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Plant nitrogen (N) estimation using real-time and non-convection methods is
very crucial for ecosystem management. This study aimed at estimating plant N
concentration of indigenous vegetation in Luvuvhu River Catchment (LRC) using
both field and remotely sensed data from Sentinel-2 imagery. The study used
three different categories of spectral indices to fulfil its objectives. Red edge
based, nitrogen related, and combined spectral indices based on Sentinel-2 data
were subjected to stepwise regression on R studio software to determine which
category of spectral indices is more efficient in estimating plant N concentration.
Results have shown that combined spectral indices performed better with R2 =
0.59, RMSE = 0.47% and MAE = 0.38%, followed by N based spectral indices with
R2 = 0.44, RMSE = 0.65% and MAE = 0.48%, and the last category is red edge
based spectral indices with R2 = 0.35, RMSE = 0.81% and MAE = 0.65%. The
coefficients of the best performing model obtained from stepwise regression
were used to compute multiple linear regression on QGIS to produce a map
showing the concentration of plant N across the study area. Plant N varies with
plant species and, the thematic map created show how plant N is distributed
across the study area. With the help of this study, forest managers can better
manage the natural vegetation by collaborating with forest communities. This
possible partnership will create green jobs in addition to revenue. The link of the
natural regeneration, reforestation, agroforestry and quantification by Sentinel-2
images for emission reduction will be beneficial for their livelihood. On a broader
scale, participatory management is a good way to mitigate and adapt to climate
change. On the other hand, the study suggests that more in-depth research
should be conducted to explore further properties of red-edge indices for
vegetation parameters prediction.
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1 Introduction

Nitrogen (N) is a main regulator of several leaf physiological processes, such as
photosynthesis, respiration, and transpiration (Reich et al., 2006), and it correlates well
with chlorophyll (Chl) content, light use efficiency (LUT), and net primary production
(Jiang et al., 2021). N is the principal component which restrains productivity of various
terrestrial ecosystems (Richards et al., 2012). This is influenced by the fact that N is a well-
known resource that limits plants’ productivity and growth (Ustin, 2013). Spatial patterns of
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N at leaf level help us to understand the part that terrestrial
ecosystems play in the larger Earth system since they are
connected to fluctuations of carbon, water, and energy (Ollinger
et al., 2008). Canopy N is also associated with the capacity of
vegetation to hold atmospheric N deposition (Lindsay, 2017),
which has increased together with atmospheric carbon dioxide
(CO2) over the years because of increased use of fossil fuel and
production of artificial fertilizer using harmful chemicals (Galloway
et al., 2008). The distribution of plant N varies across the landscape
due to many variables.

Plant N concentration among plants found in natural
ecosystems differs by over 32% (Hobbie et al., 2005) and this
varies with topographic gradients and cycling of nutrients,
among species (Craine et al., 2009), and in response to
manipulations of resource obtainability for experimental purposes
(Amundson et al., 2003). Plant N may also be affected by other
factors such as land-use history, changes in CO2 concentration, acid
deposition, and limitation of another nutrient element supply
(Goodale and Aber, 2001; Hallett and Hornbeck, 1997). Overall,
plant N can be used as a measure to generalize patterns of N cycling
globally (Lindsay, 2017) as well as a vital indicator to assess changes
in N cycling that might accompany anthropogenic influence on
ecosystems such as rising atmospheric CO2 (Huber et al., 2011). As
the main nutrient that limits plants’ growth, plant N availability, the
way it fluctuates in ecosystems, and how it responds to global change
will have long term significant impacts on carbon (C) sequestration
in various ecosystems (Luo et al., 2004). Estimations of N at leaf level
and canopy N concentration of vegetation allow for a better
understanding of ecosystem functioning and biochemical
processes (Lee and Nguyen, 2005).

Traditionally, chemical analysis has been used to obtain canopy
and foliar N (Serrano et al., 2002). This approach is accurate, but
destructive, time-consuming, and costly (Sáez-Plaza et al., 2013).
Thus, make it impractical to measure canopy and leaf N for a large
area of forests consisting of different vegetation types using the
chemical analysis method. To our advantage, remote sensing has
turned things around, such assessments can be carried out a low
cost, and within a very short space of time across large spatial scales
(Walshe et al., 2020). Remote sensing has been used for various
applications in vegetation monitoring such as land cover change
detection, species classification, land cover estimation, and
defoliation (Walshe et al., 2020). Leaf N has been determined in
forests (Singh et al., 2015), grassland and crop ecosystems using
remote sensing techniques over the years (Yao et al., 2015).

Airborne and spaceborne serve as exceptional tools for temporal
and spatial monitoring of leaf N since they provide continuous
information in manifold spectral and directional settings (Ustin
et al., 2009; Cohen and Goward, 2004). A growing number of
hyperspectral imagery reports have been exceptional when it
comes to leaf and canopy N prediction for various plants
community (Wang and Wei, 2016). However, hyperspectral data
are often affected by high dimensionality and are relatively costly to
acquire. On the other hand, multispectral data such as Sentinel-2
and field spectroscopy can be used as primary data sources since
they are relatively cheaper and easily accessible (Chemura et al.,
2018). Launched in 2015, Sentinel-2 is the European Space Agency’s
(ESA) state-of-the-art sensor. It has a high spatial resolution
(10–60 m range) and 13 bands that span from visible to near-

infrared and shortwave infrared (Gholizadeh et al., 2016). Many
vegetation characteristics, including the Leaf Area Index (LAI),
nitrogen and chlorophyll, biophysical parameters, and Red-Edge
Position, can be estimated with the use of Sentinel-2 (Frampton
et al., 2013; Clevers and Gitelson, 2013; Verrelst et al., 2013).
However, leaf trait contents are distributed differently across
vegetation canopies along vertical canopy profile of different
species which makes it complex to estimate them (Gara et al.,
2018). Other factors such canopy structure, mask of the strong
water absorption (Dash and Curran, 2004), viewing geometry and
background make it a challenge to retrieve plant N at the canopy
level (Grogan and Chapin, 2000).

Nonetheless, retrieval of many vegetation parameters such as
plant N, leaf Chl, and others are dominated by empirical techniques
such as spectral indices (Gitelson et al., 2003), traditional regression
techniques such as stepwise multiple linear regression and partial
least square regression (PLSR), to several machine learning
approaches such as support vector regression (SVR), neural
network and random forest (RF) (Zhao et al., 2013). Spectral
indices are one of the simplest and frequently utilized methods
to estimate leaf biochemical contents such as N, Chl and vegetation
leaf water content (Gitelson A. A. et al., 1996; Wang B. et al., 2018).
Spectral indices calculated from the Sentinel-2 product were
investigated in this study. The Normalized Difference Vegetation
Index, Modified Simple Ratio, and Atmospherically Resistant
Vegetation Index (ARVI) are among the broadband indices that
are obtained from Sentinel-2 imagery. Normally, the Normalized
Difference Vegetation Index (NDVI) is the most widely used
vegetation index, and it is typically used to analyse vegetation
and its changes over time at both local and regional levels (Ali
et al., 2022). The Ratio Vegetation indicator (RVI), the most
fundamental indicator used in vegetation study and monitoring,
has been refined into the Modified Simple Ratio (MSR) (Calvão and
Palmeirim, 2011). N in leaf cells mostly occurs in proteins and
chlorophylls (Kokaly et al., 2009). Plant N and Chl correlate well
across various plant species (Homolova et al., 2013), therefore,
spectral indices formulated for Chl have been employed as a
means of N estimation (Le Maire et al., 2008). This study aimed
to map plant N concentration using different categories of spectral
indices and stepwise multiple linear regression in the Luvuvhu
River Catchment.

2 Materials and methods

2.1 Description of the study area

The Luvuvhu River Catchment is in the northeastern region of
Limpopo province, South Africa as shown in Figure 1. The
catchment is situated between the latitudes 220 17′ 33″ S and 230

17′ 57″ S and longitudes 290 49′ 46″ E and 310 23′ 32″ E. The
Luvuvhu River Catchment covers an area of approximately 331,602
447 ha with an elevation in the catchment ranging between 200 and
1,700 m resulting in shallow storage dams that are exposed to excess
evaporation due to large water surfaces (Odiyo et al., 2012). The
catchment is also characterized by topographic features such as the
Soutpansberg mountain range in the eastern side of the catchment.
This topographic feature rises to a height of approximately 1 700 m
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above mean sea level prior to reaching the low-lying surface of the
Limpopo River Valley (Kundu et al., 2013). The landscape in other
parts of the catchment has a mean ridge height of about 800–1 200m
while some places within the catchment reach a peak above 1 500 m
(Kundu et al., 2013).

Precipitation in some parts of the catchment is influenced by
orographic uplift due to east-west orientation of Soutpansberg
mountain range where the western movement of moisture from
the Indian Ocean results into 1 200 mm to 1 500 mm/year in the
forested mountain headwaters (Shongwe, 2007). Semi-arid forest
and bushland receive only receive 200 mm–600 mm/year as the
terrain drops across the study area. Extreme topographic diversity
and altitude changes over short distances within the Soutpansberg
result in dramatic climatic variance within the LRC (Volenzo and
Odiyo, 2018). Luvuvhu River Catchment is characterized by
subtropical climate with distinct wet conditions during
November to March, and little rainfall from April to October
during winter with little precipitation. High temperatures in the
study area influence the gradual increase in evaporation
rates ranging between 1 400 mm and 1 900 mm/year
(Nethononda, 2018).

2.2 Field data collection

Fieldwork was conducted between the 2nd and 11th of
December 2021 using simple random sampling. This period was
chosen because it is the growing period in the subtropical

environment of South Africa and the peak season for plant N in
vegetation. The study region had both broadleaf and needle leaf
plant species, and their distribution varied across the study area. To
incorporate various plant species and canopy structures, dominating
species within the sampled point was the one considered for this
study. However, other plant species around the sampled points were
also taken into consideration to supplement plant data collected. A
total of 82 sampling points was generated and spread out within the
study area with at least 2 km between the points to minimize pixel
overlapping on satellite imagery. Data were randomly split into 60%
training (n � 49) and 40% validation (n � 33) data sets. This
reasonable discrepancy between the output values and the
validation set will improve the credibility of the model while a
large discrepancy may invalidate the model (Croft et al., 2014).
Standard Garmin eTrex 10 Handheld GPS with the maximum
spatial accuracy of approximately of 3 m was used to record
coordinates at the center of each plot. At each sample point,
depending on its heterogeneity, one dominating overstory plant
species was selected for sampling. Each sample was composed of five
leaflets taken from the sunlit branches of an individual tree. Wet
weight of the leaves was measured in the field using Digital Portable
Kitchen Scale of accuracy of approximately 0.1 g. Leaf samples were
then stored in coded brown paper bags which were folded to avoid
leaves drying out. Wet leaf samples were placed in the oven for 24 h.
After 24 h when the leaves have dried out, dry weight of the leaves
was measured to obtain dry mass of the leaves. The oven dried
samples of leaf N content (expressed in percentage) were sent to the
laboratory for nitrogen analysis.

FIGURE 1
Map showing the study area.
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2.3 Image acquisition and pre-processing

Satellite images from Sentinel-2 were downloaded from (https://
scihub.copernicus.eu/) between 02nd December and 09 December
2021 leaf nitrogen estimation. The centre positions and spatial
resolutions of all bands from the Sentinel-2 images are
summarized in Table 1. All bands were resampled to 10 m
spatial resolution using the resampling tool in the Sentinel
Applications Platform (SNAP) software 4.0 and the nearest
method. This study utilized ten bands (490, 560, 665, 705, 740,
783, 842, 865, 1,610, and 2,190 nm) from the Sentinel-2 images. Like
other spaceborne optical sensors, Sentinel-2 is also affected by
atmospheric, topographic, shadows, and cloud cover (Pflug et a.,
2016; Main-Knorn et al., 2017). These effects have the potential of
reducing classification accuracy during a land cover/use mapping
(Phiri et al., 2018).

The atmospheric correction of the Sentinel-2 images was
performed using the Sen2Cor atmospheric correction toolbox in
the Sentinel Application Platform (SNAP) software (version 4.0).
The atmosphere contains several components that influence the
spectral information. The aim of atmospheric correction is the
conversion of at-sensor radiance with atmospheric influences to
at-ground reflectance with reduced atmospheric influences.
Atmospheric correction improves the quality of the image, and
consequently, the relationship between field measured N
and spectral reflectance, by minimizing the influence of the
atmosphere’s brightness on the image spectral value
(Hadjimitsis et al., 2010).

2.4 Derivation of spectral variables

Vegetation indices reduce the total amount of reflectance
information obtained from a remote sensing platform into a
smaller number of optical properties that are highly correlated

with the trait of interest. Therefore, identifying and extracting
critical bands from Sentinel-2 imagery is crucial for enhancing
the accuracy of estimating plant N (Rao et al., 2008; Houborg
et al., 2013). This study used 27 vegetation indices that were
listed in the literature (Baret, 2016; (Kemenova and Dimitrov,
2021). Selected optical indices based on Sentinel-2 sensor are
developed from visible NIR, red-edge and SWIR part of the
spectrum. Chlorophyll-related spectral indices that use the red-
edge part of the spectrum were used, and since chlorophyll
serves as a proxy to nitrogen, such spectral indices can be
explored for indirect nitrogen estimation in the forest (Houles
et al., 2007), which has yielded good results in many ecosystems
such as grassland and for agricultural crops (Clevers and Gitelson,
2013). The SWIR-related vegetation indices were also explored since
Perich et al. (2021) suggested that the SWIR was the best region for
plant N status. This may be because protein and amino acid
molecules in plants contain N (Perchlik and Tegeder, 2017).
Proteins typically absorb short-wave infrared light (Yu et al.,
2024), hence, when using the SWIR to monitor plant growth,
light in this band is absorbed by proteins in the plant, resulting
in absorption peaks in the spectrum (He et al., 2023), therefore,
combining the SWIR band and RE can effectively monitor the plant
N concentration (Yu et al., 2024). Vegetation indices were calculated
using formulas on Tables 2, 3.

2.5 Model calibration

For this study, n = 82 samples were collected from the field and
dataset was randomly split into 60% (n = 49) training data and 40%
(n = 33) calibration data in R studio software. Training data set was
used to train the model for plant nitrogen concentration
estimation in R studio software. The study used stepwise
multiple linear regression for each data set to determine
variables that are significant and insignificant for the final

TABLE 1 List of sentinel-2 bands (Herman et al., 2018).

Band Description Wavelength (µ/m) Resolution (m)

B1 Coastal aerosol 0.443 60

B2 Blue 0.490 10

B3 Green 0.560 10

B4 Red 0.665 10

B5 Vegetation Red Edge 0.705 20

B6 Vegetation Red Edge 0.740 20

B7 Vegetation Red Edge 0.783 20

B8 NIR (near infrared) 0.842 10

B8A Narrow NIR 0.865 20

B9 SIWR (shortwave infrared) 0.945 60

B10 SIWR (shortwave infrared) – cirrus 1.375 60

B11 SIWR 1.610 20

B12 SIWR 2.190 20
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model. Variables that were not significant for the respective models
were eliminated, and models remained with variables that were
significant.

2.6 Model validation

Validation data set (n = 33) was used to assess the validity of the
model. Three data sets that were calibrated using stepwise multiple
linear regression were validated by comparing observed values and
predicted values from the validation data set. The coefficient of
determination (R2), root mean square error (RMSE) given by
Equation 1, and mean absolute error (MAE) given by Equation 2
were used to describe and compute the relationship between
observed and predicted plant N, and the two metrics can be
expressed as follows:

RMSE �
������������
ΣT
t�1 xt − yt( )2

T

√
(1)

MAE � ∑n
_i�1 yi − xi

∣∣∣∣ ∣∣∣∣
n

(2)

Where xi and yi are the measured and predicted plant nitrogen, x is the
mean of measured plant nitrogen, and n is the total number of samples.

3 Results

3.1 Plant species from the sampled point

The study sampled variety of natural vegetation species as listed
in Table 4, those species included both needle leaf and broadleaved
vegetation in the study area.

TABLE 3 Summary of selected optical broadband spectral indices used in this study based on Sentinel-2.

Vegetation index Formula References

Difference vegetation index (DVI) DVI � B08 − B04 Richardson and Wiegand (1977)

Optimised Soil Adjusted Vegetation Index (OSAVI) OSAVI � (1+0,16)(B08−B04)
B08+B04+0,16 Rondeaux et al. (1996)

(GIPVI) GIPVI � B08
B08+B03 Dimitrov et al. (2019)

Normalized Difference Vegetation Index (NDVI) NDVI � B03−B08
B03+B08 DeFries et al. (1995)

Moisture stress index (MSI) MSI1 � B10
B08

MSI2 � B11
B08

MSI3 � B12
B08

Meng et al. (2016)

Ratio Vegetation Index (RVI) RVI � B08
B04

Jordan (1969)

Shortwave infrared ratio (SWIR) SWIR1 � B10
B11

SWIR2 � B10
B12

SWIR3 � B11
B12

Vanhellemont and Ruddick (2015)

Enhanced difference infrared index (NDII) NDII1 � B10−B04
B10+B04

NDII2 � B11−B04
B11+B04

NDII3 � B12−B04
B12+B04

Wang et al. (2015b)

TABLE 2 Summary of selected optical narrowband spectral indices used in this study based on Sentinel-2.

Vegetation index Formula References

Simple ratio2 (SR2)
Simple ratio3 (SR3)
Simple ratio4 (SR4)

SR2 � B07
B04

SR3 � B07
B06

SR4 � B07
B05

Jordan (1969)

Normalised difference index (NDI) NDI � B05−B04
B05+B04 Wang et al. (2015a)

Chlorophyll index green with B07 Clg7 � (B07B05) − 1 Gitelson et al. (2006)

Chlorophyll index red edge with B07 (Clre7) Clre7 � (B07B05) − 1 Gitelson et al. (2003)

MERIS terrestrial chlorophyll index (MTCI) MTCI � B06−B05
B05−B04 Dash and Curran (2004)

green Normalised difference vegetation index (gNDVI) gNDVI1 � B06−B03
B06+B03 Gitelson et al. (1996a)

Normalised difference red edge (NDRE) NDRE � B06−B05
B06+B05

NDRE1 � B07−B05
B07+B05

Sims and Gamon (2002)

Red_Model Red Model � B08 –B06 Xue et al. (2004)

Enhanced difference red edge vegetation index (NDVIRed edge) NDVI1 � B08−B05
B08+B05

NDVI2 � B08−B06
B08+B06

Choi et al. (2024)
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3.2 Stepwise regression results

Table 5 shows that the stepwise regression was repeated for
narrowband spectral indices, broadband spectral indices, and

combined bands spectral indices where insignificant variables were
eliminated from the models. Combined spectral indices have
produced higher correlation between observed and predicted
values of plant N with R2 = 0.59, followed by broadband indices
with R2 = 0.44 and the narrowband indices with R2 = 0.35.

The finalmodel selected explanatory variables based on significance
level as probability to be selected was≤0.05 and probability for exclusion
was≥0.100. Results showed that from this model, spectral indices from
the red edge were the most insignificant indices with all of them
producing results at p > 0.05. From this model, the most significant
spectral indices come from the broadband part of the spectrum with
OSAVI,MSI1 andNDVI having p< 0.05.More than 60%of broadband
spectral indices have shown negative relationship regarding plant
nitrogen concentration in the study area. OSAVI, MSI1 and
NDII3 have showed significant negative relationship with NDVI and
MSI3 showing positive relation regarding plant nitrogen concentration.
About 40% of spectral indices selected from combined spectral indices
model have shown to be significant with p < 0.05, with SWIR3 and
NDII3 being most significant at p < 0.001 and positive relationship
regarding plant nitrogen concentration.

3.3 Performance of vegetation indices in
mapping plant nitrogen

Figures 2–4 show the results of indigenous plant nitrogen
concentration models which were constructed based on Sentinel-
2 data. These models randomly selected 49 training points to train
the model and used 33 as verification points. The narrowbandmodel
produced an accuracy of R2 = 0.35, RMSE = 0.81% and MAE = 0.65,
broadbandmodel produced an accuracy of R2 = 0.44, RMSE = 0.65%

TABLE 4 Sampled indigenous species with important statistical
information.

Species Plant nitrogen (%)

Min Max Mean Range

Ficus sur 1.19 2.21 1.68 1.02

Combretum erythrophyll 1.45 2.38 1.94 0.93

Albizia adianthipholia 1.8 3.67 2.58 1.87

Acacia mellifera 2.01 3.07 2.55 1.06

Celtis africana 1.3 2.44 1.74 1.14

Acacia siberiana 1.28 3.3 2.49 2.02

Bridellia micrantha 0.8 1.76 1.37 0.96

Acacia tortilis 1.65 3.01 2.17 1.36

Schlerocrya birea 0.8 4.45 1.59 3.65

Dichrostackys cinerea 2.32 4.45 3.28 2.13

Combretum mole 1.09 3.27 2.22 2.18

Ficus sycamore 1.28 2.75 1.75 1.47

Terminalla sericea 1.22 2.79 0.35 1.57

Other 1.07 3.26 2.32 2.19

n = 82.

TABLE 5 Significant variables resulting from stepwise logistic regression analysis.

Category Source Estimate Std. Error t-value Pr (>|t|)

Narrowband indices Intercept
SR1
SR4
NDRE1
NDI gNDVI1
Red_Model
Red EdgeNDVI gNDVI

4.840
−0.010
−2.489
1.466
−6.122
5.478
2.044
5.677
−6.502

4.673
1.391
3.685
21.605
30.267
12.586
6.401
26.300
12.527

1.036
−0.073
−0.675
0.068
−0.202
0.435
0.319
0.2016
−0.519

0.311
0.943
0.506
0.946
0.841
0.667
0.752
0.831
0.609

Broadband indices Intercept
OSAVI
MSI1
MSI3
NDVI
NDII3

2.421e+00
−2.032e+05
−9.921e+02
6.409e+00
2.357e+05
−8.660e+00

3.036e+00
6.625e+04
2.776e+02
2.896e+00
7.684e+04
3.849e+00

0.797
−3.067
−3.574
2.213
3.067
−2.250

0.43241
0.00499 **
0.00140 **
0.03588 *
0.00499 **
0.03314 *

Combined indices Intercept
SR2
SR3
NDRE
NDI
Red_Model
RedEdgeNDVI2
MSI2
SWIR1
SWIR3
NDII2
NDII3

−22.637
−2.411
17.933
48.791
39.727
−3.499
−47.209
−6.903
361.274
20.141
−61.308
68.576

10.067
1.196
8.790
25.020
26.055
1.323
22.850
2.749
174.804
5.029
−3.729
4.037

−2.249
−2.016
2.040
1.950
1.525
−2.646
−2.066
−2.511
2.067
4.005
4-3.729
4.037

0.035962 *
0.057397
0.054749
0.065319
0.142,992
0.015503 *
0.052022
0.020718 *
0.051951
0.00695 ***
0.001324 **
0.000646 ***

*** Model significant at the probability level 0.001 (p < 0.001); **Model significant at the 0.01 probability level (p < 0.01); * Model significant at the 0.05 probability level (p < 0.05).
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and MAE = 0.48, and the model containing both narrowband and
broadband produced an accuracy of R2 = 0.59, RMSE = 0.47% and
MAE = 0.35%. Based on these results, the study has selected the
model with both narrowband and broadband indices to estimate
plant nitrogen across the study area.

3.4 Plant N mapping using multiple linear
regression and vegetation indices

The first activity regarding the mapping of plant N across the
study areas was to resample Sentinel-2 image strips to 30 m spatial
resolution, then mosaic them to a single image. The regression model
from stepwise regression was used to compute multiple linear
regression (equation) using raster calculator on QGIS which was
then applied to the masked image and resulted in the map showing
plant N concentration across Luvuvhu River Catchment. The spatial

distribution of plant N correlates well with the distribution of various
plants species across the catchment, this was observed during field
visits. Three models, i.e., narrowband, broadband and combined
(stepwise selection) were selected for plant N prediction based on
their performance (R2 values). Results in Table 6 have shown that
combined spectral indices performed better with R2 = 0.59, RMSE =
0.47% and MAE = 0.38%, followed by N based spectral indices with
R2 = 0.44, RMSE = 0.65% and MAE = 0.48%, and the last category is
red edge based spectral indices with R2 = 0.35, RMSE = 0.81% and
MAE = 0.65%. The R2 evaluation showed that the combined indices
model should be used to map spatial distribution of plant N over
Luvuvhu Catchment Area.

The resultant map was shown on Figure 5. From results density of
natural vegetation is higher at southwestern part of study area hence
there is relatively higher plant N concentration while moving towards
northwestern and some areas at the center of the study area the
natural vegetation is less resulting in plant N concentration. The

FIGURE 2
Relationship between observed and predicted values of plant nitrogen using selected red-edge indices from stepwise regression and
33 validation points.

FIGURE 3
Relationship between observed and predicted values of plant nitrogen using selected nitrogen related indices from stepwise regression and
33 validation points.
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southwestern and eastern aspects are cool hence has more vegetation
cover and plant N as compared to the northwestern aspect which is
warmer. The plant N of needleleaf species which dominates the
northwestern and eastern of the study area will be less while
compared to broadleaved species due to low wood density, volume
and age of broadleaved species than that of needleleaf species.

3.5 Kriging mapping of plant N in LRC

This study used ordinary Kriging to create the interpolation of
plant N in Luvuvhu Catchment Area as shown in Figure 6. Kriging is
a geostatistical interpolation with multistep technique that considers

both the distance and the degree of variation between known points
when estimating the unknown points (Paramasivam and
Venkatramanan, 2019). In Kriging, interpolated values are
modelled by a Gaussian process governed by prior covariance,
and it is used to forecast geographic area. This method of
interpolation was considered for this study to gain a general
overview of how plant N concentration is like across the entire
catchment since sampled poigurents are not spread throughout the
study area. Data obtained from the interpolation map helps to
improve the accuracy of the study since it gives general overview
of plant N concentration.

In this study, the coefficient of determination (R2), the root-
mean-square error (RMSE), and the percentage rootmean-square

FIGURE 4
Relationship between observed and predicted values of plant nitrogen using selected combined bands indices from stepwise regression and
33 validation points.

TABLE 6 Accuracy assessment of regression models.

Index type Independent
variables

Model R2 RMSE MAE

Narrowband indices SR1
SR4
NDRE1
NDI gNDVI1
Red_Model
Red_EdgeNDVI gNDVI

y = 4.840 + (0.010)SR1 + (−2.489)SR4 + (1.466)NDRE1 + (−6.122)NDI +
)(5.487gNDVI1 + (2.044)Red_Model + (5.677)Red_EdgeNDVI + (−6,502)
gNDVI

0.35 0.81 0.65

Broadband indices OSAVI
MSI1
MSI3
NDVI
NDII3

y = 2.421e+00 + (−2.4e+00)OSAVI + (−9.921e+02)MSI1 + (6.409e+00)MSI3
+ (2.357e+05)NDVI + (−8.660e+00)NDII3

0.44 0.65 0.48

Combined indices (Stepwise
method)

SR2
SR3
NDRE
Red_Model
Red_EdgeNDVI2
MSI2
SWIR1
SWIR3
NDII2
NDII3

y = −22,367 + (−2,411)SR2 + (17,9323)SR3 + (48,791)NDRE + (39,727)NDI
+ (−3,499)Red_Model + (47,209)Red_EdgeNDVI2 + (−6,903)MSI2 +
(361,274)SWIR1 + (20,141)SWIR3 + (−61,308)NDII2 + (68, 576)NDII3

0.59 0.47 0.38
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error (RMSE%) were used to evaluate the performance of the models
and the accuracy of the plant N map as shown in Table 7 (Li et al.,
2019). Besides the R2, the residual sums of squares for the regression
of actual and modelled values (RSS) were also used to evaluate the
accuracy of the semivariogrammodels using Equation 3. (Robertson
et al., 2014):

RSS � ∑n
i�1

si − ŝi( )2 (3)

where si represents the actual semivariance values, Osi represents
the predicted semivariance values by the semivariogram model,
and n is the number of semivariance values. A lower RSS value
indicates a relatively better estimation performance of the
semivariogram model.

4 Discussion

The aim of this study was to estimate and map plant nitrogen
concentration of indigenous vegetation in the Luvuvhu River
Catchment in Limpopo province using Sentinel-2 data. Remote
sensing makes it feasible to monitor plant N concentration at a large
scale effectively and at a low cost. However, remote sensing mostly

obtains spectral reflectance of the canopy of vegetation which
requires the need to understand spectral traits of vegetation to be
mapped. This allows for the establishment of the relationship
between physiological, ecological variables, and spectral
reflectance which will allow rapid N estimation and vegetation
health monitoring (Vigneau et al., 2011; Osbome et al., 2011).
Spectral reflectance of vegetation is influenced by many factors
which result in changes in spectral reflectance across the study
area (Liu et al., 2019). Therefore, this presents a challenge to come up
with spectral indices which are simple and applicable for plant N
estimation.

However, Sentinel-2 allows for the construction of chlorophyll-
related spectral indices using the red-edge part of the spectrum, and
since chlorophyll serves as a proxy to nitrogen, such spectral indices
can be explored for indirect nitrogen estimation in the forest, which
has yielded good results in many ecosystems such as grassland and
for agricultural crops (Clevers and Gitelson, 2013). However,
spectral indices also have many factors that mostly affect them
(Zheng et al., 2018). For vegetation parameters estimations, some of
spectral indices have excessive capability for soil noise reduction
(Rondeaux et al., 1996), while others are very useful by avoiding at
saturation for vegetation spectra (Jordan, 1969). In cases where the
ecosystem is nitrogen-rich, the correlation between chlorophyll and
nitrogen becomes weak (Hallik et al., 2009). Hence, it is very crucial

FIGURE 5
Interpolation map of sampling points.
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to be considerate when choosing spectral indices that are related to
chlorophyll for nitrogen estimation, and to consider the features that
are sensitive to nitrogen when selecting spectral indices to estimate
plant N (Osco et al., 2020; Zheng et al., 2018). NIR serves as a
principal constituent for various spectral indices (Rondeaux et al.,
1996). However, in practice, the red edge is one of the most utilized
spectral features for vegetation health evaluation (Vigneau
et al., 2011).

Therefore, in this study, three groups of spectral indices linked to
the biochemical and physical properties of vegetation such as
nitrogen, structure, and chlorophyll were used with Sentinel-2
imagery to estimate plant N in the study area. Three models
were built for plant N concentration in this study, namely, red
edge, nitrogen based and combined spectral indices to explore the
relationship between predicted and observed N values for plant N
concentration estimation. Spectral indices constructed from the
combination of bands (red edge and nitrogen based) in Sentinel-
2 data have the potential to extract vegetation properties and be
utilised for a wide range of application such as plant N, chlorophyll,
and water content estimation (Li et al., 2014a; Hunt Jr et al., 2013). A
combination of spectral regression models which are suitable for
plant N estimation are very useful for vegetation health monitoring.
The SWIR and the red edge region had the greatest impact on plant
N estimation among the evaluated spectral indices. The red edge is a

useful band for tracking vegetative metrics, as is the case with most
of the research (Jiang et al., 2021). A sensitive area for tracking the
amount of chlorophyll in plants is the red edge, which exhibits
abrupt variations in reflectance. The degree of chlorophyll
absorption determines the red edge zone (Li et al., 2014b).
Nevertheless, the study’s findings also show that SWIR can
successfully raise plant N estimation accuracy. Similarly, the
SWIR was proposed by Perich et al. (2021) as the optimal zone
for plant N status. This could be because plants have nitrogen in
their protein and amino acid molecules. Generally, short-wave
infrared light is absorbed by proteins. Proteins in the plant
absorb light in this band, which causes absorption peaks to
appear in the spectrum when using the SWIR to track plant growth.

Furthermore, stepwise regression was used to determine the
category of spectral indices with better performance when it comes
to predicting plant nitrogen. Regression model of combined spectral
indices from the red edge and the broadband was used in this study
since it showed higher correlation between the observed and
predicted values of plant N which presents reference for the
plant N monitoring using spectral indices in the subtropical
environment. The combination of broadband and narrowband
spectral indices performed best for this study with R2 = 0.59.
According to the Darvishzadeh et al. (2008) study, foliar N and
indices have been found to correlate, and both narrowband and

FIGURE 6
Plant nitrogen concentration distribution map in the study area based on Sentinel-2 data and 11 indices.
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broadband regions appear to be significant predictors of foliar N.
The method of using the whole spectrum has yielded the best
results since it was able to leverage important regions across the
spectrum and discern differences in foliar N both between and
within varying biomes (Darvishzadeh et al., 2008). The
broadband spectral indices came second with R2 = 0.44.
Foody et al. (2001) study supported our results according to
which there is poor correlation between the observed and
predicted plant N using the broadband spectral indices. Main
problem is saturation hence the accuracy is less; saturation can
be due to complex structure of forest in result of which
broadband VIs did not observe the plant N increase. Finally,
the narrowband spectral indices with R2 = 0.35. Wang et al.
(2016) studied that reason of saturation is the computation of
indices through NIR and red spectral band and the red band
absorbs electromagnetic radiation and remains constant while
the canopy cover increases hence in result at 100% canopy cover
red energy absorption reaches to peak. Also, the soil reflectance
and topography influence plant N estimation using spectral
indices therefore assessment of different spectral indices is very

useful (Heiskanen, 2006). However, the study by Imran et at.,
(2020) has shown that a relationship of plant N with these
vegetation indices is best due to the reason that red-edge band is
located in high chlorophyll reflectance and absorption area
which is between red and NIR region due to which the
change in chlorophyll as well as leaf properties have greater
effect on the red-edge spectral band. It was found that red edge
indices have more accuracy and correlation as compared to
broadband indices (Xie et al., 2018). The NIR region can
contain spectral variation due to structural variables that
covary with foliar N concentrations and can influence overall
reflectance and absorption from this region (Knyazikhin et al.,
2013; Lepine et al., 2016; Ollinger et al., 2008). For this
investigation, summed reflectance values over the whole NIR
area did not account for more than 35% of the variance in foliar
N, even though narrowband within this region consistently
emerged as significant predictors of foliar N. Since only
specific portions of the NIR were important, this might be
due to atmospheric effects rather than broad structural
changes with changing N concentrations. Variation of plant

TABLE 7 Accuracy assessment of Kriging models.

Category Spectral indices R2 RMSE MAE Bias

Narrowband indices SR1 2.1751 1.6541 0.0802 1.0992

SR4 1.1917 0.9604 0.0146 0.1124

NDRE 0.0088 2.0883 1.8569 −1.8569

NDI 0.0957 2.2056 1.9730 −1.9730

gNDVI1 2.0035 1.7636 0.0099 −1.7636

Red_Model 0.0132 1.5410 1.1962 −0.9946

Red_EdgeNDVI-2 0.0977 1.9217 1.6466 −1.6466

gNDVI 1.9376 1.6785 0.0352 −1.6785

Broadband indices OSAVI 1.8766 1.5870 0.0984 −1.5870

MSI1 2.3468 2.1501 0.0032 −2.1501

MSI3 1.7999 1.5452 0.0343 −1.5430

NDVI 1.9383 1.6653 0.0984 −1.6653

NDII3 0.0184 2.1362 1.9042 −1.9042

Combined indices SR2 0.0798 2.2560 1.7645 1.2579

SR3 0.0287 1.3718 1.0100 −0.9753

NDRE 0.0088 2.0883 1.8569 −1.8569

NDI 0.0957 2.2056 1.9730 −1.9730

Red_Model 0.0132 1.5410 1.1962 −0.9946

Red_EdgeNDVI-2 0.0977 1.9217 1.6466 −1.6466

MSI2 0.0211 1.5139 1.2196 −1.1888

SWIR1 0.0205 2.3466 2.1498 −2.1498

SWIR3 0.0205 1.1553 0.8678 −0.4445

NDII2 0.1063 1.9447 1.6837 −1.6837

NDII3 0.0184 2.1362 1.9042 −1.9042
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nitrogen concentration is well explained by functional and
species composition in the study area. This is dependable
looking into studies from various ecosystems, such as
temperate, tropical, boreal, and Mediterranean ecosystems
(Asner and Martin, 2009).

The resultant map shown in Figure 6 Indicates density of forest
is higher at northern part of study area since have higher biomass as
well as towards southwestern and northeastern side vegetation is less
hence the plant N is relatively higher compared to other parts. The
southwestern aspect is cool hence have more vegetation cover and
plant N as compared to northern aspect which is warmer.

5 Conclusion

This study compared the performance of three groups of
spectral indices which are mostly related to nitrogen, chlorophyll,
and structural properties, derived from Sentinel-2 imagery to
estimate the concentration of plant N in a subtropical
environment of South Africa. Further, it was found that there are
still very few studies in South Africa dedicated to utilizing Sentinel-2
data for plant N estimation. Plant N varies greatly across the study
area depending on species composition. The resultant map shown in
Figure 6. Indicates density of forest is higher at northern part of
study area since have higher biomass as well as towards
southwestern and northeastern side vegetation is less hence the
plant N is relatively higher compared to other parts. The
southwestern aspect is cool hence have more vegetation cover
and plant N as compared to northern aspect which is warmer.

Results from stepwise regression showed that showed that
plant N can be estimated using different groups of indices with
acceptable accuracy in the subtropical environment. Results have
shown that combined spectral indices performed better with R2 =
0.59, RMSE = 0.47% and MAE = 0.38%, followed by N related
spectral indices with R2 = 0.44, RMSE = 0.65% and MAE = 0.48%,
and the last category is red edge based spectral indices with R2 =
0.35, RMSE = 0.81% and MAE = 0.65%. Most of the structural
related indices could estimate nitrogen at a moderate to good
accuracy, due to the functional link between canopy structure
and nitrogen resulting from functional type and species
differences. Improvements could be accomplished by using
multiple VIs with differing feature relevance according to
different methods and by using hyperspectral data instead of
Sentinel-2 imagery. Although the VIs from different ways could
have different feature relevance, stacking them while considering
different methodologies could prevent overfitting and should be
used to monitor vegetation biophysical parameters and improve
classification accuracy. We expect that these predictions will also
be very helpful in limiting the uncertainty of biogeochemical
models for a variety of terrestrial ecosystems around the world.
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