, and
Excel (.xlsx). During the import process, iMESc validates
Datalists to detect potential issues like mismatched rows,
ensuring data integrity before processing.

For exporting results, iMESc provides flexible options
depending on the type of analysis conducted. Users can export
model predictions, processed datasets, and visualizations in
various formats, including CSV, Excel, and image files like
PNG and PDF. Additionally, spatial data such as rasterized
or interpolated maps can be exported as GeoTIFF files,
maintaining geographic metadata for further spatial analysis
in GIS software.

To enhance the reproducibility of analyses, iMESc offers
several key features. During analyses, users can set a seed for
model training and evaluation, ensuring consistency in results
across different runs. Additionally, iMESc supports saving
intermediate results, such as model outputs, in .rds format, for

further investigation within R. However, one of iMESc’s standout
capabilities is the creation of savepoints, which allow users to
capture the entire workspace state as an .rds file. Savepoints act as
critical checkpoints, enabling users to easily pause and resume
their work without losing progress. When a savepoint is
uploaded, iMESc seamlessly restores the workspace to its
previous state, allowing for a smooth continuation of the analysis.

2.6 Documentation

iMESc provides immediate assistance through tooltips
integrated throughout its interface. As users hover the mouse
over or click on a widget, a brief help text is displayed, or a
more detailed modal opens, offering clear explanations of the
widget functionality. This feature allows users to quickly
understand the purpose and usage of various tools, fostering an
intuitive and user-friendly experience.

For more in-depth guidance, iMESc offers comprehensive
documentation on its help page (https://danilocvieira.github.io/
iMESc_help). The documentation covers every aspect of the app,
from its structure and panels to the underlying packages. It includes
illustrative schemes and tutorial videos that visually guide users
through the app’s features, ensuring a thorough understanding of its
capabilities.

2.7 Initialization

iMESc can be accessed through RStudio or as a Docker
container, depending on the system and user preference.

To run iMESc in RStudio, users need to install R and RStudio.
For Windows users, the installation of RTools is required to ensure
compatibility with certain packages and functionalities during
runtime. Once installed, the following commands should be
executed to install and launch iMESc:

Install.packages(“shiny”)

library(“shiny”)

runGitHub(’iMESc’,

’DaniloCVieira’, ref=’main’)

The first launch may take longer as iMESc automatically installs
the required libraries and dependencies. For subsequent launches,
the process is faster and can be initiated using:

shiny::runGitHub(’iMESc’, ’DaniloCVieira’,

ref = ’main’).

Alternatively, iMESc is available as a Docker container, which
includes all necessary dependencies. To use this option, users must
ensure Docker is installed by following the instructions for their
operating system on the Docker website. After Docker is installed,
the following commands can be executed to pull the Docker image
and start the application.

1. Install Docker by following the instructions for your
operating system on the Docker website.

2. Pull the Docker image and start the container by running
the following commands:

docker pull vieiradc/imesc docker

run -d -p 3838:3838 vieiradc/imesc
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Once the container is running, open your web browser and
navigate to http://localhost:3838.

2.8 Workflow examples with nematode data

iMESc provides flexibility for constructing workflows tailored to
specific environmental research questions. Each workflow starts
with the creation of Datalists, which are structured datasets
linked by a common identification column. Detailed guidance on
how to format and structure custom Datalists can be found in
Supplementary Material SA. iMESc includes two built-in example
Datalists: nema_araca, which contains abundance data (expressed
as individuals per 10 cm2) from 141 samples of free-living marine
nematodes across 194 species, and envi_araca, containing
9 environmental variables for the same samples. Both Datalists
include a Factor-Attribute with columns for season (Spring,
Summer, Autumn, Winter), site (1–37), and depth.area—an a
priori classification grouping depth zones into specific ranges:
intertidal (0.06–0.80 m), shallow (−0.18–0.44 m), medium
(−7.68–0.70 m), and deep (−23.02–9.08 m). Additionally, a
Coords-Attribute provides geographic coordinates for each of the
37 sites across all seasons. Details about the sampling methodology
and dataset formation can be found in Corte et al. (2017).

Here we explore four workflows covering different analytical
tools and varying degrees of complexity. All of them share the same
pre-processing steps that used the Pre-Processing Tools to prepare
datasets: the Transformation Tool was applied to perform a
Hellinger transformation on the nematode data (saved as nema_
araca_hellinguer) and this same tool was used to scale and center the
environmental variables (saved as envi_araca_scaled) for
subsequent analyses (Figure 2). The “savepoint” with results from
all workflows can be found in https://github.com/DaniloCVieira/
iMESc_savepoints/tree/main/iMESc%20%E2%80%93%20A%20int

eractive%20machine%20learning%20app%20for%20environment
al%20sciences.

2.8.1 Workflow 1: RDA
The first analytical workflow runs in the Descriptive Tools

module, using Redundancy Analysis (RDA) to model the
nematode species data as a function of the enviornmental
variables (Figure 3A). The envi_araca_scaled data was used as
predictors, while nema_araca_hellinguer served as the response.
iMESc generates an RDA biplot with ggplot2, visually representing
the distribution of nematode species in relation to environmental
gradients. Users can access the factors within the Factor-Attribute
associated with the respective Datalist to color the dots. This tool
allows the visual differentiation of the dots based on categorical
variables. The RDA returns a R2 value that quantifies the proportion
of variance in the species data explained by the environmental
variables, a p-value and the importance of each canonical axis to
the full model.

2.8.2 Workflow 2: segRDA
This second workflow, also running in the Descriptive Tools

module, applies the segRDA framework (Vieira et al., 2019) to
perform Piecewise Redundancy Analysis (pwRDA) (Figure 3B). As
in Workflow 1, the envi_araca_scaled data served as predictors, and
nema_araca_hellinguer as the response. Samples were first ordered
based on the first axis of the RDA, and dissimilarity profiles were
computed across multiple window sizes (10, 26, 40, 56, 70) to
identify significant ecological breakpoints. With these
breakpoints, pwRDA was applied to model species-environment
relationships. This method allows the detection of non-continuous
linear responses when multiple discontinuous communities are
present in the data set (Vieira et al., 2019). Similar to traditional
RDA, pwRDA returns a biplot, an R2 value that quantifies the
proportion of variance explained by environmental gradients, the
importance of each canonical axis and a p-value, which compares its
performance against the original RDA model.

2.8.3 Workflow 3: SuperSOM
The third workflow is performed in the Unsupervised

Algorithms module, using a two-layer Self-Organizing Map
(SOM) to simultaneously cluster both environmental and
nematode species data into neurons (Figure 4). Although
traditionally used as an unsupervised technique, the inclusion of
environmental variables as input effectively transforms the SOM
into a supervised learning method, enabling the prediction of
nematode community patterns based on the environmental
conditions.

The workflow begins with the “Create partition” tool in the Pre-
Processing Tools to generate a random partition in the nema_araca_
hellinguer dataset. Here the training and testing sets were separated
into a one-to-five ratio. In the SOMmodule, nema_araca_hellinguer
and envi_araca_scaled datasets are set as input layers with equal
weights, applying Euclidean distance to compute dissimilarities
across both layers. After setting the input layers, the previously
created partition is selected. Particularly for this analysis, a grid size
of 6 × 5 was chosen to avoid empty neurons while capturing
sufficient detail in the network. For unsupervised one-layer
SOMs we recommend the use of the default settings which can

FIGURE 2
Diagram of data preprocessing in iMESc: The first step involves
selecting the example Datalists (nema_araca, envi_araca) using the
“example” option. In the second step, users can apply a Hellinger
transformation to nema_araca and scale/center variables for
envi_araca, resulting in new datasets (nema_araca_hellinger, envi_
araca_scaled) for subsequent analysis. Green lines indicate the flow
between steps. Triangular dropdowns represent user selections
(e.g., choosing input Datalists or transformation types), blue disk
icons denote save buttons, and narrow blue vertical bars show
fields where users can enter text manually.
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end up with empty neurons evaluation (Fonseca and Vieira, 2023).
To ensure reproducibility, the seed 42 was applied during the SOM
configuration.

The trained SOM model was saved (iMESc stores it within the
Datalist used in the first layer (nema_araca_hellinger) and results
were visualized through four codebook plots: the counts (number of
observations in each neuron), the Best Matching Unit (BMU) plot
and the Codebooks Pie Charts from the nematodes and

environmental data. The BMU plot displays the sample
distribution across the SOM grid, with options for users to color
the sample points by factor from the Factor-Attribute associated
with the Datalist. The Codebook Pie Chart highlights the
contribution of each variable (species or environmental
depending on the layer) to the classification of the samples to the
corresponding neuron, based on the codebook weights.
Additionally, an R2 value was computed by contrasting the

FIGURE 3
Diagrams of two workflows in the Descriptive Tools module. In both workflows, envi_araca_scaled was selected as the predictor Datalist (X) and
nema_araca_hellinger as the response Datalist (Y). User selections are represented by triangular dropdowns (e.g., choosing X and Y). Light green
rectangles denote tab panels, blue disk icons indicate save buttons, and narrow blue vertical bars show fields for manual text input. (A) Redundancy
Analysis (RDA) workflow. (B) Segmented RDA (segRDA) workflow, which included the SMW (Split MovingWindow) analysis to generate a dissimilarity
profile and identify breakpoints (BP). These breakpoints were saved and then used in the piecewise RDA (pwRDA) analysis. The sliders icon represented
parameter settings for the SMW analysis (e.g., window size and dissimilarity method).

FIGURE 4
Diagram of the superSOM workflow. Green lines indicate the flow of processes between steps. User selections are represented by triangular
dropdowns (e.g., choosing X and Y). Light green rectangles denote tab panels, blue disk icons represent save buttons, and narrow blue vertical bars
indicate fields for manual text input. Step 1 involved data preprocessing, where the nema_araca_hellinger Datalist was selected, and a random partition
was created. In Step 2, the superSOM model was configured in the Self-Organizing Maps (SOM) module, using both nema_araca_hellinger and
envi_araca_scaled as layer inputs. After setting the training parameters (slider icon), themodel was trained and saved. The performance of predictions on
nema_araca_hellinger was evaluated for both training and test data, using envi_araca_scaled as the input layer.

Frontiers in Environmental Science frontiersin.org07

Vieira et al. 10.3389/fenvs.2025.1533292

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1533292


predicted values from the SOM nema_araca_hellinger model with
the observed nematode data (nema_araca_hellinger training data).
The R2 was performed for the training and test part of the datasets.

2.8.4 Workflow 4: hybrid model
The fourth workflow is a hybrid approach that combines

unsupervised and supervised methods to model nematode species
using environmental predictors (Figure 5). First, the SOM analysis
from the unsupervised module was used to cluster the nema_araca_
hellinguer data into one-layer of neurons. The trained SOM model
was saved within the nema_araca_hellinger Datalist, allowing it to
be accessed in subsequent steps (Figure 5-1).

In the HC module, the saved SOM model within the nema_
araca_hellinger Datalist was accessed to perform hierarchical
clustering of the codebook using the Ward.D2 method (Murtagh
and Legendre, 2014). By inspecting the elbow plot and performing a
moving split window technique, this step divided the SOM
codebook into four distinct clusters of neurons (Figure 5-2). In
the current context, each cluster represents a taxonomic association.
A dendrogram plot was generated to illustrate the hierarchical
relationships among clusters, while the Codebook Clusters plot
was used to visualize the clustering structure of the network.

Once the clusters are saved, an additional column is created in
the factor attribute of the original Datalist (nema_araca_hellinguer).

The next step consisted in generating a balanced partition of the
data among the clusters for training and testing. This step was
conducted in the Pre-Processing Tools, specifically the “Create
partition” tool (Figure 5-3). This ensured that both the training and
testing sets had a proportional representation of samples from each
cluster. The Supervised Algorithms module was then used to apply the
Random Forest algorithm (RF), with envi_araca_scaled dataset serving
as predictors of the clusters identified by the HC (Figure 5-4). The RF
model was configured with 500 trees, 5-fold cross-validation,
5 repetitions, and a seed value of 42 for reproducibility.

3 Workflow results with nematode data

3.1 RDA

The RDA analysis revealed that the environmental gradient
significantly structured the nematode communities. In this model,
the environmental data explained 30.7% of the variation in
nematode species distribution (Figure 6A). When grouping the

FIGURE 5
Diagram of the Hybrid Model workflow. Green lines indicate the flow of processes between steps. User selections are represented by triangular
dropdowns (e.g., choosing X and Y). Light green rectangles denote tab panels, blue disk icons represent save buttons, and narrow blue vertical bars
indicate fields for manual text input. Step 1: A one-layer Self-Organizing Map (SOM) was trained using nema_araca_hellinger. Step 2: Hierarchical
clustering was applied to the SOMcodebook, with an option to select the number of clusters, and the resulting clusters were saved as “Associations.”
Step 3: In the Pre-processing tools, the “Create Partition” function for classification models was used to create a balanced partition (training and test)
based on “Associations” and saved as “Partition_Associations.” Step 4: In the Supervised Algorithmsmodule, themodel typewas set to Classification, envi_
araca_scaledwas selected as the predictor (X), nema_araca_hellinger as the response (Y), and the “Partition_Associations”was used to separate training
and test sets. After setting training parameters (slider icon), the model was trained, saved, and results were explored, with predictions run on both training
and test data to assess performance.
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samples according to its depth (an a priori classification), the
intertidal and shallow zones were associated with Very Fine
Sand, Fine Sand, and the Sorting Coefficient. Deeper zone
samples were more strongly related to Chlorophyll and Total
Organic Carbon.

3.2 pwRDA

In the piecewise RDA (pwRDA) model, the environmental
data explained 53.6% of the variance in nematodes composition.
This method recognized four breakpoints (Figure 6B), pointing

FIGURE 6
Results from the Descriptive Workflows. (A) Biplot from Redundancy Analysis (RDA): Environmental variables are represented as blue vectors, and
sample points are colored according to four depth zones: intertidal, shallow, medium, and deep. Red crosses represent species data (response variables).
(B) Dissimilarity profile from the Split-Moving Window (SMW) Analysis: Points represent the z-score dissimilarity across ordered samples, with significant
z-scores shown in black and significant breakpoints indicated in red. (C)Biplot from the Piecewise Redundancy Analysis (pwRDA): Similar to the RDA,
environmental variables are shown as blue vectors, and sample points are colored by depth zone. Red crosses represent species data. Variable
abbreviations: Bat - bathymetry, Chl - chlorophyll, CS - coarse sand, Mud - mud content, TOC - total organic carbon, mGS - mean grain size, VFS - very
fine sand, Sort - sorting, FS - fine sand.

FIGURE 7
Self-Organizing Map (SOM) visualizations. (A) Codebook Best Matching Unit (BMU) plot showing the distribution of samples across the SOM grid,
with observations colored according to depth areas: intertidal, shallow,medium, and deep. (B)BMUplot with test predictions, where points are colored to
differentiate between test and training datasets. (C, D)Codebook Pie charts show the 10most important abiotic (C) and biotic (D) variables from the SOM,
indicating the relative contributions to the classification of each hexagon (neuron).
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for a non-continuous species-environment relationships.
While deeper and medium-depth zones were more distinctly
clustered, with stronger influences from Coarse Sand and Mean
Grain Size, shallower stations were associated, for instance, with
Fine Sand, Very Fine Sand and Chlorophyll A (Figure 6C). In
comparison to the RDA, this model improved the explained
variance by 23%.

3.3 SuperSOM

Modeling the nematode species composition using the
SuperSOM returned a R2 of 0.60 for the training data and
0.291 for the test data. This reduction in R2 indicates a decrease
in model performance when applied to unseen data. Most of the
neurons grouped more than one station from the same depth-zone

FIGURE 8
Graphical outputs of the Hybrid model. (A) Dendrogram showing hierarchical clustering (HC) into four groups of the SOM neurons. (B) Codebook
Clusters plot, illustrating the clustering structure on the SOM grid with different background colors representing the four clusters and and colored points
indicating sample depth zones (intertidal, shallow, medium, and deep). (C) Spatial Distribution of the clusters across four seasons (spring, summer,
autumn, and winter). Each map shows the spatial distribution of samples by cluster. (D) Confusion Matrices displaying the accuracy of the Random
Forest model for both training and test datasets, with class errors per group. (E) Feature Importance plot showing the importance of the environmental
variables in predicting nematode species associations: Bathymetry (Bat), Chlorophyll (Chl), Coarse Sand (CS), Mud, Total Organic Carbon (TOC), Mean
Grain Size (mGS), Very Fine Sand (VFS), Sorting (Sort) and Fine Sand (FS). Number inside the box represents the average depth distribution of the variable
after considering all the trees.
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(Figure 7A). Test samples were spread across the neurons
(Figure 7B), indicating that the model had the potential to
capture the spatial patterns across depth zones. The left region of
the BMUmap primarily consisted of intermediate and deep stations,
which were characterized by higher concentrations of MUD and
TOC (Figure 7C). By contrast, the right region represented shallow
stations, where very fine sand (VFS) and fine sand (FS) were
predominant (Figure 7C). Regarding species distribution, the left
region was dominated by Terschellingia sp5, while the right region
was characterized by Dorylaimopsis_1 and Odontophora_1 as
characteristic species (Figure 7D).

3.4 Hybrid model

The hybrid model (Figures 8A, B) grouped the neurons from the
unsupervised phase into four distinct clusters. The distribution of
the clusters remained consistent across seasons, with clusters 1 and
2 predominantly occupying shallow regions, while clusters 3 and
4 were associated with deeper areas (Figure 8C). Random Forest
predictions achieved an accuracy of 83.47% for the training phase
and of 80.77% for test (Figure 8D). The model showed the highest
prediction accuracy for clusters 1 and 3, while the greatest
misclassifications occurred for cluster 4 during both training and

testing phases. The feature importance demonstrated that
Bathymetry, Chlorophyll, and Coarse Sand were the most
important variables driving the cluster predictions (Figure 8E).
Regarding the depth zones, deep and medium stations were
mostly grouped in cluster 1, shallow stations were predominantly
in cluster 2, while intertidal samples were separated in two clusters,
three and four (Figure 8B). Cluster 3 occurred next to the coastline,
while cluster 4 covered most of the intertidal zone.

4 Discussion

4.1 Adaptive workflows in iMESc
boost efficiency

One of the most significant contributions of iMESc to
environmental data analysis is its ability to organize and
streamline complex, non-linear workflows. iMESc is not just a
collection of tools, but a comprehensive solution that facilitates
seamless transitions between different stages of analysis, fostering a
more efficient and holistic approach to environmental data analysis.
Environmental science often requires a flexible approach to data
analysis due to the inherent variability of research questions and
ecological data. iMESc addresses this by allowing users to construct

FIGURE 9
Scheme Illustrating the versality of analytical workflows in iMESc. Example of sequential stages in the analytical process with alternative progress
paths (green arrows), refinements (dashed brown arrows), or conclusion paths (blue arrows) with graphical outputs: (A) dendrogram and Self-Organizing
Map; (B) confusion matrix; (C) Spatialization.
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customized workflows that can incorporate iterative refinement,
conditional branching, and looping mechanisms (Figure 9). These
characteristics are critical for enabling adaptive analysis, where
insights gained during the process inform subsequent steps. For
instance, conditional branching allows users to explore different
analytical paths based on specific criteria, while the looping
mechanism ensures repeatability, refining individual stages
as needed.

In environmental science, the need for combining multiple types
of analyses—such as unsupervised clustering, supervised learning,
and spatial mapping—is critical for fully understanding the
complexity of ecological systems evaluation (Fonseca and Vieira,
2023). iMESc’s architecture enables this integration seamlessly,
allowing users to move from one analysis module to another
without having to export, reformat, or manually transfer data
between different platforms. By eliminating these technical
hurdles, iMESc makes advanced machine learning methods more
accessible and enables researchers to focus on refining their analyses
rather than programing and managing data logistics. However, a
solid understanding of the underlying statistical techniques remains
essential to ensure reliable and meaningful results.

iMESc also provides robust pre-processing capabilities that
enhance data preparation. The platform supports a wide range of
pre-processing techniques, typically applied in environmental
studies, including handling missing data, applying
transformations, and partitioning data for training and testing
(Fonseca and Vieira, 2023). Moreover, the ability to store and
manage data through the “Datalist” system enables users to
organize their data efficiently, facilitating the use of multiple
datasets across different stages of the analysis.

The modular design of iMESc enhances the construction of
workflows and promotes flexibility in adapting to future needs,
facilitating the prevention of programing errors and conflicts (Chen
and Nof, 2023). iMESc was primarily designed to address the specific
needs of oceanographers and environmental scientists (Brito de
Jesus et al., 2023; Fonseca and Vieira, 2023; Gallucci et al., 2023),
focused on workflows applicable to these fields. However, the
platform is structured in a way that allows new modules or
algorithms to be added without significant restructuring, making
it an adaptable tool for evolving research needs. Furthermore,
compatibility with Docker makes it the best solution in terms of
scalability, as it could be easily deployed on different operating
systems. This flexibility ensures the long life of iMESc, the
continuous support to a broad range of environmental research
questions as new analytical methods and data sources emerge.

4.2 Real-time modeling and customization
refine interpretation

A standout feature of iMESc is its real-time interactivity,
allowing users to receive immediate feedback as they experiment
with different models and parameters. Interactive visualizations
allow multiple perspectives and enable quick identification of
relationships and trends by letting users adjust parameters and
instantly see the effects (Khedr and Hilal, 2021). This dynamic
interactivity streamlines the research process, enabling rapid
hypothesis testing and model refinement without the need for

extensive re-running of analyses. This is particularly
advantageous in environmental research, where iterative and
feedback adjustments to models are often necessary to capture
complex ecological dynamics (An et al., 2021). We share the
opinion that the interpretation of complex machine learning
models through metrics, tables and figures is an important step
in building confidence in a model, or in a specific prediction from a
model, to foster the understanding of the research problem
(Lucas, 2020).

iMESc’s visual outputs also contribute to its user-centric design.
The platform supports a high degree of customization, leveraging
ggplot2 to allow users to tailor every aspect of their visualizations,
from axis labels and color schemes to finer plot aesthetics. This is
crucial in environmental science, where clear, publication-ready
figures are necessary to convey intricate patterns in large datasets
(Aigouy and Mirouse, 2013). Moreover, iMESc supports multiple
export formats (e.g., png and pdf) with adaptable resolutions,
ensuring flexibility in how results are shared and disseminated.
The visual tools provided by iMESc, including sophisticated plots,
play an essential role in translating complex data into interpretable
results, guiding researchers in drawing meaningful ecological
conclusions.

4.3 Reproducibility in iMESc strengthens
research continuity

Beyond these technical advantages, iMESc places a strong
emphasis on reproducibility, a cornerstone of the FAIR principles
of modern scientific research (Bailo et al., 2022; Barker et al., 2022).
The ability to create “savepoints” at different stages of the analysis
allows users to preserve their workflows and return to them at any
time, ensuring that their work can be revisited or shared with
collaborators without loss of context or data. This focus on
reproducibility is essential in environmental research, where
projects often involve long-term data collection and collaboration
across multiple teams. By documenting every step of the analysis and
providing the ability to replicate it easily, iMESc helps safeguard the
transparency and integrity of scientific findings. Furthermore, this
feature encourages collaboration, as entire workflows can be shared
with other researchers, promoting consistency across studies (Stoudt
et al., 2021). The “savepoints” can be shared by journal repositories
(e.g., Brito de Jesus et al., 2023) or in the github (https://github.com/
DaniloCVieira/iMESc_savepoints).

4.4 Multi-model approaches in iMESc
deepen insights

The integration of traditional exploratory methods (e.g., RDA,
pwRDA) with advanced machine learning approaches (e.g., SOM,
RF) in iMESc demonstrates the platform’s versatility in addressing a
broad range of research questions and analytical needs - essential for
capturing the inherent complexity of ecological data (Gilbert
et al., 2024).

While both RDA and pwRDA help establish species-
environment relationships, our analysis suggests that pwRDA
may better capture the discontinuous nature of ecological shifts
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present in our dataset. The presence of ecological breakpoints is a
consequence of non-linear responses of species distributions to
environmental gradients (Fujita et al., 2023; Pélissié et al., 2024).
By accommodating these abrupt transitions, pwRDA provides a
nuanced perspective on ecosystem dynamics that RDA, with its
assumption of linear continuity, might only partially represent
(Vieira et al., 2019) iMESc facilitates the comparison between
RDA and pwRDA models, offering a clear advantage in
determining which approach best aligns with the structure
of the data.

Supervised machine learning methods, such as SuperSOM,
enhance analytical power by accommodating non-linear patterns
beyond the linear framework. SuperSOM enables flexible, pattern-
based exploration that adapts to complex, multidimensional
relationships without predefined assumptions (Giraudel and Lek,
2001). By clustering species and environmental variables into
neurons, SuperSOM reveals community structures that traditional
methods might overlook. Additionally, SuperSOM introduces a
predictive capacity, allowing researchers to assess model
generalization through performance metrics (e.g., R2) across
training and test datasets. Our results indicated moderate
generalization when using environmental variables to predict
nematode composition. This suggests that while SuperSOM
effectively captures essential ecological patterns, further
refinement is needed to enhance its predictive robustness.

Extending beyond individual models, iMESc’s integration of
multiple machine learning approaches into hybrid models enhances
analytical power, enabling researchers to delve deeper into emergent
patterns. In the hybrid model example presented, SOM first organizes
data based on multidimensional relationships among taxa. HC then
refines these groupings, forming ecologically coherent clusters that
improve the data structure for the RF model (Koudenoukpo et al.,
2021; Santos et al., 2021; Fonseca and Vieira, 2023). This approach
strengthens predictive power by isolating relevant patterns, allowing for
more accurate and interpretable predictions that align with the
complexity of ecological systems.

iMESc’s integration of both exploratory and predictive techniques
highlights the complementary nature of traditional and machine
learning approaches. Exploratory methods, like RDA and pwRDA,
offer valuable insights into species-environment relationships by
formalizing our understanding of ecological processes through
model-based inferences. These methods enable researchers to draw
statistically supported conclusions about the relevance of environmental
gradients and community structures, which is essential for hypothesis-
driven studies. It is important to keep in mind that in RDA and
pwRDA, the R2 represents the extent to which environmental variables
account for variance in species composition within a linear framework
and do not indicate predictive accuracy on newdata. On the other hand,
machine learning methods, such as SuperSOM and RF, prioritize
prediction and are particularly suited for data-intensive applications
where the number of variables often exceeds the sample size (Bzdok
et al., 2018). ML methods yield predictive R2 values that assess the
model’s ability to generalize patterns to new data, thus serving as a
reliable measure for forecasting. By incorporating both approaches,
iMESc supports a comprehensive framework, where exploratory
models deepen our understanding of system structure, while ML
algorithms capture predictive patterns that inform future research
and decision-making. This dual capability underscores the value of

integrating both exploratory and machine learning techniques in
ecological studies, as they offer complementary perspectives on
ecosystem complexity.

Availability as a docker image whichmakes it the best solution in
terms of scalability, as it could be easily deployed on different
operating systems.

5 Conclusion

iMESc was developed to empower environmental researchers to
apply ML methods though a user-friendly interface, eliminating the
need for programming knowledge. With iMESc researchers gain the
ability to apply a range of ML algorithms in a variety of scientific
research questions. By combining real-time interactivity with
customizable visualization options, iMESc offers a distinct
advantage over traditional static machine learning tools,
empowering researchers to explore their data in a more flexible,
iterative manner. The platform was designed to facilitate data and
analysis sharing, ensuring collaboration and reproducibility of
research findings. iMESc enables ecologists and environmental
researchers to move from the traditional hypothesis testing
approach to a predictive one, a fundamental step for
implementing monitoring programs, supporting informed
management decision, and, ultimately, conserving natural
ecosystems.
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