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Introduction: Do environmental technologies always yield desirable returns?
This study addresses this question through the lens of command-and-control
environmental regulation. It explores the theoretical and empirical mechanisms
influencing the efficacy of technology in reducing emissions, focusing on the
non-linear characteristics of technological returns under equilibrium conditions.

Methods: A socio-economic model integrating pollution discharge issues was
developed to examine the marginal effects of emission reduction technology.
Empirical validation was conducted using green patent data from Chinese listed
companies (2005–2020) and pollution emissions data from various cities. Fixed
effects models and generalized random forest models were employed to analyze
the relationships.

Results: The analysis revealed that technological innovation exhibits diminishing
marginal returns in reducing emissions due to existing technological constraints.
The results were further dissected by categorizing patents and city
characteristics, shedding light on the factors influencing emission reduction
effectiveness.

Discussion: The findings emphasize the importance of addressing the non-linear
nature of technological innovation in environmental regulation. Policy
recommendations include fostering tailored innovation strategies and
supporting cities with unique characteristics to maximize technological impact
on emission reduction.
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1 Introduction

The role of environmental technologies in pollution control has garnered substantial
attention in recent years. As economic activities continue to take a toll on ecological systems
via channels like greenhouse gas emissions, water contamination and soil pollution, the
urgency for curbing pollution and improving environmental quality becomes ever more
pressing (Barbieri, 2015; Liu et al., 2021). Investments into abatement-enabling
technologies, which aid the reduction, capture, and treatment of industrial and human
waste, are thus considered crucial means towards sustainability (Fujii and Managi, 2019).

OPEN ACCESS

EDITED BY

Jiachao Peng,
Wuhan Institute of Technology, China

REVIEWED BY

Fanglin Chen,
Peking University, China
Kamel Si Mohammed,
Université de Lorraine, France

*CORRESPONDENCE

Jia Li,
614004@sdnu.edu.cn

†These authors have contributed equally to this
work

RECEIVED 08 November 2024
ACCEPTED 15 January 2025
PUBLISHED 03 February 2025

CITATION

Yin X, Xu B, Li J and Wu J (2025) Environmental
technology’s diminishing marginal returns: a
study of green patents and emission reductions
in China.
Front. Environ. Sci. 13:1524824.
doi: 10.3389/fenvs.2025.1524824

COPYRIGHT

© 2025 Yin, Xu, Li and Wu. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Original Research
PUBLISHED 03 February 2025
DOI 10.3389/fenvs.2025.1524824

https://www.frontiersin.org/articles/10.3389/fenvs.2025.1524824/full
https://www.frontiersin.org/articles/10.3389/fenvs.2025.1524824/full
https://www.frontiersin.org/articles/10.3389/fenvs.2025.1524824/full
https://www.frontiersin.org/articles/10.3389/fenvs.2025.1524824/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2025.1524824&domain=pdf&date_stamp=2025-02-03
mailto:614004@sdnu.edu.cn
mailto:614004@sdnu.edu.cn
https://doi.org/10.3389/fenvs.2025.1524824
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2025.1524824


China’s system for evaluating local government officials gives
equal priority to economic growth and environmental protection,
which forces local governments to balance both aspects in their
assessments (Yin and Wu, 2022). Compared to strategies like
reducing production at polluting companies or relocating
industries, utilizing environmental technologies for emission
reduction presents a less direct impact on economic growth. This
makes the promotion and development of such technologies a more
viable option for addressing environmental challenges (Shen et al.,
2021). However, it is important to consider that, according to the
theory of diminishing marginal returns, the benefits of investing in
environmental technology R&D do not always follow a
straightforward, linear path (Solow, 1956).

In the last 2 decades, China has increasingly recognized the
significance of environmental protection alongside economic
development. From 2006 to 2021, there has been a remarkable
growth in green patent technologies, particularly in highly polluted
regions like North China and the Yangtze River Delta, as shown in
Figures 1A, B. While this trend highlights the potential of
technological solutions, it is crucial to explore whether ongoing
investments in environmental technologies consistently result in
desirable outcomes, as diminishing returns may limit the efficiency
of such investments over time. This presents a vital area for further
research and policy consideration.

Given the voluntary nature of environmental disclosure, there is
a scarcity of literature directly examining the relationship between
environmental technology investment and environmental
performance. While most studies affirm a positive correlation
between investment in environmental R&D and pollution
reduction (Anderson, 2001; Yi et al., 2020), some have revealed
nonlinear relationships (Li L. et al., 2021; Li W. et al., 2021). If such
nonlinearity exists, advancements in environmental technology may
not always yield optimal outcomes. For instance, data from the
statistical yearbooks of China’s Ministry of Ecology and
Environment show that although capital allocated to
environmental protection capacity-building in 2019 increased by

70.1% compared to 2016, pollutant reductions in wastewater and
waste gas were largely limited to 13%–18%. This suggests that while
investments in environmental technology are crucial, they may
encounter diminishing returns at higher levels of investment.
Local governments, which are primarily responsible for
environmental protection in China, should consider this when
allocating subsidies and support for environmental R&D. Failing
to do so may result in inefficient use of fiscal resources.

Existing research on the causality between environmental
technology and pollution has often relied on methods such as
adding higher-order terms to explanatory variables or applying
threshold regressions (Du et al., 2019; Luo et al., 2023). However,
the Ordinary Least Squares (OLS) approach, with its necessity for
predefined model forms, is particularly vulnerable to interference
from confounding factors, and it simplistically assumes treatment
effects to be constant. The Generalized Random Forests (GRF)
method offers a non-parametric alternative that addresses these
limitations, moving beyond the constraints of traditional
approaches (Athey et al., 2019). This innovative approach
autonomously selects covariates to mitigate confounding effects
and makes efficient use of covariate information in identifying
treatment effects, offering a richer array of statistical features.

This study aims to elucidate the causal relationship between
environmental technology R&D investment and pollution
reduction. By establishing a social planning problem based on
command-and-control environmental regulations, this study first
analyzes the mechanisms influencing the emission reduction effects
of environmental technologies under equilibrium conditions. Then,
using green patent and pollution emission panel data of listed
companies across cities in China from 2005 to 2020, it estimates
the emission reduction impacts of environmental protection
technologies on wastewater, nitrogen oxides, and industrial
smoke dust. In addition, besides the traditional OLS method, the
study also employs the GRF method to assess the kernel density
distribution of the green technology emission reduction effects, and
further analyzes the patent categories and city characteristics to

FIGURE 1
Distribution Maps of Green Patent Counts in Chinese Cities, 2006 (A) vs. 2021 (B).

Frontiers in Environmental Science frontiersin.org02

Yin et al. 10.3389/fenvs.2025.1524824

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1524824


identify key factors for formulating targeted pollution emission
reduction policies. Therefore, the following three research
questions underpin this study.

1. How do environmental technologies affect pollution emissions?
2. What are the differences in the impacts of different categories

of environmental technologies on pollution emissions?
3. Which city characteristics can influence the pollution emission

reduction effects of environmental technologies?

The potential marginal contributions of this paper can be
summarized into three main aspects: First, it analyzes and
discusses the issue from the perspective of local governments by
constructing a theoretical model aimed at maximizing the welfare
of social planners. This theoretical model, yet to be fully discussed,
aims to shed light on why solely depending on technological
solutions for emissions reduction might not be adequate.
Second, it seeks to answer how local environmental regulators
can promote the pollution reduction effects of environmental
technologies. By examining the heterogeneity in green patent
categories and urban characteristics, this study enriches the
policy reference contributions of this type of research literature.
Third, it enhances the methodological application of causal
inference for such problems. The study attempts to use
machine learning-based causal inference methods to provide
new evidence for the gradually diminishing emission reduction
effects of environmental technologies, thereby enriching the details
of such treatment effects. Additionally, this paper presents unique
findings based on the analysis of emission reduction effects for
different pollutants, revealing that due to the varying difficulties in
research and development technologies, the convergence speed of
their emission reduction effects also varies. A too rapid
convergence might render the overall emission reduction effect
insignificant.

The remaining contents are organized as follows: Section 2
reviews literature; Section 3 covers theoretical analysis and
develops hypotheses; Section 4 details research design and
methodology; Section 5 analyzes the treatment effects of green
technologies with robustness checks; Section 6 explores patent
categories’ heterogeneous impacts; Section 7 re-assesses effects
using generalized random forest models and explores factors of
variability; Section 8 discusses and Section 9 concludes. See Figure 2
for an overview of the article.

2 Literature review

In environmental economics, research centered on the Porter
Hypothesis predominantly explores the influence of environmental
regulations on the progress of sustainable technologies (Barbieri,
2015; Liu et al., 2021). This discourse builds upon Nordhaus’s
Dynamic Integrated model of Climate and the Economy
(Nordhaus, 1994), with scholars developing and refining models
for a greener economy. The model was expanded to embrace
learning-by-doing in renewable energy and knowledge spillovers
(Otto et al., 2008). In a separate effort, the integration of climate
policy-induced technical changes was advocated, supporting
subsidies on clean production and pollution taxation to promote

environmentally friendly economic development (Acemoglu
et al., 2012).

However, does technological advancement in the environmental
sector translate into improved environmental performance? This
question has been explored in a few studies. On a theoretical level,
Induced innovation and learning spillovers were integrated into the
model, estimating the energy savings and emission reduction effects
of investments in clean technology R&D (Popp, 2010). On the
empirical side, research is scarce due to the voluntary nature of
corporate environmental information disclosure and the difficulty in
distinguishing andmeasuring investments in environmental R&D at
the regional level. Most literature supports a positive linear
relationship between environmental R&D and environmental
performance. For instance, R&D expenditure was identified as a
key factor in reducing Japan’s carbon emissions (Cole et al., 2013),
while a positive correlation was found between firms’ R&D
investments and the reduction of industrial particulate emissions
(Jiang et al., 2014). Some studies assess the effects of technological
emission reductions from regional or industrial perspectives, yet
their conclusions remain focused on discussions of whether there is
a linear correlation (Alam et al., 2019; Carrión-Flores and Innes,
2010; Luo et al., 2023).

Given that the availability of environmental technologies is fixed
over a certain period, the returns on investment in these
technologies may be nonlinear according to the theory of
diminishing marginal productivity (Solow, 1956). Only a few
studies have explored this characteristic. Exploring the nonlinear
dynamics between environmental R&D investments and
environmental performance, an inverse “U-shaped” relationship
between R&D expenditure and carbon emission reductions was
observed across firms in 52 countries, providing insights into the
peak points of marginal effects (Li L. et al., 2021). Similarly, this
pattern was also identified within 30 provinces and 32 economic
sectors in China, highlighting the complexities of environmental
R&D investments’ impact on environmental performance (Li W.
et al., 2021). Both studies contribute valuable insights into the
discussion of marginal effects’ peak points. However, they gently
navigate around the challenge of precisely segregating the fraction of
R&D investments dedicated explicitly to environmental objectives,
both at the corporate and regional levels.

Furthermore, this topic presents unexplored areas. First, the
emission reduction mechanisms of environmental technologies
warrant deeper analysis. Current literature, primarily using
theories like diminishing marginal productivity, could benefit
from integrating economic models for richer insights. Second,
technological emission reduction exhibits widespread regional
heterogeneity. Although some literature mentions this issue
(Costantini et al., 2013; Li et al., 2017), existing studies seldom
delve deeply into it. Third, distinguishing investments in
environmental technologies more precisely remains a challenge.
Studies typically use R&D spending or patent counts as proxies,
but these do not specifically pinpoint environmental R&D efforts,
highlighting a need for refined causal identification approaches.
Lastly, while the nonlinear effects of emission reductions are
commonly analyzed through econometric methods, employing
machine learning or non-parametric statistics might reveal more
detailed findings, though their use in empirical research is
less common.
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3 Theoretical analysis and hypothesis
development

Within a directive environmental policy framework, this study
proposes a simple theoretical model to illustrate that environmental
or green technology investments may not always yield expected

returns. Unlike previous analyses that emphasize market-driven
mechanisms (Acemoglu et al., 2012; Aghion et al., 2016), this
study considers China’s environmental governance issues as a
societal planning problem, wherein the government can directly
adjust enterprises’ production scales. Specifically, while Acemoglu
et al. (2012) explore the dynamic effects of carbon taxes and research

FIGURE 2
General picture of research.
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subsidies on innovation direction, and Aghion et al. (2016) focus on
the path dependency of technical change in response to fuel prices,
this study highlights the unique institutional features of China’s
dual-track policy system. Despite China’s piloting of market-based
instruments like emissions trading since the 1990s, administrative
measures and command-and-control policies have remained
predominant in industrial production interventions until 2020
(Tang H. et al., 2020; Tang K. et al., 2020).

In this societal planning issue, total social utility depends on
consumption C and pollution emissions E. In the current scenario,
enterprise labor input remains fixed, and ignoring capital
depreciation. In other words, each enterprise’s production
function is a function of the capital input Ki. Societal pollution
emissions result from summing individual enterprise emissions,
calculated as one minus the pollution treatment rate function,
g(ki), multiplied by the product output Yi. Here, g(ki)
represents the impact of environmental R&D investment ki.

Social planners optimize enterprise production scales to
maximize the social utility function U(C, E), subject to
consumption meeting national income equality, and short-term
total investment capped at Kmax, with total pollution below Emax.
In essence:

max
K1 ,K2/Kn

U C, E( )

s.t.

C � ∑Yi −∑Ki

Yi � f Ki( )
E � ∑ 1 − g ki( )[ ] · Yi, 0≤g ki( )≤ 1, g′ ki( )≥ 0
ki � δi · Ki, 0≤ δi < 1∑Ki � Kmax∑Ei ≤Emax

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Typically, the total utility function U(C, E) is positively

correlated with consumption C and negatively correlated with
emissions E. f(Ki) is the production function for enterprise i
with respect to capital input Ki. Assuming g(ki) is
monotonically non-decreasing with environmental R&D
investment ki. The proportion of pollution emission reduction
caused by a unit increase in environmental investment ki can be
denoted asMREi � g′(ki), and ki can be simplified as a proportion
of the total capital input Ki for enterprise i, with δi reflecting
its share.

The above scenario is based on a command-and-control
environmental policy framework, where the government can
adjust the scale of enterprise production through administrative
orders, pollution taxes, and similar measures. With emission rights
trading, businesses decide between reducing emissions or buying
rights, weighing governance costs against rights acquisition costs.
Some studies have examined this issue (Liu et al., 2020; McGartland
and Oates, 1985).

It is evident that more output increases social utility, but also
generates more pollution, which reduces social utility. To delve
deeper into the aforementioned planning problem, it can be
assumed that the production function for each enterprise follows
the constant returns to scale Cobb-Douglas production function:

Yi � AKα
i L

1−α
i , 0< α< 1

Where the technological level A and labor input Li can be
considered as fixed values in the short term, and α is the output

elasticity of capital. The marginal effect of environmental technology
investment on total societal pollution emissions is:

∂E

∂k
� ∑ 1 − g ki( )( ) ∂Yi

∂ki
−MREi · Yi[ ]

� ∑ 1 − g ki( )
δi

· α
Ki

−MREi( ) · Yi

� ∑ 1 − g ki( )
ki

· α −MREi( ) · Yi (1)

The above equation indicates that whether an increase in the
unit environmental investment can reduce total pollution emissions
depends on the sum of the marginal effects of environmental
investments by each company. In fact, if there is only one
enterprise, social planners would have the enterprise invest Kmax

in production, while the enterprise would choose an appropriate δ to
meet the emission limit Emax. Due to bothMRE and 1 − g(k) being
positive, it must hold that:

∂E

∂δ
� − MRE · k + 1 − g k( )( ) · α[ ] · Y

δ
< 0

This indicates that as the proportion of environmental
investment increases, pollution emissions will correspondingly
decrease. However, when the problem involves multiple
enterprises, differences in the research and production
capabilities of each company introduce uncertainty into the sign
of the term within the brackets in Equation 1, making the marginal
effect of environmental investment on total societal pollution
emissions uncertain. Factors include the functional form of g(k),
R&D investment, and output quantity as weights. To further discuss
the sufficient conditions for the existence of equilibrium solutions,
this paper assumes the utility function to be in its simplest
linear form:

U � C − βE

Where β is the coefficient representing the aversion to
pollution per unit of societal consumption, typically assumed to
be greater than 0. Alternatively, assuming a Constant Elasticity of
Substitution (CES) utility function form also yields similar
conclusions. If equilibrium exists, the corresponding first-order
condition is:

αYi

Ki
� 1 − βδi ·MREi

1 − β 1 − g ki( )( ), orKi � 1 − β 1 − g ki( )( )[ ] · αYi

1 − βδi ·MREi

The above equation indicates that if an equilibrium exists, the
marginal output of capital for each company at the equilibrium state
should be distributed according to the environmental efficiency ratio
based on its utility function. In addition, the existence of equilibrium
should also satisfy second-order conditions. Specifically, at the
equilibrium point k*i , it should hold that:

g″ k*i( ) · kp2i + 2αg′ k*i( )k*i + α α − 1( )g k*i( )< 0
g″ k*i( )< − 2αg′ k*i( )k*i + α α − 1( )g k*i( )

kp2i

The right-hand side of above inequality is always non-negative,
imposes a crucial requirement: the second derivative of the pollution
treatment rate function around k*i must be negative. This condition
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indicates that the environmental R&D efficiency is marginally
decreasing near the stable point, which generally aligns with real-
world scenarios. Due to the finite stock of basic science behind
specific pollutant reductions over a certain period, there are
constraints on available technology development. This results in
diminishing marginal effects of R&D investment on pollution
treatment rates, explaining the nonlinearity of environmental
technology’s emission reduction effects. Rational enterprises cease
further investment in environmental R&D when the marginal effect
diminishes to zero, aligning with our previous assumption of non-
negativity for g′(ki). Therefore, it can be proposed the following
research hypothesis:
Research Hypothesis: The marginal effect of environmental R&D
investment on pollution reduction is nonlinear, potentially leading
to a diminishing actual technological emission reduction effect.

To further assess the economic value of green innovation, we
simplify the model to a single firm scenario, where R&D investment
k is a fixed proportion δ of capital input K. The marginal benefit of
emission reduction (MB) can be expressed as:

MBRP � βAKαg′ δK( )δ
while the marginal cost of green innovation (MC) is:

MCGI � 1 − αAKα−1 1 − β + βg δK( )( )
WhenMBRP <MCGI, further investment in green innovation no

longer yields economic benefits. This analysis highlights the
importance of balancing the costs and benefits of green
innovation in policy design, particularly in determining optimal
investment levels to maximize social welfare.

4 Methodology and data

This section outlines the methodologies employed, specific
model configurations, variable definitions, and the selection and
characteristics of the sample used in the study.

4.1 Methodology

The empirical section aims to examine whether there is a
nonlinear emission reduction effect associated with
environmental technology R&D investments, with a focus on
whether the marginal effects diminish as investments increase.
To achieve this objective, this study employs a fixed-effects
model augmented with quadratic terms to estimate the treatment
effects. Fixed effects absorb unobserved factors, mitigating omitted
variable bias for more accurate estimation of treatment effects. The
inclusion of quadratic terms for explanatory variables in the model
also helps capture potential nonlinear treatment effects. This model
specification is inspired by relevant literature (Li L. et al., 2021), and
its form is set as follows:

Emissionit � β0 + β1Patentsit + β2Patents
2
it + γk ∑Xk + μi + τt + εit

(2)

In the above equation, Emissionit represents the dependent
variable, corresponding to the emissions of three types of

pollutants in the ith city in the tth year. Patentsit is the core
explanatory variable. In this study, the total count of green
patents aggregated at the enterprise level is used as a proxy
variable for green technology investment. β1 signifies the
treatment effects of green patents on pollution emissions. β0 is
the intercept term of the regression, Xk denotes the control
variables, and the vector γk represents their respective
coefficients. The model controls for individual fixed effects μi and
time fixed effects τt . εit is the random error term.

However, linear models based on the aforementioned
method, when estimating the effect of the treatment variable
W on the outcome variable Y based on control variables X,
require a predefined model form, and the treatment effect τ is
also assumed to be constant. In this case, confounding factors
need to be fixed in advance, hence nonlinear treatment effects
might not always eliminate endogenous interference. To
address this issue, this paper also re-estimates treatment
effects using the generalized random forests (GRF) method
(Athey et al., 2019). This approach represents a recent
development in machine learning for causal inference,
relaxing constraints on model form and the constancy of τ
(Rubin, 2005). The GRF model, by estimating the propensity
score e(x) and m(x) � E[Yi|Xi � x], leads to the following
central form:

Yi −m x( ) � τ Wi − e x( )( ) + εi

In this formulation, as long as either m(x) or e(x) can be
accurately estimated, the conditional treatment effects τ(Xi) �
E[Y(1) − Y(0)|Xi � x] can be estimated with greater consistency.
Moreover, given the forest model’s ability to freely choose
covariates, this method can enhance estimation accuracy by
providing a larger, dimensionally invariant set of covariates.
Unlike traditional linear models that assume a constant
treatment effect, the GRF method allows for the estimation of
heterogeneous treatment effects across cities, accounting for
differences in regulatory frameworks, economic conditions, and
technological adoption. Compared to linear models, this non-
parametric statistical method can yield the distribution of
treatment effects, thereby offering richer statistical information
conducive to a deeper exploration of the trends in treatment
effects over time.

Leveraging previous foundational work (Breiman, 2001;
Robinson, 1988), the algorithm first places the covariate split
“greedily” in the spanning tree stage to maximize the squared
difference of treatment effects, and then estimates the treatment
effects based on the adjusted Equation 2 after building the random
forest model. In the model fitting process, GRF assigns importance
scores based on the frequency of covariate usage, estimating the
optimal linear projection of the treatment effects on a series of the
most significant covariates, thereby capturing heterogeneous
treatment effects. This feature is beneficial for further
contemplating which city characteristics can affect the magnitude
of the treatment effects and how they do so, thereby positively
influencing policy formulation.

This study employs Stata 16.0 for estimating the fixed effects
model, the “grf” package in R for fitting, estimating, and visualizing
the GRF model, and Python 3.7’s “jieba” library among others for
text analysis.
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4.2 Variables

This paper employs various urban-level pollutants as dependent
variables, encompassing sewage emission (Emission_sewage),
nitrogen oxide emission (Emission_NOx), and industrial smoke
and dust emission (Emission_sd). These three pollutants with good
data quality at the urban level are selected for their reflection of
varying technological challenges in pollution control. Sewage
emission control technologies, such as biological and chemical
treatments, are the simplest. Nitrogen oxide (NOx) emission
reduction techniques, like Selective Catalytic Reduction (SCR)
and Selective Non-Catalytic Reduction (SNCR), represent
intermediate complexity. Industrial smoke and dust emission
mitigation, requiring advanced Electric-Bag Composite Dust
Removal, poses the greatest technical challenge.

This study employs aggregated city-level green patent data of
listed companies as the primary explanatory variable. Although
R&D spending could more closely indicate environmental
innovation efforts, the use of green patents is dictated by
challenges in obtaining firm-specific pollution data and
distinguishing the environmental portion of R&D investments
due to voluntary disclosure practices. The patents are classified
per the United Nations Framework Convention on Climate Change
into six categories: waste management, nuclear power,
transportation, energy conservation, alternative energy
production, and administrative regulation and design, with the
possibility of patents overlapping across categories.

Informed by literature (Du et al., 2019; Du and Li, 2019), this paper
selects control variables influencing both pollution emissions and green
technology outputs. Key variables include the logarithm of per capita
GDP (LnPGDP), treated to approximate growth rates while
maintaining variables in a comparable dimension, and the ratio of
government R&D investment to GDP (Ratio_rd), addressing
technological support’s impact. Foreign direct investment (FDI) and
industrial structure (IS) are assessed to gauge polluting enterprises’
prevalence in cities. Additionally, environmental regulation is assessed
using Python text analysis on city government work reports, extracting
and categorizing relevant Chinese terms. The frequency of these terms
is normalized to formulate the Environmental Regulation index (ER),
indicating local governments’ focus on environmental concerns, with
detailed vocabulary presented in Table 1.

In the GRF model section, this paper constructs a covariate set
with theme-related variables from the China City Statistical
Yearbook, including per capita GDP, government research and
education spending as ratios to GDP, and broadband subscribers
per household registration, etc. Descriptive statistics for the main
variables involved are presented in Table 2.

4.3 Data source

The green patent data used in this paper comes from the China
Stock Market Accounting Research Database (CSMAR, https://www.
gtarsc.com/). The dataset consists of 173,674 green patent records
spanning from 1992 to 2021. Frequency analysis revealed that the data
for 2021 significantly fell below the average level of the preceding
3 years. To ensure data accuracy, the 2021 data were excluded. The
patent records include the securities code of the involved listed

companies, the fiscal year, the company name, the relationship
between the company and the relevant listed company, the patent
application date and authorization date, and whether the patent is an
invention. Since there is a lack of pollution emission data at the
enterprise level, the data was aggregated to the city level based on the
postal codes of office addresses of the listed companies in the database.

This study’s city-level socio-economic data, sourced from the
China City Statistical Yearbook, underwent preprocessing to
enhance reliability: Cities with significant data gaps or
administrative changes were excluded. Missing patent data were
set to zero, and were verified and adjusted using local and provincial
yearbooks. Interpolation methods filled remaining gaps, ensuring
missing values constituted less than 0.5% of the data, minimizing
their impact on analyses. This paper identify outliers as those values
exceeding three standard deviations above the mean, and we have
applied Winsorization to a minimal number of extreme values to
ensure they do not become leverage points in the estimation of
treatment effects within linear model. The refined dataset comprises
a balanced panel for 217 cities from 2005 to 2020.

5 Treatment effect of green
technologies on pollution emissions in
fixed model

5.1 Baseline regressions

This paper initially estimates Equation 2, with results presented
in Table 3. In columns (1), (3), and (5), the regression estimates
include only the quadratic term of the total number of green patents,
the variable s_total_p with the prefix “s_” represents the square of
the total number of patents. Columns (2), (4), and (6) present the
estimates with the inclusion of city-level control variables.

The estimated results indicate that green patents have a certain
emission reduction effect on sewage and nitrogen oxides, which is
statistically significant at a 5% significance level. However, the
treatment effect on industrial smoke and dust is not statistically
significant. For the two pollutants where the treatment effect is
significant, the estimated coefficient for the linear term of green
patents, i.e., the marginal effect of pollution reduction, is negative.
Simultaneously, the quadratic term coefficient is positive, suggesting

TABLE 1 Text analysis word frequency statistics of each category name and
some representative words.

Category Representative vocabulary

Environmental
protection class

Environment, environmental protection, air quality,
green developmentetc.

Environmental
pollution class

Carbon dioxide, sulfur dioxide, nitrogen oxides,
PM2.5 pollution, emissions, greenhouse gasesetc.

Energy consumption
class

Energy, conservation, recycling, reuse, coal conversion,
electricity, coal to gas, new energyetc.

Collaborative
development class

Environmental synergy, collaborative development,
partial cooperation, collaborative pollution control,

public participationetc.

Note: 1) The source of data is the government work reports of Chinese cities from 2005 to

2020, manually organized by the authors. 2) The terms in the table are direct translations

from Chinese.
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TABLE 2 List of variables and descriptive statistics.

Variable name Indicator meaning Mean Standard
deviation

Minimum Maximum

Explained Variables

Emission_sewage Sewage emissions (in tons) 7893.494 9373.175 7 96501

Emission_NOx Nitrogen oxide emissions (in tons) 55619.79 58244.36 2 683162

Emission_sd Industrial smoke and dust emissions (in tons) 32947.42 128426.9 34 5168812

Explanatory Variables

total_p Total number of green patents (GFs) 50.72935 319.8106 0 6,659

g1_p GFs in waste management category 14.30069 98.28807 0 2,358

g2_p GFs in nuclear power category 0.321965 4.300297 0 131

g3_p GFs in transportation category 7.889549 58.87546 0 1,408

g4_p GFs in energy conservation category 16.9296 90.3311 0 1,665

g5_p GFs in alternative energy production category 13.29693 86.47662 0 1768

g6_p GFs in administration and design category 2.165832 15.98871 0 367

Control Variables in Fixed Effects Models

LnPGDP Log GDP per capita (CNY) 10.48558 0.863057 0 13.18506

Ratio_rd Share of scientific research expenditure 0.030001 0.024255 4.84E-07 0.520865

FDI Share of actual foreign capital utilization in GDP 0.021408 0.020406 −0.03317 0.185508

IS Industrial structure - the proportion of secondary production 48.98548 10.31483 0 90.97

ER Weighted average of four categories of environmental attention word
frequencies

0.00344 0.001037 0 0.021429

Instrumental Variables

IV Total independent patents obtained by listed companies in the city for the
year

277.3792 1,058.068 0 17521

Part of the Representative Covariates in the GRF Model

PGDP GDP per capita (CNY) 51191.34 52587.63 0 532351.1

PGR Natural population growth rate 0.058394 0.048173 −0.0934 0.388

PD Population density (per square kilometer) 495.7942 346.4482 0 2,881.965

Gov_income Share of fiscal revenue 0.07311 0.029586 0.021531 0.477894

Ratio_ED Percentage of education spending 0.423999 0.243277 0.024768 1.789778

Institution_save Share of deposits in financial institutions 1.351941 0.617652 0.371088 5.313338

Resident_save Percentage of resident deposits 0.72153 0.257574 0.067356 2.546963

Resident_loan Percentage of residential loans 0.927599 0.575313 0.096687 5.304668

Dome_pro The proportion of the number of domestic enterprises 0.896774 0.113389 0.258673 1.031095

Road_passenger Road passenger traffic (ten thousand passengers per year) 8.561205 1.064945 0 12.18382

Wage Average wage of employees in employment (CNY) 10.5555 0.535345 9.130938 12.06224

Indust1_lpor The proportion of employees in the primary industry 1.840233 4.262118 0.01 73.97

Indust2_lpor The proportion of employees in the secondary industry 46.98585 12.8269 7.43 84.4

Indust3_lpor The proportion of employees in the tertiary sector 51.17919 12.15614 9.91 91.14
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a diminishing marginal effect on pollution reduction with an
increase in the number of green patents.

Using sewage emissions as an example, the marginal effect can
be expressed in a linear form: −12.4349 + 0.0018 × number of
patents. This indicates that at the initial stages of environmental
technology application, each patent contributes to a reduction of
approximately 12.43 tons in sewage emissions. However, as the
number of patents increases, their marginal effect diminishes,
approaching a reduction effect close to zero when the green
patent count nears 6,908. The results partially validate the
research hypothesis, yet the impact on industrial smoke and dust
did not exhibit statistical significance. Subsequent sections aim to
explain this phenomenon by examining the nuanced categories of
patents and the convergence rate of their marginal effects.

5.2 Robustness test

5.2.1 Endogeneity issues
The potential bidirectional causality between patents and

emissions introduces endogeneity issues. This paper adopts
strategies from the literature on addressing peer effects (Bentolila

et al., 2010; Card and Krueger, 1996) and selects the total number of
independent patents obtained by all listed companies in a city within
the year as an instrumental variable (IV) for the linear term of
patents. This variable is directly related to the city’s green patents but
not directly to emissions. Additionally, given the potential
endogeneity of the quadratic term, the square of the instrumental
variable (IV_sq) is introduced as an additional instrument for the
quadratic term of patents. Using the two-stage least squares method,
results are presented in Table 4.

Table 4, Columns (1) and (2), report the first-stage regressions
for the linear and quadratic terms of patents, respectively. Column
(1) takes the total number of green patents as the dependent variable
and uses the original instrumental variable (IV) as the primary
explanatory variable. The estimated coefficient of IV passes the 1%
significance level test, indicating a strong correlation between IV and
the total number of green patents. Similarly, Column (2) uses the
square of the total number of green patents as the dependent variable
and employs both IV and its square (IV_sq) as explanatory variables.
The coefficient of IV_sq is also significant at the 1% level, confirming
the relevance of the quadratic instrument.

Columns (3) to (7) present the second-stage and approximate
exogeneity test (AET) results for the three pollutants. Columns (3),

TABLE 3 Estimated results of baseline regressions.

Variables Emission_sewage Emission_NOx Emission_sd

(1) (2) (3) (4) (5) (6)

total_p −12.1668** −12.4349** −65.2132** −73.1827** 3.2289 7.0675

(6.0895) (6.2033) (30.4737) (31.3222) (5.6540) (9.4132)

s_total_p 0.0017** 0.0018** 0.0087** 0.0099** −0.0006 −0.0011

(0.0009) (0.0009) (0.0042) (0.0044) (0.0008) (0.0013)

LnPGDP −518.8342 −828.5362 −127.5712

(340.4427) (2,927.8626) (2,405.6976)

Ratio_rd 18.6733 2,080.3354** 190.7576

(63.7564) (868.2528) (763.9245)

FDI −76.4770 −1,379.8602* −1,429.7849**

(139.2373) (782.3599) (606.7794)

IS 0.3111 6.7738*** 6.6911*

(0.2740) (2.2146) (4.0252)

ER −1,335.0346 −8,553.5782 27,864.1706

(1,192.8002) (9,849.2487) (23,764.9308)

Constant 9,200.0341*** 13,173.3622*** 77,829.2204*** 57,825.5531* 33,369.8486*** −816.4852

(377.8132) (3,918.4927) (2,398.1428) (31,442.8822) (2,376.2971) (36,884.0980)

Observations 3,196 3,196 3,196 3,196 3,196 3,196

R-squared 0.158 0.16 0.394 0.414 0.014 0.015

Number of cities 218 218 218 218 218 218

city FE YES YES YES YES YES YES

year FE YES YES YES YES YES YES

Note: 1) Robust standard errors of clustering to city level are in parentheses, same below; 2) ***, **, * denote 1%, 5%, 10% significance levels, same below.
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(5), and (7) show the second-stage regression results for sewage,
nitrogen oxide, and industrial smoke and dust emissions,
respectively. The second-stage estimations indicate that the
marginal abatement effects of green patents on sewage and
nitrogen oxide emissions remain significant, with the absolute
values of the coefficients increasing compared to the baseline
regression. For industrial smoke and dust emissions, however, the
abatement effect of green patents remains insignificant.

Columns (4) and (6) provide the results of the approximate
exogeneity test (AET) for sewage and nitrogen oxide emissions,
respectively. This test involves simultaneously regressing the
explanatory variable and the instrumental variables on the
dependent variable. The results confirm that the instrumental
variables (IV and IV_sq) are exogenous to the dependent variables,
as their coefficients become insignificant in this test. This supports the
validity of the instrumental variable strategy employed in this study.

5.2.2 Metric accuracy issues
Constrained by the available data, this study is limited to

measuring the impact of green technology on pollution emissions
at the city level. However, this measurement approach faces three
main challenges.

Firstly, the aggregated green patent data’s challenge is their
broad indicator, obscuring direct links to specific pollutants,

necessitating a refined analysis of patent categories to assess
impacts on three pollution types more accurately in later
sections. Secondly, focusing solely on patents from listed
companies overlooks broader innovation efforts. To rectify this,
the study incorporates data from the Chinese Research Data Services
Platform (CNRDS, http://www.cnrds.com), encompassing city-
specific green patents across all entities. Regression analyses,
incorporating this comprehensive variable (GP_citylevel), are
detailed in Table 5 (1)–(3), showing consistent trends with the
baseline. Thirdly, the geographic specificity of green patent
utilization is questioned, as technologies may be applied beyond
the originating city’s borders. To ensure accuracy, the study
meticulously validated green patent allocations against company
locations, adjusting the green patent count (newGP) accordingly.
This refined approach, aimed at better aligning patent use with
actual company locations, yielded improved estimation accuracy for
pollution impacts, as demonstrated in Table 5 (4)–(6), where the
results exhibit enhanced coefficients and significance levels for the
treatment effects on major pollutants, ensuring the estimation
remains robust.

5.2.3 Verification of nonlinear characteristics
In the baseline regression, a quadratic term was introduced to

capture the nonlinear relationship between green patents and

TABLE 4 Results of instrumental variable estimation of green patents on pollution emissions.

Variables First stage Emission_sewage Emission_NOx Emission_sd

total_p s_total_p Second stage AET Second stage AET Second stage

(1) (2) (3) (4) (5) (6) (7)

total_p −18.6931** −2.0182* −126.9682*** −17.9985** 12.3391

(7.7084) (1.1259) (48.0603) (8.6679) (16.0363)

s_total_p 0.0028** 0.0001* 0.0009** −0.0017

(0.0013) (0.0001) (0.0004) (0.0024)

IV 0.2315*** −2.0182 −17.9985

(0.0662) (2.1259) (18.6679)

IV_sq 0.1023*** 0.0003 0.0009

(0.0382) (0.0004) (0.0008)

Constant −42.6379 −79211.7365 12,746.6680*** 33,184.7576

(81.6742) (753.8171) (3,877.9040) (32,748.1136)

Observations 3,196 3,196 3,196 3,196 3,196 3,196

R-squared 0.904 0.835 0.034 0.805 0.041 0.792 0.001

Kleibergen-Paap LM 8.925*** 8.925*** 8.925***

Kleibergen-Paap Wald F 234.16 234.16 234.16

10% maximal IV size CV 7.03 7.03 7.03

Control variables YES YES YES YES YES YES YES

city FE YES YES YES YES YES YES YES

year FE YES YES YES YES YES YES YES

Note: 1) The explanatory variable for “First stage” is the number of green patents, while “Second stage” and “AET” are the emissions of the corresponding pollutants.

Frontiers in Environmental Science frontiersin.org10

Yin et al. 10.3389/fenvs.2025.1524824

http://www.cnrds.com
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1524824


emission reductions. However, this approach may not fully
represent the nonlinear dynamics. For example, if the
relationship follows an upward-opening parabola, emissions
could theoretically increase beyond a certain threshold of green
patents, which contradicts practical expectations. To further validate
the nonlinear characteristics, this section employs the Bins method,
dividing green patents into quintiles and estimating the treatment
effects of each group on three pollutants. The results are presented in
Table 6, Panel A. Columns (1), (3), and (5) report the effects of group
means (Bin_mean) on the three pollutants, consistent with the
baseline regression, showing no significant emission reduction
effect for industrial smoke and dust. Columns (2), (4), and (6)
present the effects of group dummies, with the first quintile (Bin_
dummy1) omitted to avoid multicollinearity. The coefficients
indicate a diminishing marginal reduction effect for sewage and
nitrogen oxides, with emission reductions decreasing as the patent
quintiles increase. However, industrial smoke and dust do not
exhibit a similar pattern. Notably, the highest quintile shows a
relatively strong reduction effect, likely due to stricter emission
requirements in densely populated, R&D-intensive cities like Beijing
and Shanghai.

Additionally, threshold regression was applied to re-estimate the
baseline model, as shown in Panel B, columns (7)–(9). Sewage and
nitrogen oxides exhibit significant single-threshold characteristics,
while industrial smoke and dust do not. By examining the
coefficients before and after the threshold values (412 patents for
sewage and 275 for nitrogen oxides), the reduction effects
demonstrate a diminishing trend, gradually approaching zero or
a minimal level without reversing.

To further explore these dynamics, this study employs the
Quantile-on-Quantile (QQ) regression method (Sim and Zhou,
2015). Green patents and pollutant emissions were divided into
5% quantiles by year, and quantile regressions were conducted for
each combination of independent and dependent variable quantiles.
The coefficients were averaged across years, and the results are
visualized in three-dimensional plots (Figures 3A–C). Darker colors
indicate higher reduction effects. The plots reveal a nonlinear
pattern where the reduction effect decreases as the number of
green patents increases, eventually converging near zero.
Industrial smoke and dust (Figure 3C) exhibit a smoother
convergence, with a rapid decline around the 40% patent
quantile and a post-convergence effect slightly above zero, which
may explain its overall insignificance. Additionally, while sewage
and industrial smoke and dust show reduced effectiveness in high-
pollution quantiles, nitrogen oxides display multiple fluctuations.
These findings not only validate the robustness of the baseline
regression but also supplement the underfitting of the quadratic
model by providing detailed insights into the nonlinear
characteristics.

6 Segmented analysis of green patent
categories

In this section, the paper estimates the emission reduction effects
of three pollutants according to six subcategories of green patents.
The analysis continues to employ a panel fixed-effects model,
incorporating quadratic terms for patents, with the results

TABLE 5 Estimates with replacement variables and samples.

Variables Emission_sewage Emission_NOx Emission_sd Emission_sewage Emission_NOx Emission_sd

(1) (2) (3) (4) (5) (6)

GP_citylevel −4.7052*** −27.9377*** 1.0927

(1.2444) (8.0736) (3.0470)

s_GP_citylevel 0.0003*** 0.0015*** −0.0001

(0.0001) (0.0004) (0.0002)

newGP −34.5274*** −162.5338*** 50.8011

(13.7297) (53.4933) (129.9070)

s_newGP 0.0533*** 0.2046*** −0.0674

(0.0129) (0.0703) (0.1704)

Constant 12,249.4484*** 52,616.0102* 156.1290 11,285.7962*** 41,522.6164* 25,784.9087

(3,354.0457) (29,141.4026) (36,295.2647) (3,343.0584) (24,743.8702) (39,365.2353)

Observations 3,195 3,195 3,195 2,517 2,517 2,517

R-squared 0.229 0.457 0.015 0.142 0.466 0.015

Number of cities 218 218 218 171 171 171

Control variables YES YES YES YES YES YES

city FE YES YES YES YES YES YES

year FE YES YES YES YES YES YES

Note: There is a loss of sample size for both sets of regressions due to the presence of missing sample values.
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displayed in Table 7. In Table 7, panel A–C represents three types of
pollutant emissions as explanatory variables, and columns
1–6 represent the different categories with the patents as
explanatory variables.

Panels A and B report the estimated impacts of various patent
categories on sewage and nitrogen oxide emissions, respectively,
revealing certain similarities. Notably, patents in the nuclear power
and administration and design categories exhibit relatively large

absolute values for the linear term coefficients, with some
significance. This suggests a higher initial emission reduction
effect for these two patent types. The study also examines the
quadratic term coefficients, which relate to the rate of marginal
effect decline. Peak patent numbers for sewage and nitrogen oxide in
these categories are similarly close, with nuclear power patents
diminishing to zero marginal abatement effect at 122 and
132 patents, and administration and design at 358 and

TABLE 6 Bins grouping regression and threshold regression estimates.

Pannel A Treatment effects by quantile binning

Emission_sewage Emission_NOx Emission_sdVariables

(1) (2) (3) (4) (5) (6)

Bin_mean −5.0202** −41.2347*** −7.2967

(2.2005) (14.6380) (9.4443)

Bin_dummy2 534.1012** 5,909.6751*** 394.7822

(247.1585) (2,132.9997) (1,558.4331)

Bin_dummy3 591.8355** 6,246.9004** −163.4206

(243.4492) (2,417.5736) (1,222.2991)

Bin_dummy4 868.7031** 8,722.1586** 951.3701

(433.9652) (3,735.2017) (1,831.3345)

Bin_dummy5 72.0466 −2,670.3688 −1,014.8945

(578.8481) (4,766.1304) (2,735.6399)

R-squared 0.128 0.192 0.468 0.403 0.206 0.207

Number of cities 218 218 218 218 218 218

Control variables YES YES YES YES YES YES

city FE YES YES YES YES YES YES

year FE YES YES YES YES YES YES

Pannel B Threshold regression

Variables Emission_sewage Emission_NOx Emission_sd

(7) (8) (9)

≤ Threshold −7.9826*** −93.6797*** 33.4641**

(1.5248) (12.9427) (15.5446)

> Threshold −1.4896*** −13.1906*** −1.3288

(0.3450) (2.3073) (1.7131)

Single threshold 412 275 91

F stat 20.76** 42.53** 5.42

R-squared 0.183 0.478 0.207

Number of cities 218 218 218

Control variables YES YES YES

city FE YES YES YES

year FE YES YES YES
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375 patents, respectively. Particularly, the administration and design
category shows a very high intercept for nitrogen oxide emissions,
at −1,300.0253 tons, indicating that regulatory technologies are
highly effective in early-stage pollution control for this pollutant.

Panel C presents the estimation results for industrial smoke and
dust emissions, which, similar to the baseline regression, do not
show sufficient statistical significance. The paper then re-estimates
these effects using the quantities of invention patents across six
categories, with findings reported in Panel D. Uniquely, the linear
and quadratic coefficients of invention patents in the alternative
energy production category demonstrate 5% significance. According
to this analysis, the patent count at which marginal abatement effect
declines to zero is 16,358. This outcome suggests that high-quality
alternative production technologies might be an effective means to
reduce industrial smoke and dust emissions.

7 Reassessing treatment effects and
identifying key urban factors

In this section, a Generalized Random Forest (GRF) model is
employed to reevaluate the treatment effects of green patents.
Additionally, we identify key urban factors influencing these
treatment effects by leveraging the frequency with which
covariates are used in constructing the model.

The algorithm initiates by estimating propensity scores (Ŵ) and
conditional expectations (Ŷ), utilizing selected dependent,
treatment variables, and a covariate set, with the aim of
enhancing the robustness and accuracy of causal effect
estimations. This involves two key hyperparameters critical to the
model’s optimization: parameter 1, which sets the covariate
significance threshold for model inclusion, and parameter 2,
determining the causal forest model’s number of trees. These
parameters are pivotal, with parameter one varying from 0 to
0.5 in increments of 0.05, and parameter two spanning from
100 to 1,500 trees in steps of 100, to systematically explore the
parameter space for the optimal model configuration. This
exploration aims to identify the settings that yield the highest
model fit, culminating in the estimation of the average treatment
effect (ATE) based on the optimally configured causal forest model.

7.1 Re-estimation and convergence
characterisation of treatment effect

Following the outlined process to identify the optimal GRF
models for various pollutants, this paper employs the optimal model
to estimate the kernel density distribution of the treatment effects of
green patents. The GRF model not only estimates the average
treatment effects of green patents but also reveals how these
effects evolve over time and across regions. This dynamic
perspective is crucial for understanding the long-term impacts of
emission reduction policies, highlighting the diminishing returns of
green patents in some contexts and the persistence of high-impact
effects in others. Such insights are pivotal for tailoring policy
interventions to regional characteristics. In the estimation
strategy, cities are used as clustering units to ensure that random
sample division can be organized by city. Additionally, the study
divides the sample into different time intervals to observe whether
the marginal abatement effects decrease over time, as hypothesized.

Table 8 reports the model fitting outcomes and average
treatment effect estimates for the quantity of green patents
concerning three pollutants, where the sample is divided into
three time periods: 2005–2010, 2011–2015, and 2016–2020. The
fourth column of the table reports the overall estimates for the
period 2005–2020. Where the MFP (mean forest prediction)
indicator tests the superiority of model fit, and the closer the
indicator is to 1, the better the model fit. The DFI (differential
forest prediction) indicator verifies whether the model has
heterogeneity characteristics regarding covariates, and ATE
(average treatment effect) reports the results of the average
treatment effect.

Panels A–C of Table 8 respectively present the model fitting
outcomes and treatment effect estimates of green patents for sewage,
nitrogen oxide, and industrial smoke and dust. The model fittings
under the optimal parameter settings exhibit statistically significant
results, indicating a good fit for the models.

Table 8’s “All period” spans 2005–2020, matching the fixed
effects model’s timeframe. Re-estimating green patents’ ATE on
pollutant emissions, the GRF model found significant effects for
sewage and nitrogen oxide, but not for industrial smoke and dust,
with ATEs of −3.7625, −14.3727, and 0.3612 tons, respectively.

FIGURE 3
Quantile-on-Quantile (QQ) regression results for green patents’ treatment effects on pollutant emissions. Note: The three-dimensional plots
illustrate the relationship between green patent quantiles (x-axis), pollutant emission quantiles (y-axis), and the estimated treatment effects (z-axis) for
sewage (A), nitrogen oxides (B), and industrial smoke and dust (C).
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Comparatively, the fixed effects model, with its intercepts and
slopes, is not directly comparable to the GRF model. Yet, treating
the GRF model’s 2005–2010 ATEs as the fixed model’s baseline
(intercepts can be regard as initial ATEs), GRF estimates
(−31.968, −200.693, −27.707 tons) surpass fixed model’s
intercepts (−12.435, −73.183, 7.068 tons) in magnitude and
significance at 1%.

The findings suggest that green patent technologies initially
exhibit a favorable ATE, but their marginal returns may
diminish over time, a hypothesis this study aims to test.
This paper illustrated the distribution of the treatment
effects of green patents on three types of pollutants over time
through the kernel density in Figures 4–6 observing
similar results.

TABLE 7 Estimates of six categories of green patents on emissions of three types of pollutants.

Variables Waste energy
production

Nuclear
power

Transportation Energy
conservation

Alternative
energy

production

Administration
and design

(1) (2) (3) (4) (5) (6)

Panel A Sewage emissions

Linear
coefficient

−36.3744** −774.2711* −38.1785 −32.2507* −43.5873*** −217.5573**

(17.3251) (441.3904) (25.4184) (17.7338) (16.7039) (108.5989)

Quadratic
coefficient

0.0151** 6.3556* 0.0277 0.0205* 0.0229*** 0.6078**

(0.0071) (3.5541) (0.0180) (0.0110) (0.0088) (0.3078)

R-squared 0.160 0.157 0.139 0.151 0.154 0.165

Panel B NOx emissions

Linear
coefficient

−208.0763** −799.6409** −290.3182* −189.2830*** −254.3510*** −1,300.0253**

(86.8127) (383.5256) (167.4230) (72.7063) (97.8209) (584.9393)

Quadratic
coefficient

0.0825** 6.0751* 0.1998* 0.1128** 0.1232** 3.4694**

(0.0355) (3.1888) (0.1182) (0.0456) (0.0505) (1.6280)

R-squared 0.412 0.393 0.407 0.408 0.410 0.418

Panel C Industrial smoke and dust Emissions (total number of green patents)

Linear
coefficient

−0.4042 333.0310 78.1707 17.0250 −6.6172* 82.2527

(22.5331) (463.9043) (103.7693) (22.1858) (3.7488) (119.0539)

Quadratic
coefficient

−0.0006 −2.8430 −0.0550 −0.0104 −0.0089 −0.2795

(0.0089) (3.7899) (0.0724) (0.0130) (0.0182) (0.3222)

R-squared 0.015 0.015 0.015 0.015 0.015 0.015

Panel D Industrial smoke and dust Emissions (green invention patents)

Linear
coefficient

−12.9117 −344.3592 46.3492 29.6969 −22.9011*** 106.4973

(26.2551) (209.5511) (62.1251) (28.3312) (7.2899) (106.4764)

Quadratic
coefficient

−0.0011 1.2991** −0.0066* −0.0044* 0.0014** −0.0338

(0.0030) (0.5680) (0.0040) (0.0026) (0.0071) (0.0297)

R-squared 0.015 0.015 0.015 0.015 0.015 0.015

Number of cities 218 218 218 218 218 218

Control variables YES YES YES YES YES YES

city FE YES YES YES YES YES YES

year FE YES YES YES YES YES YES

Note: 1) The terms “Linear coefficient” and “Quadratic coefficient” in the table respectively represent the estimated coefficients of the first and second order terms of the explanatory variable in a

quadratic polynomial model. The explanatory variables are labeled by the column names, which denote the number of green patents of each category (g1_p-g6_p), while the response variables

are the emissions of various pollutants, labeled by different panels.
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Key insights include.

(1) Green patents’ average effects on pollutants decrease over
time, with varying speeds of convergence. The
2005–2010 period showed higher average reduction effects
for all pollutants (Figures 4–5A), but sewage and industrial
smoke and dust emissions nearly converged in the next period
(Figure 4B, Figure 6B). Sewage saw a subsequent increase
(Figure 4C), possibly from technological breakthroughs, with
limited impact on industrial smoke and dust emissions
(Figures 5C, 6C).

(2) All categories showed a “long tail” in their kernel density,
possibly due to the challenge of precisely identifying whether
green patents were utilized for specific pollutant control. Left-
skewed tails suggest some reduction in emissions, as with
sewage and nitrogen oxides, while right-skewed tails indicate
general ineffectiveness in pollution reduction (Figure 6B).

(3) The dispersion trend in the treatment effect densities
decreases, with the y-axis scale and kurtosis coefficient
increasing over time. This suggests a reduction in effective
emission reduction technologies, as average effects gradually
converge to zero. For instance, the kurtosis coefficient for
industrial smoke and dust emissions increased from 3.1 in
2005–2010 (Figure 6A) to 11.6 in 2016–2020 (Figure 6C).

7.2 City-level features influencing
treatment effects

In constructing a GRF model, each covariate is assigned a score
reflecting its frequency of use in the nodes of spanning trees. The

Best Linear Projection (BLP) is then utilized to estimate the linear
influence of covariates on the treatment effect τ(x). This study
separately estimated the top 10 covariates for three pollutants using
models from 2005 to 2020. Covariate rankings were determined by
node-splitting importance for each pollutant, scoring from 10
(highest) to 1 (lowest), with an overall score aggregated from all
three pollutants. Results are in Table 9.

This study organizes covariates into two main categories:
Intrinsic Factors and External Support. Intrinsic Factors combine
objective conditions and development pressures, capturing the city’s
foundational attributes such as industrial structure index (Indust_
stru), share of domestic enterprises (Dome_pro), and employment in
key sectors (i2g2_labor for manufacturing, i2g1_labor for mining),
alongside development challenges like population growth rate
(PGR), per capita GDP (PGDP), and real estate sector metrics
(i3g6_pro). These variables reflect the economic, industrial, and
demographic fundamentals driving environmental policy outcomes.

External Support groups together technology and financial
support variables, focusing on the facilitation of green technology
through government R&D initiatives (Ratio_rd for R&D
expenditure, i3g7_labor for R&D personnel) and education
(Ratio_ED for education expenditure), as well as financial
resources available for environmental efforts (Institution_save for
financial institution deposits, Resident_save for resident savings).
This classification highlights the pivotal role of government policy,
research and development, and financial mechanisms in supporting
the adoption and effectiveness of green technologies and initiatives.

Table 9 reveals key factors affecting green patents’ treatment
effects on three pollutants: sewage, nitrogen oxide, and industrial
smoke and dust. For sewage, government R&D investment (Ratio_
rd) and financial institutions’ deposits (Institution_save) are pivotal,

TABLE 8 GRF model fitting and average treatment effect estimation for green patents on three types of pollutants.

Indicators 2005–2010 2011–2015 2016–2020 All period

Panel A Sewage emissions

MFP 0.6682**(0.3496) 1.3282** (0.7314) 0.8927** (0.5282) 0.6043** (0.3409)

DPF −1.0467 (0.6534) −1.5481 (1.4156) −1.4147 (1.113) −1.070 (1.1917)

ATE −31.9675*** (0.9650) −1.3779*** (0.0389) −2.0822*** (0.0558) −3.7625*** (0.0732)

Optimal parameters 0.2,300 0.35,500 0.25,100 0.4,200

Panel B Nitrogen oxide emissions

MFP 0.8852** (0.5279) 0.6437*** (0.1046) 0.8458** (0.4549) 0.7063** (0.4245)

DPF −1.2814 (0.9743) −2.1563 (7.3938) −2.8106 (3.1599) −1.4932 (5.8646)

ATE −200.6927*** (4.77267) −40.2545*** (1.2490) −3.4852*** (0.0865) −14.3727*** (0.2924)

Optimal parameters 0.15,700 0.3,700 0.15,800 0.45,800

Panel C Industrial smoke and dust emissions

MFP 0.4021** (0.2654) 1.3485* (0.7966) 1.2530** (0.6300) 0.4735** (0.2257)

DPF −1.4673 (1.3106) −1.2293 (3.2863) 0.4870** (0.2878) 0.0701* (0.4687)

ATE −27.7066*** (0.9892) 7.2787 (6.5809) −3.0205*** (0.0876) 0.3612 (1.0458)

Optimal parameters 0.1,1000 0.45,600 0.45,200 0.1,400

Note: 1) The optimal parameters in the table are the values of parameter one and parameter two of themodel with the best fit under the randomnumber seed 123. 2) Parameter one represents the

standardized importance value for covariate screening, and parameter two is the number of trees included in each forest model.
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as they directly enhance cities’ capacities to adopt and implement
green technologies. For nitrogen oxide, population growth and
density (PD) play significant roles by facilitating technology
spillovers in more densely populated areas, while government
R&D support (Ratio_rd) further amplifies these effects. For
industrial smoke and dust, employment in specific industries like
real estate (i3g6_pro) and construction (i2g4_labor) reduces the
effectiveness of green patents, suggesting that cities with higher
proportions of industrial workers may require tailored policy
interventions to offset these challenges.

Government support for R&D emerges as a critical external
factor across all pollutants, highlighting its importance in enhancing
the effectiveness of green patents in emission reduction. The
heterogeneous analysis further reveals that cities with higher
R&D investment and education expenditure tend to benefit more
from green technologies. This implies that national and local
governments should prioritize funding for regions with strong
technological infrastructure while offering targeted support to
less-developed areas to bridge the gap in technological adoption
and effectiveness.

8 Discussion

Unlike much of the literature based on endogenous growth
models, this article frames the discussion of the relationship between
environmental R&D and pollution reduction within a social
planning issue, examining the factors that influence the marginal
effects of technological emission reduction under command-and-
control environmental regulations. It finds that the difficulty of R&D
is a pivotal factor, and the existence of an equilibrium solution
implies bottlenecks in technological development, highlighting that
overcoming these bottlenecks in environmental technology is key to
avoiding this predicament.

This study confirms the nonlinear relationship between
environmental technology and pollution reduction through a
panel fixed effects linear regression model, aligning with
conclusions from some existing research (Li L. et al., 2021; Li W.
et al., 2021). However, unlike (Li L. et al., 2021), which focuses on the
strategies of firms at the turning point of R&D investment, this paper
provides new evidence through a re-estimation of the treatment
effect kernel density using the GRF model. It suggests that the

FIGURE 4
Kernel density distributions for green patents’ treatment effects on Sewage emissions. Note: the distributions are displayed for 2005–2010 (A),
2011–2015 (B), 2016–2020 (C), and the entire time span (D), aligned with the baseline regression timeframe.
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presence of a turning point is not fixed; there is still potential for
marginal emission reduction effects to increase with the
advancement of new technologies. Nevertheless, the common
trend is that the marginal benefits of technological emission
reductions gradually converge to zero, with the rate primarily
dependent on the difficulty of R&D.

The treatment effect estimates for green patent subcategories
show that nuclear and administrative patents have larger first-order
coefficient absolute values compared to other subcategories,
indicating a favorable emission reduction effect in the early
stages of technology application. These first-order coefficients, or
intercept terms of marginal effects, represent the treatment effects
before diminishing returns begin. A larger absolute value suggests a
more significant initial emission reduction effect, especially for
countries just starting technological emission reduction. Unlike
nuclear technology, administrative patents, such as pollution
monitoring technologies, have lower technical barriers and wider
applicability, aligning with existing literature conclusions (Jiang
et al., 2014).

Identifying urban characteristics and optimal linear projection
results, urban development pressures emerge as the primary factors
influencing the effectiveness of green patents in emissions reduction.
Local officials in China face dual pressures from urban economic
development and environmental performance assessments. These
include factors like industrial structure, population, and economic
growth, with population growth rate (PRG) showing a
heterogeneous treatment effect on the reduction of nitrogen
oxides—cities with higher PRGs achieve greater emissions
reductions. Our analysis of urban characteristics underscores the
importance of tailoring environmental policies to local conditions.
For instance, cities with higher population growth rates may achieve
greater reductions in nitrogen oxide emissions through green
technologies, suggesting that policymakers should consider
demographic trends when allocating resources. Furthermore,
government expenditure on education and R&D, as well as
financial market support, play critical roles in enhancing the
effectiveness of green patents. Policymakers should leverage these
insights by increasing investments in education and R&D, while also

FIGURE 5
Kernel density distributions for green patents’ treatment effects on Nitrogen oxide emissions. Note: the distributions are displayed for
2005–2010 (A), 2011–2015 (B), 2016–2020 (C), and the entire time span (D), aligned with the baseline regression timeframe.
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FIGURE 6
Kernel density distributions for green patents’ treatment effects on Industrial smoke and dust emissions. Note: the distributions are displayed for
2005–2010 (A), 2011–2015 (B), 2016–2020 (C), and the entire time span (D), aligned with the baseline regression timeframe.

TABLE 9 Best Linear Projection (BLP) estimation and importance ranking of treatment effects of green patents for three pollutants.

Sewage Nitrogen oxide Industrial smoke and dust All pollutants

Covariates BLP Covariate BLP Covariates BLP Covariates Ranking score

Road_goods −6.4383 PGR −798.6000** i3g6_pro 543.8100 Indust_stru 17

Indust_stru −0.0012 PD −0.1921* i2g1_labor −11.4750 Dome_pro 13

Ratio_rd −68.0031** Gov_income 1,240.6000 i3g7_labor −193.0200 * Road_goods 12

Ratio_ED −40.9070* Dome_pro −201.1700 Indust_stru −0.0238 i3g6_pro 10

Wage 0.9111 PGDP −0.0005 Dome_pro −1,024.1000* PGDP 10

Institution_save −18.8170** Resident_save −432.0100 i2g4_labor 143.2600 PGR 10

PGDP 0.2098 Wage −107.5000 Indust2_lpor −8.8291 Ratio_rd 10

Resident_loan −1.7983 Indust2_lpor 2.3837 i2g2_labor 29.1600 Wage 10

indust2_labor 6.8853 Ratio_rd −7.5795* Road_goods −30.3860 i2g1_labor 9

Resident_save −23.6760 Indust_stru −0.1276 i3g1_labor 0.9375 PD 9

Note: 1) The order in which the covariates appear in the table (from top to bottom) is in descending order of the frequency of node division in the model fit. 2) Definitions of terms not explained

in the text: Gov_income: government revenue; Resident_loan: loans to residents; indust2_labor, Indust2_lpor: employment in secondary sector, ratio; i3g1_labor: retail sector employment;

Wage: average wage.
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fostering financial mechanisms that support environmental
innovation.

The study also highlights two other critical factors: the
government’s expenditure ratio on education and R&D, and the
capital stock in financial markets, underscoring the importance of
policy support and financial investment in R&D outcomes. This
finding differs from Li et al. (2017), which identified technology
adoption as the primary heterogeneous factor (Costantini et al.,
2013; Li et al., 2017). Furthermore, our cost-benefit analysis
highlights the importance of balancing the marginal benefits of
emission reduction against the marginal costs of green innovation,
offering policymakers a critical framework for optimizing resource
allocation in environmental technology investments.

9 Conclusion

This paper constructs a planning problem aimed at maximizing
social utility under command-and-control environmental
regulations and analyzes the impact mechanism of technological
emission reductions. By discussing the difficulty of technology under
equilibrium conditions, it posits a research hypothesis on the
nonlinear marginal effects of environmental technology. The
hypothesis is tested through an estimation of the emission
reduction effects of green patents held by Chinese listed
companies from 2005 to 2020 on three types of pollutants in
various cities, using linear regression and Generalized Random
Forest models. The analysis further incorporates the
heterogeneity of treatment effects across patent categories and
city characteristics, offering policy insights.

The findings of this study highlight the diminishing marginal
returns of green patents, suggesting that policymakers should adopt
a more strategic approach to environmental technology investment.
Specifically, local governments should prioritize subsidies for
technologies with significant early-stage emission reductions,
such as those in nuclear power and administrative design
categories. Additionally, increased R&D support is needed for
technologies targeting more challenging pollutants, such as
industrial smoke and dust, to overcome existing bottlenecks. By
aligning fiscal resources with the marginal effectiveness of green
technologies, policymakers can maximize the environmental
benefits of their investments. Additionally, the preliminary cost-
benefit analysis underscores the need for policymakers to carefully
evaluate the economic value of green innovation, ensuring that
investments yield maximum social and environmental returns.

However, the identification of treatment effects is limited by the
scarcity of firm-level emission data, necessitating further refinement
for a more precise assessment of the impact of environmental
technologies. For this study, potential sources of statistical
uncertainty in our estimates may include biases in data
recording, the possibility of omitted variable bias, underfitting in
the linear model, and inaccuracies in the pre-estimated parameters
of the GRF model. Additionally, the theoretical analysis, rooted in a
centralized planning context, suggests the need for further
exploration into how technological emission reductions perform
under diverse environmental regulatory frameworks, such as

decentralized economies with market-based instruments like
emission trading or pollution taxes. Such comparisons could
provide a more comprehensive understanding of the effectiveness
of environmental technologies across different governance
structures.
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