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Landslide susceptibility assessment is crucial to mitigate the severe impacts of
landslides. Although Bayesian network (BN) has been widely used in landslide
susceptibility assessment, no study has compared the accuracy of different BN
structure construction methods for this purpose. SBAS-InSAR technology plays a
vital role in landslide research, but its advantages combined with BN to further
improve prediction accuracy still need to be studied. This paper takes Hanyuan
County as the study area. First, 20 traditional landslide impact factors were
extracted from data such as topography and meteorology. A new method
GDSP was designed to fuse GeoDetector and SHAP for dominant factor
screening. Then, 8 different BN structure learning methods were compared
using the AUC value of the ROC curve, among which Tabu&K2 method
showed the highest accuracy. The deformation factor calculated by SBAS-
InSAR is then incorporated into the BN model. The optimized Bayesian
network (OPT-BN) outperformed the unoptimized version (ORI-BN) in
accuracy, and the landslide susceptibility mapping was more reasonable. The
reverse inference highlighted that areas with lower elevation, plow land,
impervious cover, and higher rainfall are more prone to landslides. This
method provides valuable insights into landslide hazard prevention and
control and provides a new method for future landslide research.
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1 Introduction

Landslides, one of the most frequent natural hazards can cause significant harm to social
development and land use leading to large-scale economic losses (Dai et al., 2002; Petley,
2012; Zhu et al., 2018). China ranks among the nations most vulnerable to landslide hazards
globally. In 2016, 9,710 landslides occurred, resulting in 370 fatalities and approximately
$457 million in direct economic losses (Yang et al., 2018). During 2019, 4,220 landslides
occurred, accounting for 68.27% of all geologic risk (He et al., 2021). This is almost three
times more frequent than the incidence of subsequent collapse catastrophes. The eastern
edge of the Qinghai-Tibetan Plateau, the Loess Plateau, the southeast hilly andmountainous
regions, and the mountains of eastern Sichuan, southern Chongqing, western Hubei, and
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western Hunan are the primary locations for geological risks in
China (Chang, 2023). Improving the hazard early warning capacity
is a hot and challenging topic in preventing and controlling
geological hazards since early identification and prevention are
the keys to minimizing the effects of hazards.

Landslide susceptibility assessment is based on posthazard
landslide prediction and forecasting at medium and large scales.
Landslide databases and topographic, meteorological, hydrological
and other basic geoenvironmental data on possible hazards are used
to make qualitative or quantitative assessments of the likelihood of
landslides. It can determine the spatial distribution of potential
landslides, allowing for preventive preparations and implementing
prehazard transfer and avoidance for high-risk areas, changing
“passive” into “active,” and reducing or even avoiding
catastrophic landslide geological hazards. This approach is one of
the most effective methods for preventing and reducing landslide
hazards (He and Beighley, 2008; Pradhan and Lee, 2010; Wang et al.,
2014; Khanna et al., 2021). Landslide susceptibility mapping (LSM)
is the most commonly used tool for landslide susceptibility
assessment and prevention because it can clearly and intuitively
identify dangerous areas prone to landslides and has a long history
of research. The majority of past studies used statistical methods
such as the analytic hierarchy process (AHP) (Hasekioğulları and
Ercanoglu, 2012) and weight of evidence (WOE) (Batar and
Watanabe, 2021). As computer science has advanced, an
increasing number of machine learning models, including neural
networks (Mandal et al., 2019; Bui et al., 2020; Gameiro et al., 2021),
logistic regression (Lombardo and Mai, 2018; Riegel et al., 2020),
Naive Bayes (Nguyen and Kim, 2021; Shang et al., 2024), decision
trees (Park et al., 2018; Thai Pham et al., 2018), support vector
machines (Huang and Zhao, 2018; Kalantar et al., 2018), and
random forests (Kim et al., 2018; Akinci et al., 2020; Zhao et al.,
2020), have been added to LSM studies.

Although many machine learning models are used for landslide
susceptibility analysis, they have the following disadvantages: (1)
They do not account for the interactions between impact factors and
their synergistic effects on the entire landslide system; (2) It is
difficult for them to directly explain the prediction results and has a
“black box” nature; (3) They cannot easily incorporate prior expert
knowledge; (4) They cannot perform reverse inference to obtain data
for prevention and mitigation measures.

In order to overcome the shortcomings of the above-mentioned
machine learning models, the Bayesian network (BN) model is being
applied to the study of LSM. BN combines graph theory and Bayesian
theory and is a powerful modeling technique that can be used to apply
statistical and mathematical knowledge to solve uncertain problems in
complex systems. It is often used for uncertainty because it contains an
almost perfect mathematical reasoning mechanism, a solid
mathematical foundation, and an easy-to-understand graphical
causal relationship description. The BN model is a perfect fusion of
qualitative analysis and quantitative research methods. It successfully
combines human prior knowledge with a series of objective
information and makes practical reasoning about relevant materials.
In terms of learning mechanism, it is also called a generative model
because it can estimate the joint probability of a given influencing
factor (x) and an influencing subject (y) from training sample data.

BN modeling offers a framework for handling complexity and
uncertainty in catastrophe chain systems by combining causal

linkages between variables with probabilistic techniques. The
effectiveness of Bayesian network has been verified in landslide
susceptibility assessment. Rong et al. (2020) utilized a BN model to
construct a causal hazard chain network aimed at determining the
probability and risk level of landslide occurrence. Validation
through error rate analysis and scoring rules further confirmed
the model’s practical applicability in landslide susceptibility
assessment. However, the study has certain limitations,
particularly regarding the subjective nature of network structure
construction. Relying exclusively on expert judgment to define
causal relationships between factors may introduce bias, which in
turn affects the robustness and generalizability of the model. While
expert knowledge can provide valuable insights, an over-reliance on
it alone is insufficient, as it may compromise the model’s objectivity
and validity. This highlights the need to incorporate data-driven
approaches to improve the reliability of network structures. Song
et al. (2012) introduced a hybrid BN approach to analyze slip-
causing factors in earthquake-induced landslides and assess their
susceptibility. Their model achieved high-precision landslide
susceptibility detection, highlighting BN’s potential in
earthquake-related disaster prediction. Nevertheless, the study
lacks a thorough exploration of different network structures. A
comparative analysis of multiple network configurations is crucial
for enhancing the model’s adaptability and generalizability. Without
this, it is unclear whether the selected structure is the most suitable
for landslide susceptibility assessment, thus limiting the wider
applicability of the model in different geographical or hazard
scenarios. Han et al. (2019) compared the BN model with
parallel modeling to generate a susceptibility map for the
earthquake–landslide–debris flow disaster chain in the Changbai
Mountain region of China. The study demonstrated that the BN
model outperformed the parallel model, highlighting its
effectiveness in addressing multiple disaster types simultaneously.
However, the study relied solely on expert-selected factors for
constructing the BN, without systematically identifying and
selecting the most significant drivers of risk. This approach may
have led to the inclusion of less relevant factors and the omission of
critical drivers, potentially limiting the accuracy and
comprehensiveness of the model.

In general, the current application of BN in landslide
susceptibility research remains limited for several reasons: (1)
Due to the complexity of Bayesian network and the limitation of
computing resources, it is usually necessary to select representative
factors to participate in network construction rather than using all
factors. Determining a better combination of factors for building a
network is still under study; (2) Current research only focuses on
applying subjective, specific Bayesian networks to assess landslide
susceptibility, but does not focus on how to construct or compare to
obtain better Bayesian network structure construction strategy; (3)
The introduction of surface deformation factors can further improve
the rationality of landslide susceptibility assessment of random
forest models (Liu et al., 2022; Lin et al., 2024; Wei et al., 2024).
However, in the existing Bayesian network research, scholars have
not yet noticed the importance of surface deformation factors. How
to make full use of the advantages of the two and improve the effect
of landslide susceptibility assessment is still under study; (4) No
research has yet used the powerful reverse inference feature of
Bayesian network to conduct landslide hazard prevention and
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mitigation analysis. However, this function has been applied in fields
such as engineering projects and Arctic shipping routes,
demonstrating great potential (Zheng, 2014; Li et al., 2022).

Therefore, this study aims to develop a landslide susceptibility
assessment framework using SBAS-InSAR optimized Bayesian
network to scientifically and accurately assess landslide
susceptibility and reasonably calculate specific reference measures
for landslide hazard prevention and control. The detailed objectives
of this study are as follows: (1) Design a GDSP method that
combines the advantages of the GeoDetector model and the
SHAP interpreter to identify the important factors impact
landslide hazards; (2) Compare the commonly used Bayesian
network construction strategies to obtain better Bayesian network
structure construction method; (3) Use the deformation factor
calculated by SBAS-InSAR technology to optimize the Bayesian
network and verify its accuracy; (4) Use the reverse inference
characteristics of the BN model to obtain landslide hazard
prevention and mitigation measures.

2 Study area and data

2.1 Study area

Hanyuan County, Ya’an City, Sichuan Province, China, is the
study region for this work. Its geographic coordinates are between
102°16′– 103°00′E longitude and 29°05′– 29°43′N latitude. Its length
is 71.4 km in the east‒west direction, and its width is 70.1 km in the
north‒south direction. The county has a subtropical monsoon
humid climate, four distinct seasons, warm winters and mild
summers, significant elevation differences ranging from 559 m to
3,944 m (Figure 1A), and spans 2,382 square kilometers. It is located
at the intersection of the three main faults in the eastern section of
the Tibetan Plateau’s Hengduan Mountain Range. The region is
prone to frequent small earthquakes and a wide range of geologic
hazards. Simultaneously, it experiences considerable precipitation,

much of which falls as heavy rains during the summer. On August
21, 2020, a landslide occurred in Zhonghai Village in Hanyuan
County in the study area, destroying houses, roads, and a large
forested area, resulting in substantial economic losses. As of 5:
00 p.m. on the same day, seven of the nine people victims had
been found, six of whom showed no signs of life, and one of whom
was seriously injured (Ye et al., 2021). Thus, analyzing the
susceptibility of landslides in the study area is crucial.

2.2 Data

2.2.1 Landslide inventory
Historical landslide point data and impact factor data serve as

the foundation for landslide susceptibility assessment. Landslide
susceptibility models are based on the assumption that future
landslide events are likely to occur under the same or similar
environmental conditions as past events. The landslide data is a
critical component, as it directly influences the quality and accuracy
of the modeling results. In this study, a computational model for
landslide susceptibility was developed using historical landslide data
from Hanyuan County, provided by the Center for Resource and
Environmental Science and Data (RESDC) (https://www.resdc.cn/).
The dataset records a total of 377 landslide occurrences in Hanyuan
County over the past 2 decades within the WGS 84 coordinate
system, capturing the latitude and longitude coordinates of each
landslide event. These coordinates were collected using mobile
terminals equipped with high-precision sensors, such as GPS,
with a positional accuracy of 5 m (Tang et al., 2024). The data
collection involved rigorous field surveys and the use of advanced
gyroscopic technology to ensure high precision and reliability. The
dataset is provided in Excel format and includes comprehensive
information, such as the landslide hazard name, field number,
indoor number, latitude and longitude coordinates, number of
casualties, damage to houses and roads, risk level, and
recommended mitigation measures. A thorough validation

FIGURE 1
Location of the study area (A) and kernel density map of landslides (B).
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process was conducted to ensure data quality, including cross-
referencing with satellite imagery and historical records. These
measures collectively enhance the reliability of the dataset,
providing a solid foundation for the computational modeling
undertaken in this study. The kernel density map of landslide
events is presented in Figure 1B. The areas with high landslide
kernel density are mostly distributed in areas with low elevations.

2.2.2 Impact factors
Approximately 100 factors impact the occurrence of landslides

(Reichenbach et al., 2018). Therefore, selecting appropriate factors
to map landslide susceptibility with sufficient accuracy is crucial.
Based on extensive reading of previous studies, 20 impact factors
commonly used in related studies were initially selected for this
study (Table 1). These factors were categorized into three major
groups: topographic factors, including elevation, slope, aspect, flat
curvature, profile curvature, stream power index (SPI), terrain
wetness index (TWI), slope variability, relief, roughness, surface
cutting depth, and elevation variation coefficient (12 factors in total);
environmental factors, including normalized difference vegetation
index (NDVI), modified normalized difference water index
(MNDWI), rainfall, lithology, and river density (5 factors in
total); and human engineering factors, consisting of land use,
normalized difference built-up index (NDBI), and road density
(3 factors in total). The following sections describe the
relationship between these impact factors and landslide occurrence.

2.2.2.1 Topographic factors
Elevation is widely used in landslide susceptibility assessments

due to its association with external factors such as rainfall, vegetation
cover, and human activities. It also serves as a basis for deriving
other topographic factors that influence landslide susceptibility
(Brock et al., 2020). Slope, a critical factor in evaluating slope
stability, directly impacts the integrity of slopes. Variations in
slope affect water infiltration processes and soil stress
distribution, both of which influence the likelihood of landslides
(Ayalew et al., 2004). Aspect, another important topographic factor,
controls water infiltration and solar radiation absorption on slopes,
both of which impact slope stability and landslide potential (Cellek,
2021). Flat curvature and profile curvature describe the geometric
characteristics of the slope surface. The former influences surface
water flow distribution, while the latter is associated with erosion
features. Together, both factors affect the path and erosive power of
water flow, contributing to landslide occurrence (Chen et al., 2016;
Shirzadi et al., 2017). Slope variability, which describes the degree of
slope variation within an area, influences soil moisture distribution
and slope stress conditions, further affecting landslide susceptibility
(Niu et al., 2018; Hu et al., 2020). The SPI measures the erosive
power of water flow, considering slope and watershed area. It reflects
the ability of water to erode soil, weakening slope stability and
increasing landslide risk (Althuwaynee et al., 2012; Ortiz and
Martínez-Graña, 2018). The TWI reflects water accumulation on
slopes and the role of topography in directing water flow and

TABLE 1 Names of factors impact landslide hazards, types of variables, data descriptions, and data sources.

Name of impact factor Variable type Data description Data sources

Elevation Continuous Extracted from DEM https://search.asf.alaska.edu/

Slope Continuous

Aspect Discrete

Flat curvature Continuous

Profile curvature Continuous

SPI Continuous

TWI Continuous

Slope variability Continuous

Relief Continuous

Roughness Continuous

Surface cutting depth Continuous

Elevation variation coefficient Continuous

Land use Discrete Type of surface cover Star cloud data service platform (Gong et al., 2019)

NDVI Continuous Extracted from Landsat-8 OLI https://earthexplorer.usgs.gov/

NDBI Continuous

MNDWI Continuous

Lithology Discrete Rasterization of lithology maps ISRIC – World Soil Information and FAO (Dijkshoorn et al., 2008)

River density Continuous Length of river per unit area https://www.openstreetmap.org/

Road density Continuous Length of road per unit area

Rainfall Continuous Average annual rainfall https://www.geodata.cn/
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accumulation. Water accumulation can weaken soil stability, thus
influencing landslide occurrences (Park et al., 2018; Chen and Li,
2020). Relief measures the variation in elevation within a region,
affecting both slope stability and water flow processes, and
contributing to landslide risk (Broeckx et al., 2018). Roughness
indicates the irregularity of slope surfaces, which influences water
distribution and landslide occurrence (Goetz et al., 2015;
Korzeniowska et al., 2018). Surface cutting depth assesses the
degree of slope incision, either from natural processes or human
activity. Greater incision can destabilize slopes, thereby increasing
landslide risk (Guo et al., 2021). Elevation variation coefficient
quantifies fluctuations in elevation within an area, influencing
soil moisture distribution and soil type, both of which affect
landslide occurrences (Liao et al., 2022; Ma et al., 2023).

2.2.2.2 Environmental factors
The NDVI reflects vegetation biomass, which plays a key role in

regulating runoff processes. Vegetation can help reduce soil
moisture accumulation, thus stabilizing slopes and lowering
landslide risk within certain limits. However, beyond a certain
threshold, excessive vegetation may increase the weight of the
slope, which can actually promote landslides by destabilizing the
slope structure (Lin et al., 2023). The MNDWI measures the
distribution of water bodies, which can influence landslide
susceptibility by increasing soil saturation and altering water
levels in rivers or lakes, thereby destabilizing slopes (Zhang et al.,
2016; Dey et al., 2024). Areas with high MNDWI values, particularly
near water bodies during periods of heavy rainfall, are more prone to
landslides. Rainfall is a major triggering factor for landslides,
particularly in mountainous regions. Intense rainfall can saturate
the soil, raise pore water pressure, and reduce slope shear strength,
making landslides more likely (Shou and Lin, 2020; Huang et al.,
2022a). Lithology reflects the physical and chemical properties of
rocks and has an important impact on slope stability. Different rock
types have varying impacts on slope stability, particularly in regions
with complex geological formations. In general, areas with low
permeability rocks are more likely to experience landslides (Zhou
et al., 2021). River density measures the extent of erosion at the base
of slopes, where rivers can saturate slope bases with water,
weakening slope stability and increasing landslide risk (Chen
et al., 2019; Huang et al., 2022b).

2.2.2.3 Human engineering factors
Land use refers to both the type of vegetation cover and human

engineering activities. On one hand, vegetation cover affects the
stability of slopes by influencing soil properties and water retention.
On the other hand, human activities such as urbanization and
agriculture alter the landscape, disrupting natural water flow and
soil composition, which can increase the likelihood of landslides
(Rabby et al., 2022; Pacheco Quevedo et al., 2023). The NDBI
differentiates urbanized from non-urbanized areas. Urbanization
often leads to more impervious surfaces, which changes runoff and
water flow, further increasing landslide risk (Thomas et al., 2021;
Huang et al., 2023). Road density refers to the density of road
networks within an area. Road construction disrupts natural slope
structures, alters water flow patterns, and destabilizes slopes,
particularly in mountainous regions, thereby contributing to
landslide risk (Huang et al., 2022b; Shahabi et al., 2023).

In this study, various factors were derived from different data
sources. The topographic factors, including elevation, slope, aspect,
flat curvature, profile curvature, SPI, TWI, slope variability, relief,
roughness, surface cutting depth, and elevation variation coefficient,
were directly or indirectly calculated from the 12.5 m resolution
ALOS-DEM data (https://search.asf.alaska.edu/). Elevation was
obtained directly from the DEM. For the other factors,
calculations were performed using various tools in ArcGIS Pro:
the “Slope” tool for calculating slope and slope variability, the
“Aspect” tool for deriving aspect, and the “Curvature” tool for
calculating flat and profile curvatures. The “Hydrology” toolset
and “Raster Calculator” were used to compute TWI and SPI,
while the “Neighborhood Analysis” toolset and “Raster
Calculator” were employed to calculate relief, roughness, surface
cutting depth, and elevation variation coefficient. The resulting
12 factors were represented as raster data at a 12.5 m resolution.
The land use factor was obtained directly from the Star Cloud Data
Service Platform (https://data-starcloud.pcl.ac.cn/zh/resource/1),
with raster data at a resolution of 10 m. For remote sensing
indices, NDVI, NDBI, and MNDWI were derived from Landsat-
8 OLI data (30 m resolution), accessed via the USGS Earth Explorer
platform (https://earthexplorer.usgs.gov/). These indices were
calculated using the “Band Arithmetic” function in ArcGIS Pro
and represented as raster data with a resolution of 30 m. To balance
precision with computational efficiency, all of the aforementioned
factors were resampled to a uniform 100 m resolution (Luti et al.,
2020). The lithology factor was derived from vector polygon data at a
1:1,000,000 scale, downloaded from ISRIC (https://www.isric.org/),
and then rasterized to a 100 m resolution using the “Feature to
Raster” tool in ArcGIS Pro. River density and road density factors
were calculated using line vector data for rivers and roads from
OpenStreetMap (https://www.openstreetmap.org/), employing the
“Line Density” tool in ArcGIS Pro. The resulting data were then
resampled to a 100 m resolution raster to ensure consistency with
the other factors. The rainfall factor was derived from monthly
precipitation data (2012–2022) obtained from the National Earth
System Science Data Center (https://www.geodata.cn/), in NC
format with an initial resolution of 1,000 m. The annual average
rainfall was calculated using the “Cell Statistics” tool in ArcGIS Pro,
and the data were bilinearly interpolated to a 100 m resolution raster
to align with the spatial scale of the other factors. In summary, all
20 factors were resampled to a consistent 100 m resolution raster
format, ensuring uniformity for subsequent analyses.

The distribution of the 20 landslide impact factors in this study is
shown in Figure 2. It is close to the interior of Hanyuan County and
has a lower elevation, higher road density, and higher river density.
The lithology is dominated by limestone and siltstone, and the land
use is dominated by forest. Near the river, the slope variability, SPI,
relief, and slope are lower, the rainfall and TWI are greater, and the
flat curvature and profile curvature are near 0.

2.2.3 SAR satellite data
Our research is based on the SAR satellite data of Sentinel-1A

and uses SBAS-InSAR technology to calculate the surface
deformation rate in the LOS direction. This process requires
three data: Sentinel-1A, POD precise ephemeris orbit file, and the
DEM dataset. Although the ALOS-DEM (12.5 m resolution) is well
suited for extracting topographic factors due to its higher resolution,
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it is not suitable for application in SBAS-InSAR techniques as it may
introduce significant terrain residual phases in the interferogram,
potentially affecting deformation analysis accuracy. In contrast, the

30 m resolution COP-DEM, which is commonly used for SBAS-
InSAR deformation calculations, was selected due to its better
compatibility for this application (Li et al., 2023; Chang et al., 2024).

Sentinel-1A data in Single Look Complex (SLC) format with
Interferometric Wide Swath (IW) mode was downloaded from the
Copernicus Data Space Ecosystem (https://dataspace.copernicus.eu/),
with a total of 29 descending orbit data from January to December
2019. The spatial resolution of the Sentinel-1A data is 5 m × 20 m
(range × azimuth). The corresponding POD precise ephemeris orbit
file was downloaded from the ASF (https://search.asf.alaska.edu/), and
the 30 m resolution COP-DEM digital elevation model data was
downloaded from the Open Topography website (https://
opentopography.org/), which together serve as the basis for
calculating the deformation rate using SBAS-InSAR technology.

3 Methods

3.1 Overview

Figure 3 shows the workflow of the method. First, based on the
collected DEM, land cover, Landsat-8 remote sensing images,
lithology vector, precipitation, road and river data, processing
and calculation were performed to extract 20 factors impact
landslide hazards, such as elevation, lithology and NDVI. Second,
based on the factors obtained in step 1, Multicollinearity analysis,
GeoDetector model and SHAP interpreter were used for calculation
to screen the dominant factors of landslides related to the
construction of BN structure. Third, a sample set was
constructed based on the dominant factor data and landslide
data (see Section 3.2 for details). It was randomly divided into 8:
2 for training and testing BN models. Based on the training set,
expert experience was used to construct the initial structure, and the
final structure was obtained using three methods: score search,
variant Naive Bayes, and combination of constraint and score.
Then, after using the maximum likelihood estimation (MLE)
algorithm for parameter learning, the best Bayesian network
construction method among them was obtained using the AUC
value test. Fourth, based on Sentinel-1A data, SBAS-InSAR
technology was used to obtain the deformation rate, and the
Kriging interpolation method was used to process the incoherent
area to obtain the deformation factor. It was added to the dominant
factors and modeled using the best Bayesian network construction
method to obtain the optimized Bayesian network model (OPT-
BN). Finally, OPT-BN was used to map the landslide susceptibility,
and ACC, MCC, AUC and FR were used to test the accuracy of the
assessment results, and then reverse inference was performed to
provide a reference for landslide hazard prevention and
control measures.

3.2 Data pretreatment

A 100 m × 100 m resolution grid was used as the assessment
unit, considering both the computing speed and prediction
accuracy. Since water bodies were not included in the landslide
susceptibility assessment, 210,242 grid cells were generated in the
study area after removing water bodies. The total number of

FIGURE 2
Distribution map of impact factors (A) Elevation, (B) NDVI, (C)
Aspect (D) Slope variability, (E) Road density, (F) Land use, (G) SPI, (H)
Lithology, (I) Flat curvature, (J) River density, (K) Relief, (L) Slope (M)
Profile curvature, (N) TWI, (O) Rainfall, (P) Elevation variation
coefficient, (Q) NDBI, (R) MNDWI, (S) Surface cutting depth,
(T) Roughness.
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historical landslide points in the study area was 377. The analysis of
landslide impact factors and the modeling process analyzed the
landslide and non-landslide points overall. Non-landslide points can
effectively suppress the overestimation of landslide susceptibility by
the model (Zhu et al., 2018). However, non-landslide points cannot
be obtained directly. Random sampling is the most commonly used
method for generating non-landslide points in landslide

susceptibility modeling. In this paper, based on the research
results of Liu et al. (2021a), the non-landslide points were
randomly sampled in outer space, which is three times the size
of the warning grid unit from the landslide point, to obtain more
realistic “non-landslide points.” In addition, the ratio of landslide
points to non-landslide points was uncertain, which had
implications for the landslide susceptibility modeling accuracy

FIGURE 3
Technical workflow of the study.
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(Hong et al., 2019). The ratio of landslide points to the number of
non-landslide points in the range of 1:5–1:10 is more reasonable and
accurate for constructing the total sample for the landslide
classification model (Das et al., 2012). In this paper, the ratio of
landslide points to non-landslide points was finally chosen to be 1:
10 after several experiments, i.e., 3,770 non-landslide points were
selected based on 377 historical landslide points. Therefore, the total
number of sample units obtained in this study is 4,147.

GeoDetector and BN models specify that the input data must be
discrete (Jensen and Nielsen, 2007; Yang et al., 2019; Zhu et al.,
2020). Additionally, the classification intervals of landslide impact
factors significantly affect the accuracy of landslide susceptibility
predictions. Therefore, prior to discretizing the datasets, water body
areas were removed, as water bodies are not included in the landslide
susceptibility assessment. After removing the water bodies, each
continuous dataset was clustered to obtain discretized data based on
Sun (2022) improved K-means method, which uses the sum of the
square errors (SEE) (Thinsungnoena et al., 2015; Nainggolan et al.,
2019) to evaluate the clustering results. The optimal k value is
determined based on the distance of each point from the line
connecting the start and end points in the elbow diagram, where
the maximum distance corresponds to the optimal number of
clusters. In addition, the aspect was classified as flat slope (−1),
shady slope (0°–45°, 315°–360°), semishaded slope (45°–135°), sunny
slope (135°–225°), and semisunny slope (225°–315°) according to the
four-direction method (Fuju et al., 2007; Cui et al., 2021) and were
assigned as T1 to T5, respectively, for the sake of uniformity and
computation. The land use data were based on the Pengcheng
Laboratory Classification Table (Gong et al., 2019) and the
National 2017 Land Use Status Classification Standard, and
combined with the actual location of the landslide, they were
classified as plow land, forest, grassland, wetlands, impervious
cover, bare ground, and ice, and assigned as T1 to T7,
respectively. There were ten categories of lithology data in the
study area, namely, limestone, sandstone, shale, slate, phyllite,
eolian, siltstone, metamorphic rock, basalt, and granite, which
were assigned T1 to T10. The results are shown in Table 2.

In summary, all factor data were processed into 100m resolution
raster datasets, excluding water body areas. Each factor dataset
consisted of 210,242 grid cells, with each cell containing the
corresponding discretized “new fields” as shown in Table 2.
Based on a total of 4,147 sample units, which included both
landslide and non-landslide points, the “Extract Multi Values to
Points” tool in ArcGIS Pro was used to assign the 20 factor values to
the corresponding sample units for subsequent key factor
identification. Non-important factor data were then removed
from the sample units, leaving only the key factors. Then the
total sample units were randomly divided into training and test
sets in an 8:2 ratio, which were used for training and testing the BN
model, respectively.

3.3 Design of the GDSP

3.3.1 GeoDetector model
The GeoDetector model is a spatial statistical method for

measuring the spatial heterogeneity of geographic elements and
revealing the driving forces behind spatial heterogeneity. The model

TABLE 2 Classification of impact factors and new fields.

Factor name Data
type

Original data
field/interval

New
field

Elevation Continuous 624 ~ 1,653 T1

1,653 ~ 2,363 T2

2,363 ~ 3,923 T3

Roughness Continuous 1 ~ 1.12 T1

1.12 ~ 1.27 T2

1.27 ~ 2.92 T3

NDBI Continuous −0.322 ~ −0.043 T1

−0.043 ~ 0.024 T2

0.024 ~ 0.277 T3

Slope Continuous 0.05–18.50 T1

18.50 ~ 30.50 T2

30.50 ~ 69.90 T3

Flat curvature Continuous −2.58 ~ −0.23 T1

−0.23 ~ 0.21 T2

0.21 ~ 2.84 T3

Profile curvature Continuous −3.35 ~ −0.18 T1

−0.18 ~ 0.22 T2

0.22 ~ 3.89 T3

NDVI Continuous −0.075 ~ 0.117 T1

0.117 ~ 0.197 T2

0.197 ~ 0.599 T3

SPI Continuous −7.25 ~ −0.21 T1

−0.21 ~ 4.64 T2

4.64 ~ 7.24 T3

7.24 ~ 15.24 T4

TWI Continuous 3.76 ~ 7.36 T1

7.36 ~ 13.10 T2

13.10 ~ 28.48 T3

River density Continuous 0 ~ 0.35 T1

0.35 ~ 1.83 T2

Road density Continuous 0 ~ 1.23 T1

1.23 ~ 7.37 T2

7.37 ~ 19.91 T3

Rainfall Continuous 881 ~ 1,037 T1

1,037 ~ 1,162 T2

1,162 ~ 1,341 T3

Elevation variation
coefficient

Continuous 0 ~ 0.02 T1

0.02 ~ 0.04 T2

(Continued on following page)
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has been widely used in the natural sciences, social sciences,
environmental sciences, and human health and has been
gradually applied to remote sensing and earth sciences in the last
10 years (Hu et al., 2014). The central idea is that the spatial

distributions of the independent and dependent variables should
be similar if there is a vital effect between several components and
geographic events (Wang et al., 2010). The GeoDetector model is
used to assess potential factors associated with spatial phenomena
quantitatively and can be used for factor selection (Wang and Hu,
2012). Luo and Liu (2018) used the GeoDetector model for the first
time to screen dominant factors in landslide risk assessment studies.

The GeoDetector model consists of four main detectors: factor,
factor interaction, risk zone, and ecological (Su et al., 2020). A factor
detector is utilized in this study to detect the impact factors that
significantly influence the spatial distribution of landslides to
establish an objective and scientific assessment index system. The
theory of the factor detector is shown in Equation 1:

q � 1 − 1
Nσ2

∑
s

w�1
Nwσ

2
w (1)

q is the degree to which the occurrence of landslides is explained by
the impact factor, and N is the number of assessment units in the
study area (in this study, it is the number of grids). σ2 is the variance in
the values of the attributes that characterize the spatial phenomena in
the entire study area. w = 1, . . . , s, is the number of impact factor
categories. Nw is the sample size of the impact factor under the w
category . σ2w is the variance in the attribute values of the spatial
phenomenon under thew category of the impact factor. The value of q
ranges from 0 to 1, q = 0 indicates that the driving force of the spatial
distribution of landslides has nothing to do with the impact factor, and
the larger the value of q is, the stronger the driving force of the impact
factor on the spatial distribution of landslides, and the greater the
degree of explanation of the spatial differentiation characteristics of
landslides (Huo and Sun, 2021; Liu et al., 2021b). The GeoDetector
model has a natural advantage for analyzing categorical variables,
while continuous variables can be statistically analyzed using the
GeoDetector model after appropriate discretization.

3.3.2 SHAP interpreter
The SHAP (SHapley Additive exPlanations) interpreter is a tool

for explaining the prediction results of machine learning models
(Parsa et al., 2020; Li, 2022). It provides a transparent and unified
explanation method by calculating the contribution of each feature to
the model output, which can quantify the impact of each feature on
the prediction results. The core idea of the SHAP model is to use
Shapley values, a concept in game theory that is used to fairly
distribute the benefits of each player in a cooperative game. In
machine learning, feature values can be regarded as “players” and
the output of the model as “benefits”. SHAP measures the
contribution of each feature to the prediction result by calculating
its marginal contribution under different combinations. Assume that
the model output is a linear combination of the contributions of each
feature, as shown in Equation 2:

f x( ) � ϕ0 +∑
M

i�1
ϕi (2)

f(x) is the predicted value of the model. ϕ0 is the benchmark value
(usually the mean of all sample predictions). ϕi is the Shapley value
of feature i for the prediction result. In this form, SHAP provides an
explicit decomposition of feature contributions. SHAP provides a
quantitative measure of the contribution of each feature to themodel

TABLE 2 (Continued) Classification of impact factors and new fields.

Factor name Data
type

Original data
field/interval

New
field

0.04 ~ 0.19 T3

Slope variability Continuous 0.0029 ~ 2.27 T1

2.27 ~ 4.78 T2

4.78 ~ 13.90 T3

Surface cutting depth Continuous 0 ~ 54 T1

54 ~ 91 T2

91 ~ 336 T3

MNDWI Continuous −0.671 ~ −0.194 T1

−0.194 ~ −0.097 T2

−0.097 ~ 0.218 T3

Relief Continuous 1 ~ 108 T1

108 ~ 179 T2

179 ~ 611 T3

Aspect Discrete Flat slope T1

Shady slope T2

Semishaded slope T3

Sunny slope T4

Semisunny slope T5

Land use Discrete Plow land T1

Forest T2

Grassland T3

Wetlands T4

Impervious cover T5

Bare ground T6

Ice T7

Lithology Discrete Limestone T1

Sandstone T2

Shale T3

Slate T4

Phyllite T5

Eolian T6

Siltstone T7

Metamorphic rock T8

Basalt T9

Granite T10
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prediction, revealing not only the importance of each feature, but
also how these features work to affect the prediction results.

3.3.3 GDSP method
GeoDetector focuses on spatial heterogeneity and spatial

correlation between factors, while SHAP can reveal the contribution
of each factor in a complex model to the prediction results. The
combination of the two can comprehensively analyze the factors
impact landslides from both spatial and characteristic perspectives.
Therefore, we designed a landslide impact factor assessment and
screening method that integrates GeoDetector and SHAP, named
GDSP method, and the principle is shown in Equation 3.

Ei � qi
∑s

i�1qi
+ ci
∑s

i�1ci
(3)

Ei represents the comprehensive influence of the i th factor on the
landslide, qi represents the driving force of the i th factor on the
landslide calculated by the GeoDetector model, ci represents the
contribution of the i th factor to the landslide prediction calculated
by the SHAP interpreter, and s is the total number of
impact factors.

This method combines the advantages of GeoDetector and
SHAP and makes up for each other’s shortcomings, which can
more comprehensively calculate the influence of each factor on the
landslide. Through this comprehensive analysis, we can obtain more
accurate impact measurements, laying the foundation for the
construction and simplification of the subsequent BN model.

3.4 Bayesian network model

BN modeling is very useful for simulating complicated causal
network systems (Heckerman, 2008; Chen and Pollino, 2012). It is
highly helpful for probabilistic inference and can visually express joint
probability distributions of variables and their conditional
independence in a graphical network structure, which can save
numerous computations. A BN is a directed acyclic graph (DAG)
that consists of a series of nodes, arcs, and conditional probability tables
(CPTs) to indicate joint probability distributions between node factors
(Friedman and Koller, 2003; Marcot and Penman, 2019). These nodes
can be categorized into parent and child nodes, representing the
variables’ predisposing factors and consequences, respectively. The
BN model can calculate the joint probability function given the nodes
X � X1, . . . ,Xn . The joint probability function for any Bayesian
network is expressed in Equation 4 (Heckerman et al., 1995;
Stephenson, 2000; Cowell et al., 2007; Pourret et al., 2008):

P X( ) � ∏
n

i�1
P Xi | parents Xi( )( ) (4)

In this equation, X � (X1, X2, . . . , Xn) denotes the factors of
different nodes; n is the number of factors and parents (Xi) refers to
the parent node of Xi.

3.4.1 Structural learning
BN structure learning represents the construction of the network

topology, i.e., the relationship between the interacting nodes. The
learning modalities include subjective and objective learning (Shuo-
ha and Jun, 2015). Subjective learning is a method in which experts

in related fields determine the network structure based on prior
knowledge. Objective learning is a method in which network
structure is automatically constructed from a large amount of
sample data based on search methods (Huang, 2013). Landslide
susceptibility modeling is a subjective activity in which the subject
selects relevant indicators and methods based on a priori qualitative
knowledge. Landslide hazards are affected by meteorological,
geographical, and other factors, and a large quantity of observational
and statistical data exists on these impact factors. Therefore, qualitative
a priori knowledge and quantitative objective data should be combined
in the assessment process to make the assessment more reasonable.

There are four main approaches to learning BN structures from
objective data using machine learning: score search, constraint
search, combination of constraint and score, and variant Naive
Bayes (Xia et al., 2018; Scanagatta et al., 2019; Kitson et al., 2023).
The basic idea of score search is to select a suitable search strategy,
traverse all possible structures, measure each structure with a
suitable scoring function, and then determine the best topology
(Lee and van Beek, 2017). Common search strategies include Hill
Climbing Search and Tabu Search. Hill Climbing is a heuristic local
search algorithm that aims to find the optimal solution by gradually
improving the current solution. The algorithm “climbs” towards the
goal by continuously selecting the best solution in the neighborhood
of the current solution (that is, the solution with a higher value or
smaller error on the objective function) until the local optimal
solution is reached or there is no better neighborhood solution,
but this method is prone to falling into the local optimal solution
(Gámez et al., 2011). Tabu Search is a heuristic algorithm based on
local search. It introduces a tabu list to avoid falling into the local
optimal solution during the search process, and guides the search
through a memory mechanism to finally find the global optimal
solution (Pan et al., 2019). The core idea of tabu search is to jump out
of the local optimum in each step of the search and explore more
possibilities in the solution space, thereby improving the
optimization efficiency. Commonly used scoring functions
include BIC, K2, and BDs. Bayesian Information Criterion (BIC)
is a scoring method for model selection based on the likelihood
function and prevents overfitting by introducing a penalty term (Lv
et al., 2021). K2 is a scoring method based on Bayesian estimation,
which is used to evaluate the data fit under a given network structure
and is suitable for large data sets (Gao and Huang, 2020; Chen et al.,
2024). BDs is the full name of Bayesian Dirichlet sparse scoring,
which is characterized by the introduction of a sparsity induction
mechanism to encourage the generation of a more concise and
sparse network structure (Scutari, 2016).

The constraint search method uses statistical or information
theory methods to quantitatively analyze the dependencies between
variables and obtain the network structure that best expresses the
relationship (Srivastava et al., 2023). When the amount of data is
large, the number of conditional independence tests that need to be
performed will grow exponentially, so it is not suitable for our
research (Tian et al., 2023).

The typical algorithm that combination of constraint and score
is MMHC (Max-Min Hill-Climbing), which combines the
advantages of constraint search and score search (Chanda and
Das, 2023). MMHC balances the advantages and disadvantages
of both by constraining first and then scoring, thereby improving
the accuracy of structural learning while ensuring efficiency.
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Variant Naive Bayes is a model that modifies or extends the
standard Naive Bayes (NB) to address its strict independence
assumptions and other limitations. Typical algorithms such as
TAN relax the strict independence assumptions of NB and allow
dependencies between features. Specifically, TAN adds a feature tree
structure on the basis of Naive Bayes, so that each feature can
depend on another feature in addition to the target variable (Cao
et al., 2023).

3.4.2 Parameter learning
Once the BN model structure is known, parameter learning is

required, i.e., determining the CPTs for each network node (Jaeger,
2007). The conditional probability directly affects the BN inference
speed and accuracy. Using the actual data to learn the network
parameters and update the conditional probability table is the focus
of the complex BN parameter learning problem (Ji et al., 2015).

Under the condition of complete data, the primary parameter
learning algorithms include Bayesian estimation (BE) and
maximum likelihood estimation (MLE). The latter is particularly
well-suited for large datasets, making it ideal for this study, so we use
the MLE algorithm (Tian et al., 2023). The MLE method estimates
the optimal model parameters by maximizing the likelihood
function of the data, given a specific model. Let D represent a
probability distribution with probability density function fD and
parameter θ. The likelihood of observing a sample X1, X2, . . . , Xn

(where n is the number of observations) drawn from this
distribution is given by fD(x1, x2, . . . , xn | θ). The maximum
likelihood estimate of θ, denoted θ*, is obtained by maximizing
this likelihood. The corresponding formula is expressed in
Equation 5:

θ* � arg max
θ

f D x1, x2,/, xn | θ( ) (5)

In this equation, θ* represents the maximum likelihood estimate
of the model parameters.

3.5 SBAS-InSAR technology

SBAS-InSAR technology is a differential interferometry
technology based on synthetic aperture radar (SAR), which is
used to monitor surface deformation, especially slow surface
deformation and early warning of geological hazards (Kulsoom
et al., 2023; Zhang et al., 2023a). It accurately measures the
deformation of the surface within a specific time period by
analyzing multi-temporal SAR image data. The main steps are
shown in Figure 4.

The specific principle is as follows: Select N + 1 SAR images of
the same area and denote the acquisition times of these images as
t � t0, t1, . . . , tN. Pair the SAR images into several image pairs,
where each SAR image is paired with at least one of the other N
SAR images, and then perform differential interferometry on the
image pairs. Let M be the number of generated differential
interferograms (i.e., the number of image pairs). Then, the
relationship between M and the number of SAR images N + 1 is
given by the following inequality, as shown in Equation 6:

N + 1
2

≤M ≤
N N + 1( )

2
(6)

Assume that in a given interferometric pair, the acquisition
times of the primary image and the secondary image are tB and tA,
respectively, where tB > tA, corresponding to the j-th differential
interference pattern, with j ∈ (1, . . . ,M). Assume that the azimuth
coordinate of the target point P is x and the range coordinate is r,
then the interference phase of point P is given by Equations 7, 8:

δϕi x, r( ) � ϕB x, r( ) − ϕA x, r( ) (7)
≈
4π
λ

d tB, x, r( ) − d tA, x, r( )[ ] + Δϕj
topo x, r( ) + Δϕj

APS tB, tA, x, r( )
+ Δϕj

noise x, r( )
(8)

λ represents the wavelength of the incident signal, d(tB, x, r) and
d(tA, x, r) correspond to the deformation along the LOS direction at
tB and tA , respectively, relative to d(t0, x, r) � 0; ΔϕJropo (x, r)
represents the terrain phase of the DEM error in the differential
interferometric phase; ΔϕjAPS(tB, tA, x, r) represents the
atmospheric phase error; Δϕjnoise (x, r) represents the noise phase.
By performing three-dimensional spatiotemporal phase
unwrapping on the M-band interference fringe patterns, the
deformation rate corresponding to different SAR acquisition
times can be obtained.

3.6 Model evaluation

In the LSM, the BN model assigns a probability result of
landslide occurrence to each grid element. The spatial
distribution of landslide occurrence probability was mapped
using ArcGIS, and the probability values were reclassified into
five levels—very low (VL), low (L), medium (M), high (H), and
very high (VH)—using the Geometrical Interval Classification

FIGURE 4
SBAS-InSAR technology main processing flow.
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(GIC) (Li and Shan, 2022) to make better distinctions. We used the
VH as the landslide simulation occurrence area and the VL, L, M
and H as the non-landslide simulation occurrence area to binarize
the prediction results to obtain the confusion matrix and test the
model performance using the test set, which contains landslide and
non-landslide data.

We selected the ACC (Shen and Cao, 2017), MCC (Li et al.,
2012), ROC curve (Hoo et al., 2017; Nhu et al., 2020) and FR (Zhang
et al., 2023b; Jin et al., 2024) methods to effectively evaluate the
accuracy and predictive ability of a BN model for landslide
susceptibility mapping. The percentage of correctly classified to
total grids is known as the ACC value. The formula is shown in
Equation 9:

ACC � a
b

(9)

where a is the number of correctly categorized grids, i.e., the sum of
true positives (TP) and true negatives (TN), and b is the number of
total grids, i.e., the sum of TP, TN, false positives (FP), and false
negatives (FN). Higher values of ACC indicate more
accurate models.

The MCC effectively measures machine learning binary
classification performance. It can be used even when there are
significantly varying numbers of samples in two categories
(Matthews, 1975). The MCC is calculated as in Equation 10:

MCC � TP × TN − FP × FN�������������������������������������
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√ (10)

The value of the MCC ranges from −1 to 1. The closer the value
is to 1, the better the model’s prediction performance is; a value of
0 means that it is equivalent to random prediction, and −1 means
that the prediction is entirely wrong.

The most widely used and accepted technique for evaluating the
effectiveness of landslide hazard prediction models is the ROC
curve, which has “sensitivity” on the vertical axis and “1-
specificity” on the horizontal axis. The AUC indicates the model
accuracy, with values ranging from 0.5 to 1.0. The closer the curve is
to the upper left, the larger the AUC value, the more accurate the
model, and the better the generalization ability. The ROC curve has a
very good property: when the distribution of positive and negative
samples in the test set changes, the ROC curve can remain
unchanged. The sensitivity and specificity were calculated as
shown in Equations 11, 12:

Sensitivity � TP
TP + FN

(11)

Specificity � TN
TN + FP

(12)

In addition, we use the frequency ratio (FR) method to
statistically categorize the landslide susceptibility mapping
results. This method shows the density of landslide hazards
between different risk levels. If the model is accurate, the FR
value should be higher for the higher risk level and lower for
the lower risk level. The FR value is calculated as shown in
Equation 13:

FR � Pai

Pdi
(13)

where i is the risk level, Pai is the ratio of the number of hazard
points at the i risk level to the total number of hazard points, and Pdi

is the ratio of the number of units at the i risk level to the total
number of units.

4 Results

4.1 Assessment of significant factors

4.1.1 Multicollinearity analysis
Before conducting landslide susceptibility analysis,

multicollinearity analysis must be performed on the impact
factors, because multicollinearity problems may reduce the
prediction accuracy of the model or even cause the model to fail
to operate effectively. Tolerance (TOL) and variance inflation factor
(VIF) are key indicators widely used to detect multicollinearity. If
the TOL value is less than 0.1 or the VIF value is greater than 10, this
indicates serious multicollinearity. In this study, multicollinearity
analysis was performed on the selected 20 impact factors using SPSS
software, and the results are shown in Table 3.

The TOL of Relief, NDBI, MNDWI, and Surface cutting depth is
less than 0.1 and the VIF is greater than 10, which means there is a
serious collinearity problem, so these four factors need to be
eliminated.

TABLE 3 Calculation results of multicollinearity of landslide impact factors.

Landslide impact factors TOL VIF

Elevation 0.124 8.081

Slope 0.209 4.796

Aspect 0.975 1.026

Flat curvature 0.564 1.772

Profile curvature 0.584 1.714

SPI 0.697 1.435

TWI 0.580 1.725

Slope variability 0.921 1.086

Relief 0.042 23.826

Roughness 0.127 7.894

Surface cutting depth 0.072 13.908

Elevation variation coefficient 0.116 8.585

Land use 0.872 1.147

NDVI 0.112 8.958

NDBI 0.096 10.373

MNDWI 0.074 13.525

Lithology 0.832 1.202

River density 0.756 1.323

Road density 0.656 1.524

Rainfall 0.133 7.528
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4.1.2 GDSP calculation results
We used GeoDetector model and SHAP interpreter to calculate

the importance ranking of the remaining 16 landslide impact factors,
and then further evaluated and screened them using the GDSP
method. We selected a total of 70,499 data from 4,147 research units
(each research unit contains discrete data of 16 impact factors and
data on whether a landslide occurred), input them into the
GeoDetector model, and calculated the explanatory power of all
factors on the spatial distribution of landslide hazards
(corresponding to q in GDSP). The results are shown in
Figure 5A, it can be seen that the q-statistic value of elevation is
the largest, indicating that the distribution of elevation has the
strongest explanatory power for the spatial heterogeneity of
landslides and has the greatest driving force, followed by rainfall
and lithology. Similarly, we input the sample data into the SHAP
interpreter, use the Random Forest model as the explained model,
and use TreeExplainer to interpret and calculate the mean absolute
SHAP values, that is, the contribution of each landslide impact factor
to the output result (corresponding to c in GDSP). The results are
shown in Figure 5B, it can be seen that elevation contributes the

most to the output results, followed by rainfall and slope. The output
results of the above GeoDetector model and SHAP interpreter are
comprehensively calculated using the GDSP method, and the results
are shown in Figure 5C. It can be seen that elevation is the most
important factor impact landslides, followed by rainfall, slope,
roughness, lithology, etc. According to the studies (Song et al.,
2012; Han et al., 2019; Rong et al., 2020), taking into account the
comprehensiveness of factors and the complexity of Bayesian
network calculation, after many experiments, we selected the top
eight factors with the highest E value of GDSP calculation results,
including elevation, rainfall, slope, roughness, lithology, road
density, land use and TWI, to construct the Bayesian network
model for landslide susceptibility assessment.

4.2 Bayesian network model construction
and comparison

In this study, 80% of the total sample unit data set of the
dominant factor was randomly selected as the training set, and

FIGURE 5
Importance ranking of landslide impact factors. Calculation results of GeoDetector (A), calculation results of SHAP model (B), and comprehensive
calculation results of GDSP (C).

Frontiers in Environmental Science frontiersin.org13

Gao et al. 10.3389/fenvs.2025.1522949

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1522949


the remaining 20% was the test set. For the convenience of display
and calculation, we will use the first five letters instead of the full
name, such as lithology, using “LITHO” instead. Based on the
training set, we used a combination of subjective and objective
methods to construct Bayesian network models for landslide
susceptibility assessment. First, we constructed the initial network
structure shown in Figure 6A based on expert knowledge to
complete the subjective initial structure construction. On this
basis, three major types of objective Bayesian network
construction methods, score search, variant Naive Bayes, and
combination of constraint and score, were used to search to
complete the final network structure construction, and the results
are shown in Figure 6. Figure 6B is the search result of BIC scoring
and hill climbing algorithm; Figure 6C is the search result of BIC
scoring and tabu search algorithm; Figure 6D is the search result of
BDs scoring and hill climbing algorithm; Figure 6E is the search
result of BDs scoring and tabu search algorithm; Figure 6F is the
search result of K2 scoring and hill climbing Algorithm; Figure 6G is
the search result of K2 score and tabu search algorithm; Figure 6H is
the search result of MMHC algorithm; Figure 6I is the search result
of TAN algorithm.

From the Bayesian network structure diagram, we can clearly see
the relationship between the various hazard impact factors. Different
from the traditional hierarchical indicator system, each impact
factor no longer only contributes to and affects the risk
components to which it belongs. They are interconnected and
integrated, and influence each other. The model fully and clearly
presents this complex and uncertain synergistic influence
relationship in the form of a network.

After the Bayesian network structure is constructed, parameter
learning can be performed to obtain a trained Bayesian network
model. Based on the training set data and the Bayesian network

structure in Figures 6B–I, we apply the GeNIe analysis software to
learn the parameters via the maximum likelihood estimation (MLE)
algorithm, and to simulate and visualize the results. GeNIe is widely
used Bayesian network development software with the advantages of
stability, simplicity and high performance (https://www.
bayesfusion.com/genie/). Taking the K2 score and tabu search
structure as an example (corresponding to Figure 6G), the
parameter learning results are shown in Figure 7. A conditional
probability table (CPT) is stored in each factor node, which can be
used for prediction and reasoning.

In order to compare which Bayesian network structure
construction strategy is more suitable for landslide susceptibility
assessment, we used the Bayesian networks of 8 different
construction strategies after training to evaluate the test set, and
selected the AUC value of the ROC curve as the evaluation index.
The results are shown in Figure 8. It can be seen that the score search
has a larger AUC value than combination of constraint and score,
and variant Naive Bayes, with higher accuracy and better
performance, and is more suitable for landslide susceptibility
assessment. In the score search method, the tabu search
algorithm is better than the hill climbing algorithm, the
K2 scoring function is better than BDs and BIC. The Bayesian
network model with the tabu search algorithm combined with the
K2 scoring function has the highest AUC value, reaching 0.934.

4.3 Optimizing Bayesian network using
SBAS-InSAR

We collected 29 descending-orbit Sentinel-1A data from
January to December 2019 in the study area as the data source of
the surface deformation rate factor. Based on the SBAS-InSAR

FIGURE 6
Results of Bayesian network structure construction. Expert experience initial structure (A), BIC scoring and hill climbing algorithm (B), BIC scoring
and tabu search algorithm (C), BDs scoring and hill climbing algorithm (D), BDs scoring and tabu search algorithm (E), K2 scoring and hill climbing
Algorithm (F), K2 score and tabu search algorithm (G), MMHC algorithm (H) and TAN algorithm (I).
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technology, we calculated the deformation rate of the surface in the
direction of the satellite line of sight (LOS), and the results are shown
in Figure 9. Figure 9A is a connection diagram after removing the

data pairs that are greatly affected by atmospheric effects and have
low coherence. The main image is 14. Figure 9B is a histogram of the
deformation rate calculation results after geocoding. The

FIGURE 7
Using MLE algorithm for parameter learning (taking Tabu search combined with the K2 scoring function as an example).

FIGURE 8
Comparison of Bayesian network results of 8 different construction strategies using the ROC curve of the test set.
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deformation rate curve is approximately normally distributed, and
the mean is near 0. Due to the incoherence in the local area, there are
null value areas in the deformation rate results. Therefore, we use the
Kriging interpolation (Wu et al., 2023) method to interpolate the
inverted deformation results to obtain a deformation rate map
covering the entire study area, as shown in Figure 9C. In this
map, the positive value is the direction close to the radar along
the line of sight, and the negative value is the direction away from the
radar along the line of sight.

The deformation rate data were first resampled to a uniform
100 m resolution, with areas covered by water bodies removed.
Then, the data were discretized using Sun (2022) improved K-means
method as the deformation factor, and the discrete results were:
−103.64 ~ −40.02 mm/yr for T1, -40.02 ~ −7.77 mm/yr for T2, and
-7.77 ~ 42.66 mm/yr for T3. Combined with the other eight
dominant factors, the expert knowledge in Figure 6A is used as
the initial structure, and the tabu search algorithm and K2 scoring
function are used to construct the final Bayesian network structure.
The result is shown in Figure 10A. Then, the parameter learning was
performed using the MLE algorithm, and the result is shown in
Figure 10B. We named this optimized Bayesian network with

deformation factor as “OPT-BN”, and the best Bayesian network
before optimization obtained in Section 4.2 as “ORI-BN.”

The landslide susceptibility maps of the study area were drawn
using the OPT-BN and ORI-BN models and compared. The results
are shown in Figure 11. Figures 11A, B are the landslide probability
distribution maps of OPT-BN and ORI-BN, respectively. In order to
better distinguish, the calculation results are divided into five levels
using the Geometrical Interval Classification (GIC) method: very
low (VL), low (L), medium (M), high (H) and very high (VH). The
landslide susceptibility zoning of OPT-BN is shown in Figure 11C,
and the landslide susceptibility zoning of ORI-BN is shown in
Figure 11D. It can be seen from the figure that the areas with
high landslide susceptibility are mainly concentrated in the vicinity
of water systems, low elevations and areas with high rainfall, while
the areas with low landslide susceptibility are mainly distributed in
areas far away from water systems, with wide forest distribution and
high elevations.

The accuracy of OPT-BN and ORI-BN is compared by confusion
matrix, ACC, MCC, and AUC values. The results are shown in Table 4.
All indicators of OPT-BN (ACC = 0.90, MCC = 0.56, AUC = 0.94) are
better than ORI-BN (ACC = 0.83, MCC = 0.40, AUC = 0.93). The

FIGURE 9
Deformation rate calculation results. Connectivity diagram after removing poor quality data (A), deformation rate histogram (B), and deformation
rate distribution of the entire study area after Kriging interpolation (C).
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FIGURE 10
Bayesian network after adding deformation factors. The structure (A) and parameters (B) of the OPT-BN model.

FIGURE 11
Landslide susceptibility mapping results. Landslide probability distribution map of OPT-BN (A), landslide probability distribution map of ORI-BN (B),
landslide susceptibility zoning map of OPT-BN (C), landslide susceptibility zoning map of ORI-BN (D).
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statistical analysis tools were used to obtain the area and proportion of
each risk level, the number and proportion of landslides in each risk level,
and the FR was calculated, which together presented a detail of landslide
susceptibility zoning map. The results are shown in Table 5. It can be
seen that the landslide number ratio (Pai) and FR in the OPT-BN and
ORI-BN susceptibility zoning results increase rapidlywith the increase of
risk level, indicating that the landslide susceptibility zoning results are
reasonable overall. The number of landslides in the very high risk level
and high risk level assessed byOPT-BN accounts for a higher proportion
of the total number of landslides, which is 97.61%, while the proportion
of landslides in the very high risk level and high risk level assessed by
ORI-BN is 92.84%. The FR of the very high risk level assessed by the
OPT-BNmodel is 5.61, which is higher than that of ORI-BN, indicating
that the landslide density in the very high risk level assessed by the OPT-
BNmodel is larger and the susceptibility is higher. At the same time, the
FR of the very low risk level assessed is 0, which is lower than that of
ORI-BN, further indicating that the landslide susceptibility assessment
results of OPT-BN are more reasonable.

4.4 Reverse inference

Reverse inference is a special function of Bayesian network,
which can identify the factor state category and its probability

distribution where landslide is more likely to occur. We use the
better OPT-BN model for reverse inference. Based on the OPT-BN
model simulation interface shown in Figure 10B, we set the N (no
landslide) and Y (landslide) levels of the target node “LANDS” to
100% respectively. The reverse inference results are shown in
Table 6. When landslide hazards change from non-occurrence to
occurrence, the probability of lower elevation categories, lower slope
categories, plow land and impervious cover categories of land use,
medium road density categories, limestone and siltstone categories
of lithology, higher rainfall categories, lower roughness categories,
and deformation rate values ranging from −7.77 to 42.66 mm/yr
increases significantly, reflecting that these environmental
conditions may promote the occurrence of landslides. The
probability of forest categories in land use types decreases
significantly, reflecting that these environmental conditions may
inhibit the occurrence of landslides.

5 Discussion

5.1 Advantages of the proposed model

This study proposes a landslide susceptibility assessment
method using SBAS-InSAR technology to optimize the Bayesian
network. In this research process, we divide it into 4 parts and
implement it step by step. In the first step, we preliminarily screen
the landslide impact factors through multicollinearity analysis, and
then further assess and screen the remaining landslide impact
factors by integrating GeoDetector and SHAP as the GDSP
method to obtain the landslide dominant factors. In the second
step, we use a combination of subjective and objective methods to
construct the Bayesian network structure based on the dominant
factors, that is, to build the network structure by combining expert
experience and data-driven methods, and use theMLE algorithm for
parameter learning. By comparing eight objective Bayesian network
structure construction methods, including score search (hill
climbing or tabu search strategy combined with K2, BDs and
BIC score functions), variant Naive Bayes (TAN) and
combination of constraint and score (MMHC), we obtained the
Bayesian network construction strategy with the highest accuracy. In

TABLE 4 Confusion matrix, ACC, MCC, and AUC value calculation results of
OPT-BN and ORI-BN models.

Models Indicators Confusion matrix Results

OPT-BN ACC Predicted Actual 0.90

Yes No

MCC 60 (TP) 15 (FN) Yes 0.56

AUC 70 (FP) 684 (TN) No 0.94

ORI-BN ACC Predicted Actual 0.83

Yes No

MCC 55 (TP) 20 (FN) Yes 0.40

AUC 121 (FP) 633 (TN) No 0.93

TABLE 5 Statistics of landslide susceptibility zoning results of OPT-BN and ORI-BN models.

Models Risk level Number of landslides Pai (%) Number of grids Pdi (%) FR

OPT-BN VL 0 0.00% 89,266 42.46% 0.00

L 1 0.27% 34,900 16.60% 0.02

M 8 2.12% 26,553 12.63% 0.17

H 84 22.28% 31,294 14.88% 1.50

VH 284 75.33% 28,229 13.43% 5.61

ORI-BN VL 1 0.27% 32,484 15.45% 0.02

L 6 1.59% 46,738 22.23% 0.07

M 20 5.31% 51,998 24.73% 0.21

H 90 23.87% 41,404 19.69% 1.21

VH 260 68.97% 37,618 17.89% 3.85
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the third step, we used SBAS-InSAR technology to obtain surface
deformation rate data based on Sentinel-1A data. After Kriging
interpolation and discretization, it was used as a deformation factor,
combined with the dominant factor, and the structure was
constructed based on expert knowledge and the highest accuracy
K2&Tabu obtained in the second step, and the MLE algorithm
parameter learning was used. The optimized Bayesian network
(OPT-BN) using SBAS-InSAR was obtained. In the fourth step,
we compared ORI-BN (Bayesian network before optimization) with
OPT-BN (Bayesian network after optimization), and finally adopted
the better OPT-BN for reverse inference.

In summary, the OPT-BN proposed in this study integrates the
Bayesian network model, GeoDetector model, SHAP interpreter,
and SBAS-InSAR technology. This model has significant advantages
in the screening and interpretation of landslide impact factors,
landslide susceptibility assessment, and hazard prevention and
mitigation decision-making assistance. First, Bayesian network
(BN), as a graphical model based on probability theory, has been
widely used in many fields, including landslide susceptibility
analysis, due to its ability to handle uncertainty, express complex
dependencies between variables and strong reasoning ability. In
addition, GeoDetector model and SHAP interpreter, as effective
tools, are also widely used in landslide susceptibility analysis and
other environmental factors. The GeoDetector model quantifies the
contribution of each impact factor to landslide occurrence by
analyzing the spatial distribution of variables in spatial data,
helping decision makers better understand the triggering
mechanism of landslides. SHAP interpreter, as a model
interpretation tool based on game theory, can provide feature
importance scores for each prediction in the machine learning
model and quantify the contribution of each factor to the
prediction results. SHAP not only reveals the importance of
features, but also shows how each factor can positively or
negatively affect the model prediction results, providing in-depth
explanatory analysis. Finally, SBAS-InSAR technology, as an
advanced surface deformation monitoring tool, is also widely
used in landslide monitoring and geological hazard assessment.
Using SBAS-InSAR technology, researchers can identify dynamic
changes in landslide-prone areas, providing critical data support for
hazard warning and prevention measures. As shown in Table 4,
Table 5; Figure 11, the proposed OPT-BN (ACC = 0.90, MCC = 0.56,
AUC = 0.94) performs better than ORI-BN (ACC = 0.83, MCC =
0.40, AUC = 0.93) in both the test set and landslide
susceptibility mapping.

This study comprehensively considers the advantages and
disadvantages of the GeoDetector model and the SHAP
interpreter, designs and uses the GDSP method to analyze the
comprehensive influence of various factors on landslide hazards
in order to eliminate redundant factors. The results shown in
Figure 5 show that the elevation factor has the greatest
comprehensive influence on landslide hazards, which is
consistent with the results of earlier studies (Rong et al., 2020;
Zhou et al., 2021; Xiao et al., 2024).

BN has the unique function of reverse inference. It can identify
the environmental conditions under which landslides are more
likely to occur. Correspondingly, it can also be concluded that

TABLE 6 Reverse inference results for the OPT-BN model.

Factors Status class N Y Change

Elevation T1 0.293 0.800 0.506

T2 0.452 0.184 −0.268

T3 0.255 0.017 −0.239

Slope T1 0.288 0.470 0.182

T2 0.380 0.403 0.023

T3 0.332 0.127 −0.205

Road density T1 0.823 0.525 −0.298

T2 0.173 0.464 0.292

T3 0.005 0.011 0.006

Rainfall T1 0.510 0.082 −0.428

T2 0.334 0.398 0.064

T3 0.156 0.520 0.364

Roughness T1 0.527 0.760 0.233

T2 0.362 0.181 −0.180

T3 0.112 0.059 −0.053

Deformation rate T1 0.091 0.013 −0.078

T2 0.244 0.060 −0.183

T3 0.666 0.927 0.261

TWI T1 0.761 0.545 −0.217

T2 0.192 0.305 0.113

T3 0.046 0.150 0.104

Land use T1 0.107 0.273 0.166

T2 0.599 0.364 −0.235

T3 0.200 0.208 0.009

T4 0.006 0.020 0.014

T5 0.017 0.049 0.033

T6 0.065 0.068 0.003

T7 0.007 0.017 0.010

Lithology T1 0.327 0.460 0.133

T2 0.139 0.038 −0.101

T3 0.042 0.041 −0.001

T4 0.098 0.006 −0.093

T5 0.013 0.020 0.007

T6 0.174 0.068 −0.106

T7 0.166 0.349 0.183

T8 0.030 0.007 −0.023

T9 0.007 0.006 −0.002

T10 0.003 0.006 0.003
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the conditions under which landslides are less likely to occur are of
great significance for hazard prevention and mitigation decision
support. In this study, through OPT-BN reverse inference, it was
found that the probability of landslide hazards in low categories of
elevation,medium and high categories of road density and high
categories of rainfall increased when landslide hazards went from no
occurrence to occurrence, indicating that landslides are more likely
to occur in areas with low elevation categories, medium and high
road density categories and high rainfall categories, which is
consistent with the results of earlier studies (Xiao et al., 2024).
The reduced probability of forests in land use types reflects that the
probability of landslides under forest cover may be relatively low,
which is consistent with the results of earlier studies (Nilaweera and
Nutalaya, 1999). In addition, it can be seen from Figure 11 that areas
with high risk of landslide hazards are mainly concentrated near
water systems, in areas with lower elevations and areas with greater
rainfall. This is mainly because the areas near water systems are
eroded by rivers, and rainwater flows to lower elevation areas due to
gravity, resulting in soil content. The amount of water can easily
exceed the stability critical value. Moreover, strong human
engineering activities such as road construction near the water
system and in areas with lower elevations make landslides more
susceptible. The areas with low landslide susceptibility are mainly
distributed in areas far away from water systems, with wide forest
distribution and high elevation. These areas are easier to evacuate
rainwater and are less affected by human activities, showing
relatively low susceptibility. The OPT-BN reverse inference
results proposed in this paper are mutually confirmed by the
landslide susceptibility mapping results and previous studies, and

the results are reliable. The unique reverse inference of the Bayesian
network can obtain the state or range in which any environmental
factor is prone to landslides, which is a function that other machine
learning models do not have. Therefore, the OPT-BN proposed in
this paper has good application potential for hazard prevention and
mitigation decision-making assistance.

5.2 Differences between GeoDetector
and SHAP

In the GeoDetector model and SHAP interpreter calculations,
the importance ranking of features is based on the contribution of
the variable’s spatial distribution and the degree of influence on the
prediction results, respectively. When comparing the GeoDetector
model results with the SHAP interpreter calculation results, the
ranking of key factors such as elevation and rainfall remains
consistent in both methods. However, less significant factors such
as flat curvature and slope variability are ranked differently between
the two methods.

These inconsistencies may be due to the GeoDetector model’s
greater focus on the interpretation of spatial distribution, and its
results reflect the spatial dependence of factors on landslide
occurrence. Therefore, GeoDetector is more inclined to capture
the nonlinear and interactive effects of factors in different regions.
SHAP interpreter, on the other hand, analyzes from the perspective
of the contribution of features to the model prediction results,
focusing on evaluating the impact of individual features on the
overall model prediction. Therefore, SHAP may highlight those

FIGURE 12
A comprehensive relationship diagram of the feature value and SHAP value output by the SHAP interpreter.
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features that have a strong explanatory power for the prediction
results in a statistical sense, even if they are not necessarily
significant in spatial distribution. SHAP interpreter provides a
more detailed view of the model, not only ranking the
importance of features, but also revealing the positive or
negative impact of each feature on the prediction results.
Figure 12 is the relationship between the feature value of the
landslide impact factor and the SHAP value output by the SHAP
interpreter. The analysis shows that there is a significant negative
correlation between the elevation, slope and roughness in the
study area and the occurrence of landslides, indicating that the
lower the elevation, slope and roughness, the more obvious the
positive impact on the occurrence of landslides. There is a
significant positive correlation between rainfall and road
density and the occurrence of landslides, indicating that the
higher the rainfall and road density, the more obvious the
positive impact on the occurrence of landslides. At the same
time, this also confirms the results of OPT-BN reverse inference
to a certain extent.

5.3 Model generalizability

Although the OPT-BN proposed in this paper has achieved
certain results in landslide susceptibility assessment (ACC = 0.90,
MCC = 0.56, AUC = 0.94), it still has some defects and
limitations. First, the establishment of the model mainly relies
on existing data sets, especially the data on meteorology, soil,
geology and human activities may not be comprehensive enough,
resulting in the failure to fully consider the impact of some key
factors. Second, although we used multiple algorithms for
comparison, the selection and parameter tuning of the model
may not cover all possible configurations, thus affecting the
performance and generalization ability of the model. In
addition, although the 20 landslide impact factors selected in
the study cover multiple aspects such as precipitation, surface
characteristics and human activities, in some specific areas,
additional factors may still need to be introduced to improve
the accuracy and adaptability of the prediction. Finally, due to the
complexity and variability of landslide events, our model may not
be able to fully capture all potential interactions and nonlinear
relationships, thus affecting the reliability of the prediction
results. Therefore, future research needs to make further
improvements in data quality, model parameter optimization
and factor comprehensiveness.

6 Conclusion

This study uses SBAS-InSAR technology to optimize the
Bayesian network and establishes a framework for landslide
susceptibility assessment. The framework first screens the
landslide impact factors through multicollinearity analysis,
and then uses the GDSP method (combined with GeoDetector
and SHAP) to further screen the dominant factors; then,
combining expert knowledge and objective methods, the
Bayesian network structure is constructed based on the
dominant factors, and the highest accuracy construction

strategy is obtained by comparing 8 construction methods;
then, based on this strategy, the deformation factor calculated
by SBAS-InSAR technology is added, and the optimized Bayesian
network (OPT-BN) is constructed through MLE parameter
learning; finally, OPT-BN is used to carry out landslide
susceptibility mapping, accuracy verification and reverse
inference. The results showed that:

(1) According to the calculation results of the GDSP method, the
top eight factors impact landslides are ranked from the largest
to the smallest according to the comprehensive influence
degree E: elevation, rainfall, slope, roughness, lithology,
road density, land use and TWI.

(2) According to the comparison results of the Bayesian network
construction strategies (score search, variant Naive Bayes, and
combination of constraint and score), it is concluded that
K2&Tabu in the score search has the highest accuracy.

(3) The optimized Bayesian network (OPT-BN) using SBAS-
InSAR technique had ACC = 0.90, MCC = 0.56, and
AUC = 0.94 which were better than the unoptimized
Bayesian network ORI-BN (ACC = 0.83, MCC = 0.40, and
AUC = 0.93). And from the statistical results of susceptibility
zoning, it can be seen that the susceptibility zoning results of
OPT-BN are more concentrated in the distribution of
landslides in high risk level than those of ORI-BN,
indicating that the calculation results of OPT-BN are more
reasonable.

(4) According to the results of susceptibility mapping, the high
risk level of landslide hazards in Hanyuan County are mainly
concentrated in areas near water systems, with low elevation
and high rainfall, while the low risk level are mainly
distributed in areas far from water systems, with wide
forest distribution and high elevation. According to the
results of Bayesian network reverse inference, landslides
are more likely to occur in areas with lower elevation
categories; plow land and impervious cover categories of
land use; higher rainfall categories and deformation rate
value range of −7.77 ~ 42.66 mm/yr categories. Relevant
departments should take certain hazard prevention and
mitigation emergency management measures for these
environmental conditions.
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