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Accurate precipitation data are crucial for effective drought monitoring,
especially in China’s complex and diverse climatic regions. This study
evaluates the performance of six multisource precipitation products-ERA5-
Land, CMORPH CRT, GSMaP MVK, IMERG Late, and IMERG Final-in detecting
drought across China from 2009 to 2019, using ground station observations for
validation. By applying various drought and evaluation indices across various
timescales, this analysis captures short and long-term climate variations,
assessing each product’s accuracy across diverse regions. Spatial and
temporal analyses revealed that IMERG Final closely aligns with observed
precipitation, particularly in the high-rainfall areas like the Yangtze River Basin,
while GSMaP MVK and ERA5 tend to overestimate precipitation in arid and semi-
arid regions. Discrepancies are most pronounced in complex terrains such as the
Qinghai-Tibet Plateau and southwestern mountains, where sparse observational
networks exacerbate errors. Drought indices, including SPEI-3 and SPI-1, were
used to measure each product’s effectiveness in detecting drought intensity,
frequency, and duration. IMERG Final consistently showed the highest correlation
with ground data across all drought levels (Light, Moderate, and Severe), while
GSMaP MVK and ERA5 tended to overestimate drought occurrences in certain
drought-prone areas. Hotspot analyses of indices such as CDD, PRCPTOT, and
R95p further confirmed IMERG Final’s accuracy in identifying drought and wet
event patterns, closely reflecting ground measurements, whereas ERA5 and
GSMaP MVK occasionally overestimated drought frequencies. In summary,
IMERG Final emerged as a relatively accurate and reliable product for drought
monitoring, showing strong applicability across China’s diverse climatic regions.
These findings aid in data correction, enhances understanding of regional
drought variability, and integration strategies to improve water resource
management and extreme event monitoring.
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1 Introduction

The primary drivers of climate change and increasing drought events in China include
greenhouse gas emissions (Abbas et al., 2022), land use changes (Huang et al., 2024),
industrial activities (Chen et al., 2021), and energy consumption (Xia et al., 2022).
Precipitation, as a key component of the water cycle, directly impacts agriculture, water
resource management, and ecosystem stability (Levizzani and Cattani, 2019). With its vast
and diverse climate and terrain, China is particularly vulnerable to extreme drought events,
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which severely affect agriculture, water resources, ecosystems,
economic development, and social stability (Yu et al., 2014).
Addressing these challenges requires accurate precipitation data
to support effective drought monitoring and forecasting, which
are critical for disaster risk reduction, resource management, and
ecosystem protection (Sheffield et al., 2018; Sarwar et al., 2022).

Traditional ground-based meteorological stations and radars,
limited by uneven distribution—especially in remote and
mountainous regions—struggle to effectively capture the spatial
and temporal variability of precipitation effectively, posing
challenges for drought monitoring and disaster prevention (Ye
et al., 2024; Zhang, Liu, and Pu, 2023). Multi-source precipitation
products, derived from satellite remote sensing and reanalysis data,
offer extensive spatial coverage and high temporal resolution,
effectively addressing these observational gaps (Hu et al., 2016).
Recently, such datasets have become indispensable in hydrological
and climate studies, particularly for assessing drought in complex
terrains (Elahi et al., 2024; Abbas et al., 2023). Despite their utility,
existing precipitation products face notable limitations.

For instance, IMERG underestimates rainfall in high-altitude
areas like the Yarlung Tsangbo Grand Canyon (Li et al., 2023), while
GSMaP demonstrates closer alignment to gauge data in
mountainous areas (Tang et al., 2023). However, many
evaluations are constrained to specific regions or short
timeframes, limiting the generalizability of results across China’s
diverse climates and overlooking critical aspects of drought
detection by focusing primarily on average precipitation patterns
(Ding et al., 2020; Xu et al., 2024). Current studies frequently assess
precipitation products in isolation, neglecting comprehensive
comparisons that account for differences in spatial and temporal
resolution and data processing. These gaps hinder researchers and
policymakers in selecting the most effective datasets for robust
drought monitoring (Irannezhad and Liu, 2022).

Limited observational coverage in remote and mountainous
areas introduces inaccuracies in validating satellite precipitation
products (Thornton et al., 2022; Wijeratne et al., 2023).
Moreover, satellite precipitation products encounter significant
errors due to cloud classification limitations, atmospheric
variability, and biases in estimating precipitation intensity,
especially in convective or monsoon-prone regions (Battaglia
et al., 2020; Morrison et al., 2020). Temporal resolution
constraints further impede the detection of short-term events,
while complex terrain and uneven cloud distribution exacerbate
uncertainties, particularly in mountainous and coastal areas (Sokol
et al., 2021). Traditional satellite algorithms face difficulties in
capturing the high spatial heterogeneity in these regions. In
drought monitoring, single indices like the Standardized
Precipitation Index (SPI) or the Palmer Drought Severity Index
(PDSI) provide useful insights across diverse terrains and climates
(Pandžić et al., 2022). While multi-source precipitation products
address some limitations of ground-based observations, their
systematic evaluation for drought detection remain limited,
especially in complex terrain (Stewart, Carleton, and Groucutt,
2022). This study aims to fill this gap by conducting a
comprehensive evaluation of these products using multiple
indicators, thereby enhancing their reliability for drought
monitoring, water management, and ecological protection
(Nguyen et al., 2023; Ullah et al., 2023).

This study conducts a comprehensive evaluation of six multi-
source precipitation products (ERA5, ERA5-Land, CMORPH CRT,
GSMaPMVK, IMERG Late, and IMERG Final) for detecting extreme
precipitation and drought events across China, integrating multiple
drought and evaluation indices—such as CDD, PRCPTOT, R95p, SPI,
and SPEI—at varying spatial and temporal scales. By analyzing daily
precipitation and monthly potential evapotranspiration data from
2009 to 2019, combined with ground-based gauge observations, this
research systematically assesses the performance of these products in
monitoring extreme climate events. The study addresses gaps in
existing research by covering diverse climatic regions and
providing insights into precipitation product performance in
China’s sub-regions, including areas with complex terrain and
distinct agricultural practices. Advanced hotspot analyses offer new
interpretations of regional drought variability, while validation against
extensive ground-based data enhances the reliability of satellite
precipitation products, particularly in regions with sparse
observational networks. The primary objectives are to analyze
precipitation patterns, evaluate the capability of precipitation
products in detecting drought conditions across various climatic
and topographic regions, and identify regional variations to
support socio-economic planning, water resource management,
and ecological conservation. This research advances drought
monitoring methodologies and provides actionable insights into
data integration and validation, contributing to more effective
drought management in China’s diverse environments.

2 Materials and methods

2.1 Study area

China, located in East Asia, has a diverse topography
characterized by a west-high to east-low stepped distribution,
including plateaus, mountains, hills, and plains (Yang et al., 2023).
This varied landscape leads to complex climate types, significantly
affecting the spatial and temporal distribution of precipitation. As
shown in Figure 1, The terrain is divided into three main steps: the
first step is the Qinghai-Tibet Plateau, with an average elevation of
over 4,000 m; the second step includes the Inner Mongolia, Loess, and
Yunnan-Kweichow Plateau, with elevations of 1,000–2000 m; and the
third step is the eastern plains and hills, with elevations below 500 m
(Prieler, 2005). These terrain variations directly influence regional
climate and precipitation patterns. Southern China, significantly
influenced by the monsoon, has an average annual precipitation of
800–2,000 mm, while northern and northwestern regions receive less,
with some areas below 200 mm (Wu et al., 2016). Precipitation is
concentrated from June to September, leading to frequent floods and
droughts. The diverse topography and climate contribute to frequent
extreme precipitation and drought events, impacting agriculture,
water resources, and socioeconomic development (Yu et al., 2018).

2.2 Datasets

2.2.1 Rain gauge measurements
The hourly rain gauge data from 1,950 national ground stations

used in this study were obtained from the National Meteorological
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Information Center (NMIC) of CMA (http://data.cma.cn). The
spatial distribution of these ground stations is illustrated in
Figure 1. The daily datasets typically include measurements of air
temperature, pressure, precipitation, wind, etc. The rain gauge data
underwent strict quality control to ensure completeness and
reliability. Apart from the relatively sparse distribution of stations
in the western region, the stations are fairly evenly distributed across
China, providing favorable conditions for analyzing regional
precipitation patterns.

2.2.2 ERA5 data
ERA5 is the fifth-generation ECMWF reanalysis of global

climate and weather, providing data from 1940 to the present,
replacing the ERA-Interim reanalysis (Hersbach et al., 2020). It
combines model data with observations through data assimilation to
create a globally consistent dataset. Unlike real-time forecasts,
ERA5 allows more time to incorporate improved historical
observations, enhancing data quality. Accessible via the C3S
Climate Data Store (https://cds.climate.copernicus.eu/#!/home).
Detailed information on the satellite-based and model-based
precipitation products used in this study has been provided
in Table 1.

2.2.3 ERA5-land data
ERA5-Land is a high-resolution land reanalysis dataset derived

from ECMWF’s ERA5 climate reanalysis (Muñoz-Sabater et al.,

2021). It integrates model outputs and observational data through
physical assimilation to effectively reconstruct historical climate
conditions. The dataset provides multiple indicators, including
temperature, lake levels, snow cover, soil moisture, radiation,
evapotranspiration, runoff, wind speed, atmospheric pressure,
precipitation, and vegetation. The dataset can be accessed via the
C3S Climate Data Store (https://cds.climate.copernicus.
eu/#!/home).

2.2.4 CMORPH CRT data
CMORPH CRT is a globally corrected high-resolution

precipitation dataset designed to provide detailed precipitation
distributions over both short and long-term scales (Joyce et al.,
2004). Developed by the Climate Prediction Center (CPC), it
integrates microwave observations from multiple low-earth orbit
satellites and infrared data from geostationary satellites. The core
algorithm generates precipitation motion vectors from infrared
observations, which are used to morph the instantaneous
precipitation estimates from microwave data to the desired time
intervals, creating continuous spatial coverage. CMORPH CRT data
can be accessed via the CPC website (https://www.ncei.noaa.gov/
products/climate-data-records/precipitation-cmorph).

2.2.5 GSMaP MVK data
GSMaP MVK is a global high-resolution precipitation dataset

designed to provide precise spatial and temporal precipitation

FIGURE 1
Spatial distributions of the elevation and rain gauge network in China.
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distributions (Ushio et al., 2009). Developed by the Japan Aerospace
Exploration Agency (JAXA), it is generated using microwave
observations from multiple low-Earth orbit satellites,
supplemented and refined by geostationary satellite infrared data.
The generation algorithm first retrieves precipitation estimates from
microwave data, and then applies motion vectors derived from
infrared data to morph these instantaneous estimates, ensuring
temporal continuity of precipitation features. GSMaP MVK data
can be accessed through the JAXA website (https://sharaku.eorc.
jaxa.jp/GSMaP/index.htm).

2.2.6 IMERG late data
IMERG Late is a high-resolution precipitation dataset generated

from a combination of satellite-based microwave and infrared data
(Huffman et al., 2015). The dataset is created by using microwave-
derived precipitation estimates from low-earth orbit satellites,
supplemented by infrared data from geostationary satellites to
generate motion vectors that capture the temporal and spatial
dynamics of precipitation systems. The algorithm then applies
Kalman filtering and data fusion techniques to integrate estimates
from multiple sensors, ensuring continuity and accuracy in the
precipitation distribution. The dataset can be accessed through the
NASA GPM portal (https://disc.gsfc.nasa.gov/).

2.2.7 IMERG final data
IMERG Final, developed by NASA’s Global Precipitation

Measurement (GPM) mission, is a high-resolution precipitation
dataset generated by integrating passive microwave data from
multiple low-earth orbit satellites, infrared observations from
geostationary satellites, and surface rain gauge data (Huffman
et al., 2015). The process begins with the GPM core satellite’s
microwave observations to estimate instantaneous precipitation.
These estimates are then combined with data from other
microwave satellites for a more comprehensive precipitation
estimate. Infrared data from geostationary satellites ensure
temporal and spatial continuity of the precipitation system, while
surface rain gauge data are used for calibration and bias correction,
enhancing accuracy. The dataset can be accessed through NASA’s
GPM data portal (https://disc.gsfc.nasa.gov/).

2.2.8 Potential evapotranspiration data
The 1 km Monthly Potential Evapotranspiration (PET) Dataset

for China is a reanalysis dataset providing high-resolution PET data
from 1990 to 2021, with a spatial resolution of approximately 1 km
(Peng et al., 2019). This dataset calculates PET using the Hargreaves
formula, incorporating variables such as solar radiation, maximum
temperature, minimum temperature, and average temperature. The
dataset is available for download from the National Tibetan Plateau/
Third Pole Environment Data Center (http://data.tpdc.ac.cn).

3 Methodology

3.1 Procedure for validating precipitation
data using ground station observations

This study systematically evaluates the accuracy of multi-source
satellite precipitation data by validating it against ground station
observations, with a focus on drought detection. Ground-based
meteorological data and multi-source precipitation datasets were
aligned using nearest-neighbor interpolation to ensure consistency
with station locations. The evaluation was conducted at daily,
monthly, and annual timescales to analyze the performance
across short- and long-term scales. This multi-temporal analysis
enhances the robustness of the results by minimizing biases related
to specific temporal scales.

This study lies in the integration of multiple drought indices
(SPI, SPEI, CDD, PRCPTOT, and R95p) with traditional statistical
metrics (CC, BIAS, MAE). Unlike previous studies that typically
focus on a single index or temporal scale, this research applies a
composite approach by cross-analyzing different indices to provide
a more nuanced understanding of drought conditions across diverse
climatic regions in China. Furthermore, To ensure the reliability of
these indices, this study conducted comparative analysis across
multiple datasets and performed historical drought event
validation. By comparing SPI and SPEI values derived from
different precipitation products, the study evaluated their
consistency and applicability across diverse climatic regions.
Additionally, the performance of drought indices was evaluated

TABLE 1 Summary of the gridded precipitation products used in this study.

Abbreviations of the
dataset

Full name of the dataset Spatio-temporal
resolution

Region Period
covered in

time

CMORPH CRT Climate Prediction Center Morphing Technique
Corrected

0.25°, 3 hourly −180°W-
180°E, −90°S–90°N

1998–present

ERA5 The fifth generation ECMWF Reanalysis 0.25°, hourly −180°W-
180°E, −90°S–90°N

1940–present

ERA5 Land the fifth generation European Centre for Medium-Range
Weather Forecasts Reanalysis on global land surface

0.1°, hourly −180°W-
180°E, −90°S–90°N, land

1950–present

GSMaP MVK The Global Satellite Mapping of Precipitation Moving
Vector with Kalman-filter

0.1°, hourly −180°W-
180°E, −90°S–90°N

2000–present

IMERG Late Integrated Multi-satellitE Retrievals for Global
Precipitation Measurement (Late Run)

0.1°, half-hourly −180°W-
180°E, −90°S–90°N

2000–present

IMERG Final Integrated Multi-satellitE Retrievals for Global
Precipitation Measurement (Final Run)

0.1°, half-hourly −180°W-
180°E, −90°S–90°N

2000–present
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through historical precipitation records and ground station
observations, ensuring their applicability and accuracy in
monitoring drought across high-altitude, arid, and semi-
arid regions.

3.2 Evaluation metrics

The evaluation of gridded precipitation product data was carried
out using a comprehensive set of validation metrics at various scales
to assess their effectiveness in drought monitoring. These
metrics include:

1. Correlation Coefficient (CC): Measures the consistency
between precipitation products and rain gauge data,
indicating the strength of their relationship.

2. Relative Bias (BIAS): Reflects the deviation between
precipitation products and rain gauge data, identifying
tendencies toward overestimation or underestimation.

3. Mean Absolute Error (MAE): Represents the average
magnitude of errors between predicted and observed values,
highlighting overall accuracy.

4. Consecutive Dry Days (CDD): Measures the longest stretch of
consecutive days with precipitation below a defined threshold
(e.g., 1 mm/day), providing insights into drought duration
and severity.

5. Total Precipitation (PRCPTOT): Represents the cumulative
precipitation over a given period, serving as a fundamental
metric for evaluating overall precipitation availability and its
role in drought development.

6. Very Wet Days (R95p): Quantifies the total precipitation on
days exceeding the 95th percentile of daily rainfall, offering

insights into the occurrence and intensity of wet periods, which
inversely relate to drought conditions.

For this analysis, the threshold for precipitation occurrence was
set at 0.1 mm/h. The equations for all evaluation metrics, including
CC, BIAS, MAE, CDD, PRCPTOT, and R95p, are provided in
Table 2. These metrics collectively offer a robust framework for
assessing the accuracy and reliability of precipitation datasets in
capturing drought characteristics across diverse climatic and
geographic settings.

3.3 Droughtmetrics, drought frequency, and
hotspot analysis

This study systematically evaluates drought dynamics across
China by applying the Standardized Precipitation Index (SPI) and
the Standardized Precipitation Evapotranspiration Index (SPEI) at
multiple timescales (1, 3, 6, and 12months). These indices are widely
recognized for their ability to detect short- and long-term drought
conditions by assessing moisture deficits and surpluses. While SPI
focuses solely on precipitation variability, SPEI integrates both
precipitation and evapotranspiration, offering a more
comprehensive measure of drought severity by accounting for
temperature-driven evapotranspiration effects. This research
enhances the evaluation process by:

1. Multi-Timescale Analysis: SPI and SPEI are applied across
four timescales (1, 3, 6, and 12 months), allowing for the
identification of both rapid-onset and prolonged droughts.
This multi-temporal approach provides deeper insights into
seasonal and inter-annual drought variability, which is

TABLE 2 List of the evaluation metrics for evaluating precipitation products in this study.

Metrics
names

Formulas Comments Value
ranges

Perfect values

correlation
coefficient (CC)

CC �
�����������������∑n

i�1(Oi− �O)2(Ei−�E)2∑n

i�1(Oi− �O)2 ×∑n

i�1(Ei−�E)2
√

Oi , observed precipitation; �O, mean
observed precipitation; Ei , estimated
precipitation; �E, average estimated
precipitation; n, the number of
precipitation pairs in the analysis

[−1 – 1] 1

relative bias (BIAS)
BIAS � ∑n

i�1(Ei−Oi )∑n

i�1Oi
× 100%

[−∞ – +∞] 0

Mean absolute
error (MAE) MAE � 1

n∑n
i�1
(|Ei − Oi |)

[0 – +∞] 0

Consecutive Dry
Days (CDD)

CDD � max(dry days),
wherewhere dry days have precipitation < 0. 1mm

The longest stretch of Consecutive
Dry Days with precipitation below
1 mm, indicating drought and dry

spell persistence. PRCPTOT
represents the total precipitation
accumulated over a specific time
period. Pi is the daily precipitation
on day. i, and n is the total number of
days in the period. R95p measures
total precipitation on days exceeding
the 95th percentile, highlighting
extreme rainfall events. Pi , Daily

precipitation amount on day i. P95,
The 95th percentile of daily

precipitation for a baseline period. n,
The number of days with
precipitation above P95

[0 – +∞] Lower values are preferred where
rainfall is needed

Total Precipitation
(PRCPTOT) PRCPTOT � ∑n

i�1
Pi

[0 – +∞] lower values indicate drought,
higher values reflect adequate

precipitation

Very Wet Days
(R95p) R95p � ∑n

i�1
Pi , where Pi ≥P95

[0 – +∞] This index measures extreme
precipitation, with 0 indicating no

extreme rainfall events
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critical for regions with complex topography and
diverse climates.

2. Cross-Validation with Ground Data: Unlike studies that focus
exclusively on satellite data, our approach incorporates
ground-based rain gauge measurements to validate SPI and
SPEI outputs. This validation step ensures higher accuracy and
reduces biases commonly associated with satellite precipitation
estimates, particularly in remote or mountainous areas.

3. Hotspot and Cold Spot Analysis: By integrating drought
frequency analysis with spatial pattern detection (CDD,
PRCPTOT, R95p), the study not only quantifies drought
intensity but also identifies regions prone to persistent
droughts (cold spots) and extreme wet events (hot spots).
This dual analysis reveals spatial heterogeneities that might
be overlooked in traditional drought assessments.

1) SPI (Standardized Precipitation Index), SPI quantifies
drought conditions by measuring deviations in precipitation from
the historical average over specified timeframes, allowing for the
identification of short-to long-term moisture deficits or excesses.
This index provides insight into drought intensity, frequency, and
duration. The precipitation amount x is assumed to follow a Gamma
distribution (see Equation 1):

f x( ) � 1
βγΓ γ( )xγ−1e−x/β (1)

β is the scale parameter, which represents the spread of the
distribution and is determined using maximum likelihood
estimation. γ is the shape parameter, describing the form of the
distribution, also determined by maximum likelihood estimation. x
represents the precipitation data. To calculate the probability that
the precipitation amount is less than a given value, and to
standardize the Gamma distribution’s probability value to obtain
the SPI value (see Equations 2, 3):

F x< x0( ) � ∫x0

0
f x( )dx (2)

Z � S t − c2 + c1( )t + c0
d3t + d2( )t + d1[ ]t + 1

( ) (3)

In Equation, t �
����
ln 1

F2

√
, where F is the probability obtained. If

F > 0.5, the value of F is taken as 1.0-F, and S = 1. If F ≤ 0.5, S = −1.
c0 = 2.515 517, c1 = 0.802 853, c2 = 0.010 328, d0 = 1.432 788, d1 =
0.189 269, d2 = 0.001 308. The Z value represents the standardized
precipitation index SPI.

2) SPEI (Standardized Precipitation Evapotranspiration Index),
SPEI evaluates drought by considering both precipitation and
potential evapotranspiration, offering a comprehensive measure
of moisture balance. This index helps in assessing the severity
and duration of drought events across various timescales,
accounting for changes in both rainfall and evaporative demand.
To calculate the potential evapotranspiration (see Equation 4):

PET � 16K
10T
I

( )m

(4)

T, The monthly average temperature in Celsius. I, The heat
index, calculated by summing the monthly indices over the year. m
and K, Coefficients related to the number of days in the month and

the geographic location. In Equation 5, Di, The difference between
precipitation and potential evapotranspiration.

Di � Pi − PETi (5)

Di, The difference between precipitation and potential
evapotranspiration. Pi and PETi, The precipitation and potential
Evapotranspiration values, respectfully. The expression of the
distribution function is shown in Equation 6.

F x( ) � 1 + α

x − γ
( )β⎡⎣ ⎤⎦−1 (6)

α, β, γ, Parameters estimated using L-moment estimation.When
the probability p ≤ 0.5, the expressions of w and SPEI index are
shown in Equations 7, 8.

w �
��������
−2 ln p( )√

(7)

SPEI � w − c0 + c1w + c2w2

1 + d1w + d2w2 + d3w3
(8)

When the probability p > 0.5, the expressions of w and SPEI
index are shown in Equations 9, 10:

w �
�����������
−2 ln 1 − p( )√

(9)

SPEI � − w − c0 + c1w + c2w2

1 + d1w + d2w2 + d3w3
( ) (10)

The constant coefficients are, c0 = 2.515517, c1 = 0.802853, c2 =
0.010328, d1 = 1.432788, d2 = 0.189269, and d3 = 0.001308.

This study integrates ground station data with multi-source
precipitation datasets to evaluate drought frequency and intensity
across China using SPI and SPEI indices at multiple timescales (1, 3,
6, and 12 months). By incorporating cold and hot spot analyses
(CDD, PRCPTOT, R95p), the research identifies regions with
persistent dry or wet conditions, enhancing the understanding of
spatial drought patterns. Validation is conducted by comparing
index outputs to ground station observations, ensuring temporal
consistency and accurate reflection of moisture deficits across
diverse terrains. This comprehensive approach addresses the
limitations of satellite-only indices, particularly in complex
topographies, and highlights the value of evapotranspiration-
sensitive indices (SPEI) for detecting heat-induced droughts. The
findings provide actionable insights for policymakers, aiding in
water resource management, disaster preparedness, and long-
term drought risk assessment.

4 Results

4.1 Spatial and temporal patterns of
precipitation and PET over the China

The annual precipitation and potential evapotranspiration
patterns across China (Figures 2A–I) show distinct spatial
variations, with higher precipitation in southern China and lower
precipitation in northern arid regions. Monthly precipitation trends
from 2009 to 2019 (Figure 2J) align closely with ground station data.
The rain gauge data (Figure 2A) were interpolated using the inverse
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distance weighting (IDW) method (Figure 2B) to improve spatial
continuity, capturing the clear north-south gradient in precipitation.
The precipitation products—CMORPH CRT (Figure 2C), ERA5
(Figure 2D), GSMaP MVK (Figure 2E), IMERG Late (Figure 2F),
IMERG Final (Figure 2G), and ERA5-Land (Figure 2H)—generally
capture this distribution but show varying levels of accuracy. While
IMERG Final (Figure 2G) demonstrates high consistency with
observed precipitation, discrepancies are noticeable in other
products. CMORPH CRT tends to underestimate precipitation in
northern regions, reflecting limitations in detecting light
precipitation events over complex terrains, and likely due to
limited microwave signal penetration and misclassification of
light precipitation. GSMaP MVK (Figure 2E) shows significant
overestimation in arid and semi-arid regions, which may stem
from convective biases and over-representation of small-scale
rainfall events. ERA5 and ERA5-Land (Figures 2D, H) show
slight overestimations, particularly in southern China, during
summer and autumn, attributed to biases in reanalysis models
that amplify precipitation over complex terrain. These
overestimations are more pronounced in the Qinghai-Tibet
Plateau and southwestern mountainous areas, where sparse
ground station networks exacerbate inaccuracies. IMERG Final
shows the best alignment, capturing both seasonal peaks and
inter-annual variability. The potential evapotranspiration (PET)
(Figure 2I) shows high values in arid northwest regions like
Xinjiang and the Tibetan Plateau due to strong solar radiation
and low humidity, while southern areas have lower PET due to
higher humidity and frequent precipitation. Discrepancies are most
pronounced, particularly over the Qinghai-Tibet Plateau and
southwestern mountainous areas, where terrain complexity,
sparse observational coverage, and algorithm limitations
contribute significantly to performance variations across

products. Calibration efforts should focus on addressing high-
altitude regions and improving microwave retrieval algorithms to
enhance precipitation detection over diverse landscapes.

Figure 3 displays the monthly precipitation trends from 2009 to
2019, comparing ground station observations with six precipitation
products. The graph highlights the seasonal cycle of precipitation,
with distinct peaks during the summer months and lower
precipitation during winter. IMERG Final consistently aligns
closely with ground station data, demonstrating minimal
deviations and accurately capturing seasonal fluctuations,
particularly during monsoon seasons and winter. In contrast,
GSMaP MVK exhibits noticeable overestimations during summer
peaks. This overestimation likely results from the enhanced
sensitivity of GSMaP to cloud cover and convective systems,
which dominate the summer precipitation regime. ERA5 and
ERA5-Land also show slight overestimations during summer,
aligning with known biases in reanalysis models that tend to
overestimate precipitation in high-moisture environments.
CMORPH CRT and IMERG Late show minor deviations, with
IMERG Late follows a pattern similar to IMERG Final but shows
greater deviations. Overall, the products effectively follow the
seasonal precipitation cycle; however, discrepancies become more
pronounced during intense summer rainfall.

4.2 Analysis of drought index across multiple
precipitation products

Figure 4 compares SPEI-3 performance across multiple
precipitation products (CMORPH CRT, ERA5, ERA5-Land,
GSMaP MVK, IMERG Late, and IMERG Final) against ground
station data using CC, Bias, and MAE as evaluation metrics. IMERG

FIGURE 2
Annual precipitation and potential evapotranspiration across China: (A) Rain Gauge Data, (B) IDW-interpolated Rain Gauge Data, (C) CMORPH CRT,
(D) ERA5, (E) GSMaP MVK, (F) IMERG Late, (G) IMERG Final, (H) ERA5-Land, (I) Potential Evapotranspiration (PET).
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Final consistently outperformed other datasets, demonstrating the
highest correlation (CC > 0.85) in high-precipitation regions, such
as the Yangtze River Basin and southeastern China. Its low bias and
minimal MAE highlight the effectiveness of IMERG Final in
capturing precipitation variability and detecting drought
conditions. This superior performance can be attributed to
IMERG Final’s incorporation of gauge data during calibration,
which enhances accuracy in humid environments. CMORPH
CRT and IMERG Late exhibited moderate performance (CC =
0.75–0.83), but struggled in arid and high-altitude regions, such
as the Tibetan Plateau and northwestern China. CMORPH CRT
consistently underestimated precipitation (Bias < −10%), indicating
difficulties in detecting light rainfall events common to these areas.
This underestimation likely reduces the effectiveness of these
products in identifying drought conditions in dry regions.
ERA5 and ERA5-Land showed moderate correlations (CC =
0.68–0.76), but overestimated precipitation in southern regions,
particularly during the monsoon season, with biases reaching
+12% in areas with complex topography like the Qinghai-Tibet
Plateau. GSMaP MVK performed the weakest, with the lowest

correlation (CC = 0.61–0.68) and significant overestimations in
northern arid zones (Bias >15%). The overestimation suggests
GSMaP’s reliance on infrared-based precipitation estimates
amplifies convective rainfall, leading to false detections of wet
conditions during dry periods. IMERG Final consistently
achieved the lowest MAE (MAE <8 mm/month), confirming its
suitability for drought monitoring, while GSMaPMVK recorded the
highest errors (MAE >15 mm/month), highlighting the need for
further calibration and algorithm adjustments.

Figure 5 compares the SPI-3 performance of various
precipitation products (CMORPH CRT, ERA5, ERA5-Land,
GSMaP MVK, IMERG Late, and IMERG Final) against ground
station data, evaluating CC, Bias, and MAE. IMERG Final once
again outperformed other datasets, demonstrating the highest
correlation (CC > 0.83) in monsoon-affected areas and the
Yangtze River Basin. Its ability to capture dry spells and extreme
rainfall events aligns closely with ground station data, reinforcing its
suitability for monitoring short-term droughts, particularly in
southern China. CMORPH CRT and IMERG Late followed with
moderate correlations (CC = 0.74–0.81), but underestimated

FIGURE 3
Monthly precipitation trends (2009–2019): Comparison of ground station observations with IMERG Final, IMERG Late, CMORPH CRT, GSMaP MVK,
ERA5, and ERA5-Land.

FIGURE 4
Performance comparison of SPEI-3 index across multiple precipitation products (CMORPH CRT, ERA5, ERA5-Land, GSMaP MVK, IMERG Late, and
IMERG Final) against ground station data using CC, bias, and MAE metrics.
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precipitation in northern and northwestern China. This
underestimation led to frequent misclassification of drought
severity, likely due to the products’ inability to capture light
rainfall in regions with sporadic precipitation patterns. ERA5 and
ERA5-Land demonstrated regional variability, overestimating
precipitation in southern China while underestimating it in arid
areas, with biases of approximately +9% observed in southwestern
mountainous regions. GSMaP MVK consistently overestimated
precipitation, resulting in false identifications of wet conditions
during drought periods, particularly in northern China and the
Tibetan Plateau. Although less pronounced in southern regions, this

overestimation still influenced SPI-3’s accuracy during summer.
IMERG Final had the lowest MAE (MAE <6 mm/month),
reinforcing its effectiveness, while GSMaP MVK and ERA5-Land
showed the highest errors (MAE >12 mm/month), indicating that
further refinement is necessary to improve performance in complex
terrains and arid climates.

Figure 6 presents a long-termmonthly comparison from 2010 to
2019, with SPI indices on the left (Figure 6A) (SPI-1, SPI-3, SPI-6,
SPI-12) and SPEI on the right (Figure 6B) (SPEI-1, SPEI-3, SPEI-6,
and SPEI-12). Yellow-shaded areas mark extended periods where
drought indices remain below 0.5, indicating persistent dry

FIGURE 5
Performance comparison of SPI-3 index across multiple precipitation products (CMORPH CRT, ERA5, ERA5-Land, GSMaP MVK, IMERG Late, and
IMERG Final) against ground station data using CC, bias, and MAE metrics.

FIGURE 6
Long-term monthly comparison (2010–2019) of (A) SPI (1, 3, 6, and 12) and (B) SPEI (1, 3, 6, and 12) indices with extended drought periods
(index <0.5) highlighted in yellow, showing the temporal dynamics of drought across varying timescales.
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conditions. In the short term (SPI-1 and SPEI-1), IMERG Final
closely aligns with gauge data, accurately capturing rapid
fluctuations, while GSMaP MVK overestimates drought severity,
particularly in arid regions. ERA5 underestimates drought in
southern regions by overestimating precipitation. Medium-term
indices (SPI-3, SPI-6, SPEI-3, and SPEI-6) reflect seasonal
drought patterns, with SPEI showing greater variability due to
sensitivity to temperature and evapotranspiration, notably over
the Qinghai-Tibet Plateau and southwestern mountains. IMERG
Final remains the most accurate, while ERA5 and GSMaP MVK
overestimate drought in northern regions. Long-term indices (SPI-
12 and SPEI-12) reveal cumulative drought, with SPEI-12 diverging
significantly from SPI-12 in heat-affected areas, emphasizing
evapotranspiration’s role. IMERG Final consistently mirrors
observed data, but GSMaP MVK and ERA5 overestimate long-
term drought, particularly in southern China. Regional
discrepancies show SPEI indicating more severe drought than SPI
over complex terrains, underscoring the need for temperature data
in long-term monitoring. ERA5 and GSMaP MVK require
calibration. Future research should integrate multiple datasets to
reduce inaccuracies, with ensemble approaches combining IMERG
Final, ERA5, and GSMaPMVK. Expanding ground station networks
and applying machine learning for bias correction are recommended
to improve drought assessments.

4.3 Hotspot and drought frequency analysis
of precipitation products

Figure 7 presents a cold and hot spot analysis of the CDD,
PRCPTOT, and R95p indices across multiple precipitation products
(CMORPH CRT, ERA5, ERA5-Land, GSMaP MVK, IMERG Late,
and IMERG Final) compared to ground station data. The analysis
reveals that IMERG Final and IMERG Late show the highest
consistency with ground station data, effectively capturing hot
spots in arid northern and northwestern regions where dry spells
are most frequent. In contrast, CMORPH CRT and GSMaP MVK
tend to overestimate dry conditions, extending hot spots into central
China, which may lead to misinterpretations of drought severity.
Similarly, IMERG Final accurately reflects areas of high total
precipitation (PRCPTOT) in southern China, particularly along

the Yangtze River Basin, while ERA5 and GSMaP MVK display
overestimations in complex terrains like the Yunnan-Guizhou
Plateau. The R95p analysis indicates that IMERG Final
successfully identifies regions of frequent heavy rainfall, aligning
closely with observed data. Conversely, ERA5-Land and GSMaP
MVK tend to underestimate extreme precipitation events,
potentially leading to underpreparedness for flood risks in
vulnerable monsoon-affected areas.

Figure 8 compares Drought Frequency (SPEI_1) at Light,
Moderate, and Severe levels for different precipitation products
(CMORPH CRT, ERA5, ERA5-Land, GSMaP MVK, IMERG
Late, and IMERG Final) against ground station data. Light
droughts are predominantly observed in northern and
northwestern China, with IMERG Final and IMERG Late
accurately capturing these patterns. However, CMORPH CRT
and GSMaP MVK significantly overestimate light drought
occurrences in central and northeastern regions, suggesting
inflated risk assessments that could misguide resource allocation.
For moderate droughts, IMERG Final continues to demonstrate
superior performance, particularly in capturing drought patterns in
the Loess Plateau and Hebei regions. Overestimations by ERA5 and
GSMaP MVK in the Qinghai-Tibet Plateau highlight challenges in
representing drought in remote areas with sparse observational data.
Severe droughts, concentrated in southwestern China, are best
reflected by IMERG Final, while ERA5 and GSMaP MVK
overestimate drought intensity, particularly in complex terrains
such as the Sichuan Basin. These inaccuracies underscore the
need for enhanced calibration of precipitation products to
improve drought detection in diverse climatic regions.

5 Discussion

5.1 Regional discrepancies in product
performance and underlying causes

Significant discrepancies in the performance of precipitation
products across China reflect the interplay of topography, climate
systems, and observation network density. IMERG Final
consistently demonstrated the highest accuracy, particularly in
the humid regions of southern China, while products like

FIGURE 7
Spatial comparison of CDD, PRCPTOT, R95P hot spots across multiple precipitation products and gauge observations in China.
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GSMaP MVK and ERA5 overestimated precipitation in arid and
semi-arid areas, such as the Qinghai-Tibet Plateau and northwestern
China. These differences arise from terrain complexity, convective
rainfall, and observational gaps that affect satellite retrieval
algorithms. In high-altitude and mountainous regions, sparse
ground stations and challenging topography hinder accurate
precipitation retrieval, leading to underestimations or
overestimations depending on the algorithm. Microwave-based
products often misclassify precipitation over snow or rocky
surfaces, contributing to errors. By contrast, southeastern China,
with its dense station network and simpler terrain, experiences fewer
discrepancies, with IMERG Final excelling in these areas. Convective
rainfall during summer monsoons further drives overestimations by
GSMaP MVK and ERA5, which rely heavily on infrared data prone
to convective biases, while CMORPH CRT underestimates
precipitation in northern arid regions due to its limited detection
of light rainfall. Sparse observational coverage in remote regions
exacerbates these challenges, reducing the accuracy of gauge-
corrected products like IMERG Final, which otherwise performs
well in densely monitored areas.

5.2 Validation of ground observations and
addressing biases

Although ground station data serve as the primary reference for
validating precipitation products, they are not without limitations.
In complex terrains and remote areas, precipitation gauges often
under-capture snowfall or fail during extreme weather events,
introducing biases into the validation process. This
underestimation can lead to inflated satellite performance
metrics, masking underlying discrepancies. To mitigate this,
future validation efforts should integrate diverse data sources,
including radar, high-resolution reanalysis datasets, and
hydrological observations, to create a more holistic validation
framework. Cross-validation between ground station data and
independent datasets can provide additional robustness, reducing
the influence of station biases. In regions with sparse observational
networks, data assimilation techniques that merge ERA5 or GSMaP
outputs with local station data can enhance accuracy.

5.3 Effectiveness of IMERG final for drought
monitoring

IMERG Final consistently outperforms other precipitation
products, closely aligning with ground station data across various
drought indices and frequency levels, particularly in regions with
high precipitation variability like the Yangtze River Basin and
southeastern China. Its accuracy in capturing extreme rainfall
and dry spells highlights its strength in tracking seasonal and
inter-annual precipitation patterns, reinforcing its value for
hydrological modeling and early warning systems. By integrating
drought indices, the study improves understanding of drought
distribution, especially in complex terrains like the Qinghai-Tibet
Plateau. While uncertainties persist in arid regions due to biases in
detecting light rainfall, IMERG Final’s enhanced performance
reflects advances in gauge-corrected algorithms that reduce errors
in monsoon-prone zones.

5.4 Limitations of ERA5 and GSMaP MVK in
complex regions

ERA5, ERA5-Land, and GSMaP MVK show reasonable
performance in general precipitation monitoring but reveal
significant limitations in complex topographies and arid regions,
where sparse observational networks exacerbate biases. ERA5 and
ERA5-Land consistently overestimate precipitation in southern
monsoon regions during summer, while GSMaP MVK
significantly overestimates rainfall in northern arid and semi-arid
areas, driven by convective biases and algorithmic limitations. These
discrepancies distort drought risk assessments, potentially leading to
misallocated resources, inflated crop yield projections, or
unnecessary emergency responses. GSMaP MVK’s sensitivity to
convective precipitation amplifies rainfall estimates,
misrepresenting drought severity, while ERA5’s positive bias in
high-moisture environments underestimates drought intensity in
southern China, reflecting the challenges reanalysis models face in
capturing localized rainfall over complex terrain. Addressing these
issues requires product-specific calibration, tailored correction
algorithms, and ensemble approaches to mitigate biases and

FIGURE 8
Drought frequency comparison across light, moderate, and severe levels using SPEI-1 for multiple precipitation products relative to ground
station data.
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improve accuracy. Expanding ground observation networks,
particularly in remote and mountainous areas like the Qinghai-
Tibet Plateau and southwestern China, and incorporating
commercial microwave links and crowd-sourced weather data
can enhance calibration and product reliability.

5.5 Implications for drought risk
management and policy development

The comparison between SPI and SPEI indices underscores
SPEI’s heightened sensitivity to evapotranspiration, making it
particularly effective in capturing the cumulative effects of
temperature on water deficits in long-term drought assessments
(e.g., SPEI-12). This sensitivity is crucial for identifying prolonged
droughts in heat-affected regions, offering valuable insights for
guiding policy and resource allocation in areas vulnerable to
heat-induced drought impacts. However, discrepancies in
precipitation products, such as the overestimation of drought
events by GSMaP MVK and ERA5, pose significant risks for
drought management and policy development. Overestimations
may lead to misallocated resources and unnecessary
interventions, while underestimations by CMORPH CRT in arid
regions risk delaying critical responses, intensifying agricultural
losses and water shortages. To mitigate such risks, We need
precipitation products with higher spatiotemporal resolution and
accuracy, more adaptive and reliable drought forecasts can be
achieved, enhancing decision-making in drought-prone areas.

5.6 Seasonal and regional discrepancies and
the need for calibration

Despite its strong performance, IMERG Final exhibits seasonal
and regional discrepancies that warrant further investigation. The
results show that precipitation products often diverge during
summer, when convective rainfall is most intense, and in regions
with complex terrain. GSMaP MVK’s tendency to overestimate
summer precipitation reflects the influence of convective biases,
while ERA5’s positive bias in southern China highlights the
limitations of reanalysis models in capturing local rainfall
variability. These seasonal discrepancies underscore the
importance of developing calibration strategies that address
region-specific biases. Tailoring correction algorithms for
complex regions, such as the southwestern mountains and the
Tibetan Plateau, can significantly improve precipitation estimates,
enhancing the accuracy of drought assessments.

5.7 Leveraging hot and cold spot analysis for
enhanced monitoring

Hotspot and cold spot analysis using indices such as CDD and
R95p unveils critical spatial patterns that enhance drought
monitoring and mitigation strategies. IMERG Final consistently
demonstrates superior performance in capturing high-frequency
events, effectively identifying areas prone to both persistent
droughts and extreme precipitation. In contrast, products like

CMORPH CRT and GSMaP MVK often overestimate dry
conditions in northern regions and underestimate wet extremes
in the south, reflecting the limitations of generalized models in
diverse climatic zones. By integrating region-specific datasets into
drought frameworks, this analysis reduces uncertainties, enabling
more accurate and targeted policy responses for resource
management and disaster preparedness, particularly in regions
vulnerable to extreme weather events.

5.8 Future research directions and product
development

As precipitation products continue to evolve, regular updates
and recalibration are essential to maintain accuracy. This study
reflects the performance of IMERG Final as of 2019, but subsequent
improvements in retrieval algorithms and data assimilation
techniques may further enhance its capabilities. Future research
should focus on developing hybrid datasets that fuse multiple
sources, leveraging the strengths of reanalysis, satellite, and
ground observations to produce comprehensive precipitation
records. Machine learning holds significant potential in this
domain, offering new pathways to reduce biases and improve
spatial resolution. By integrating advanced techniques into
precipitation monitoring systems, researchers can enhance the
reliability of drought assessments.

6 Conclusion

This study conducted a comprehensive evaluation of multi-
source precipitation products (ERA5, ERA5-Land, CMORPH CRT,
GSMaP MVK, IMERG Late, and IMERG Final) for monitoring
extreme precipitation and drought events across China from 2009 to
2019. Utilizing groundmeteorological observations, various extreme
precipitation and drought indices, and advanced statistical methods,
we analyzed the accuracy and applicability of different precipitation
products. Amongmulti-source precipitation products, IMERG Final
is a relatively reliable product for monitoring extreme precipitation
and drought conditions in China. The key conclusions are as follows:

1) This study consistently demonstrates IMERG Final’s high
accuracy and correlation in capturing precipitation and
drought patterns across China, aligning closely with ground
observations, especially in high-precipitation southern regions
such as the Yangtze River Basin (Xu et al., 2014; Li et al., 2013).
IMERG Final consistently outperforms other products like
CMORPHCRT and GSMaPMVK, which often underestimate
in arid northern regions and overestimate in complex terrains.
Its lowMAE andminimal deviations make it highly reliable for
both extreme precipitation and drought monitoring. IMERG
Final also excels in capturing drought onset and intensity,
particularly in challenging topographies. This can be attributed
to IMERG Final’s integration of gauge data for bias correction,
which enhances accuracy in monsoon-affected areas and
regions prone to extreme rainfall. Long-term assessments
using SPI and SPEI indices confirm its suitability for
comprehensive drought monitoring. Hotspot and drought
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frequency analyses further validate its alignment with ground
data, contrasting with CMORPH CRT and GSMaP MVK,
which tend to overestimate dry areas. IMERG Final’s robust
performance across indices highlights its value for water
resource management, climate monitoring, and drought
assessment.

2) Significant discrepancies were observed in the performance of
ERA5, ERA5-Land, and GSMaP MVK, particularly over
complex terrains such as the Qinghai-Tibet Plateau and
northwestern China. GSMaP MVK exhibited notable
overestimation of precipitation, inflating drought frequency
estimates, while ERA5 and ERA5-Land overestimated
precipitation in southern regions during the summer
monsoon, masking drought severity. These biases reflect the
challenges associated with applying global reanalysis and
satellite precipitation datasets to regions with sparse ground
observations and heterogeneous precipitation patterns. The
analysis reveals that terrain complexity, sparse observational
networks, and algorithmic limitations contribute to product
inaccuracies. For example, in high-altitude areas with snow
cover and steep slopes, microwave and infrared retrievals often
misclassify precipitation, resulting in substantial deviations
from ground station data. This study highlights the need
for tailored calibration approaches and the fusion of
multiple datasets to address these regional discrepancies
and enhance drought detection capabilities.

3) The evaluation of SPEI and SPI indices shows that SPEI’s
inclusion of evapotranspiration adds valuable sensitivity to
temperature-driven water deficits, crucial for drought and
heat-affected areas. This sensitivity is especially clear in
long-term assessments (e.g., SPEI-12), capturing
cumulative evapotranspiration impacts on drought
intensity. IMERG Final performed best for both SPEI
and SPI, achieving the highest CC and lowest MAE
compared to ground station data, particularly in high-
precipitation regions. In contrast, GSMaP MVK and
CMORPH CRT showed limitations, with GSMaP MVK
having lower correlation in arid zones and CMORPH
CRT underestimating in northern areas. ERA5 and
ERA5-Land displayed moderate performance with some
overestimation in high-rainfall areas. This study
demonstrates that while SPI effectively tracks short-term
droughts, SPEI’s sensitivity to evapotranspiration enhances
its ability to capture cumulative drought impacts, reflecting
the growing influence of temperature extremes in drought
development. This is particularly relevant for southern and
southwestern China, where rising temperatures and
changing precipitation patterns exacerbate water deficits

4) The performance of precipitation products varies across
different regions of China due to distinct climatic and
topographical characteristics, with significant
discrepancies observed in complex terrain areas like the
Qinghai-Tibet Plateau and southwestern mountainous
regions. Products such as GSMaP MVK and ERA5 often
display biases—underestimating in arid regions and
overestimating in high-rainfall areas—highlighting the
limitations of relying on single-source datasets for
accurate drought assessment. These inconsistencies

underscore the need for fusion and targeted correction of
precipitation products to enhance accuracy and reliability.
The combination of radar data, high-resolution reanalysis
outputs, and machine learning algorithms could enhance
bias correction and improve real-time monitoring accuracy.

5) This study assesses multiple precipitation products for drought
monitoring across China, examining spatial and temporal
precipitation patterns, drought index performance, hotspot
analyses, and drought frequency across various severity levels.
IMERG Final demonstrates high accuracy; however, products
like ERA5 and GSMaP MVK tend to overestimate
precipitation and drought frequency, particularly in areas
with complex terrain. This highlights the need for improved
calibration, especially in arid regions, to enhance data
reliability. Observed variations in drought frequency across
datasets underscore the importance of selecting regionally
appropriate data, and suggest potential benefits of multi-
model fusion to develop a more robust, adaptable drought
monitoring tool. Additionally, incorporating machine learning
or adaptive algorithms could further improve real-time
accuracy and adaptability, supporting effective drought
assessment and resource management in China’s diverse
climate regions. Additionally, expanding ground observation
networks in under-monitored areas, such as the Qinghai-Tibet
Plateau and western China, is critical for refining precipitation
retrievals and improving drought risk assessments. The
integration of citizen science data, commercial microwave
link measurements, and remote sensing technologies could
further strengthen observational capacity in data-
scarce regions.
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