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The acceleration of urbanization and the impact of climate change have led to an
increasing frequency and intensity of grassland fires, posing severe challenges to
resident safety and ecological protection. Traditional static evacuation route
planning methods struggle to adapt in real-time to the dynamic changes in
fire conditions during emergency management. To address this issue, this paper
proposes a grassland fire evacuation route optimization strategy based on the
GreyGNN-MARL model. By integrating Synthetic Aperture Radar (Sentinel-1 SAR)
imagery, Graph Neural Networks (GNNs), Grey Wolf Optimization (GWO)
algorithms, and Multi-Agent Reinforcement Learning (MARL), the model
achieves intelligent planning and real-time adjustment of dynamic evacuation
routes in fire scenarios. Experimental results demonstrate that this model
significantly outperforms traditional methods in terms of evacuation time, risk
avoidance success rate, and path safety, with evacuation time reduced by over
25% and risk avoidance success rate improved by approximately 18%. This model
provides technical support for emergency management of grassland fires,
helping to enhance evacuation efficiency and ensure safety, which is of great
significance for smart cities and ecological protection. Future research will focus
on further optimizing the model’s computational efficiency and applicability for
broader use in fire emergency management in complex environments.
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1 Introduction

In recent years, the frequency and intensity of wildfires have increased significantly
around the world, especially in the Mediterranean, North America, South America, and
Australia (Nur et al., 2022; Zhang et al., 2025). This trend not only threatens human life and
property, but also has a profound impact on ecosystem recovery and carbon cycling (Ghali
and Akhloufi, 2023). Climate change and intensified human activities are the main factors
leading to the frequent occurrence of wildfires, causing a large loss of forest resources and
weakening the self-recovery capacity of ecosystems (Zhang et al., 2021). In this context,
traditional fire evacuation path planning usually focuses on the rapid evacuation of people,
but it faces challenges in simultaneously considering the long-term recovery needs of
ecosystems. Post-fire vegetation recovery, maintenance of carbon storage, and enhancement
of ecosystem resilience have become key topics in current wildfire research and emergency
management (Ban et al., 2020; Florath and Keller, 2022; Huang et al., 2025).
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Ecosystem resilience is particularly important in areas where
fires frequently occur. After a fire, vegetation needs to be restored to
a certain coverage level to achieve carbon storage and environmental
restoration goals (Tian et al., 2022). However, in areas with frequent
fires and extreme weather, vegetation restoration faces many
challenges, making it difficult to stabilize the carbon cycle (Lee
et al., 2020). Therefore, how to balance ecosystem restoration during
fire evacuation while enhancing the system’s carbon absorption and
storage capacity has become a research direction that urgently needs
to be solved (Sun et al., 2021). In this context, path optimization
technology based on intelligent algorithms provides a new idea for
solving the comprehensive needs of fire evacuation and ecosystem
restoration (Jiang et al., 2021).

This study proposes a GreyGNN-MARL model, which
integrates graph neural networks (GNNs), gray wolf optimization
(GWO) and multi-agent reinforcement learning (MARL)
technology to provide effective support for path planning and
ecosystem restoration in fire-prone areas. GNNs can construct
complex geographic structure information in fire scenes and
generate network structures of buildings, roads and vegetation,
thereby providing a data basis for path optimization (Karimzadeh
et al., 2022). GWO simulates the hunting behavior of gray wolves
and dynamically optimizes the weights and parameters in path
planning, aiming to minimize evacuation time while maximizing
safety (Hu et al., 2021). In addition, MARL trains multiple agents
(such as emergency evacuees) to collaborate in a dynamic fire
environment, thereby facilitating the identification of optimal
evacuation paths and strategies.

The main contribution of this research are as follows:

• The fusion of multi-source data, including Sentinel-1 SAR
imagery, global fire carbon emissions, and vegetation indices,
utilizing Graph Neural Networks (GNNs) to construct
complex geographical structural information in fire
scenarios, achieving a unified modeling of path
optimization and ecosystem recovery.

• The introduction of the Grey Wolf Optimization (GWO)
algorithm to dynamically adjust evacuation path weights
and parameters, minimizing evacuation time while
maximizing safety, providing intelligent support for path
decision-making in high-frequency fire environments.

• The implementation of Multi-Agent Reinforcement Learning
(MARL) to enable agents to collaborate in dynamic fire
environments, ensuring that evacuation path optimization
not only prioritizes crowd safety but also supports post-fire
ecosystem recovery and carbon storage.

This model is not only applicable to grass fires, but can also be
extended to other types of fire scenarios, such as bush fuel fires.
Through the fusion of multi-source data, the model can adapt to the
characteristics of fires of different fuel types and achieve more
flexible and efficient evacuation path optimization. By optimizing
the selection of evacuation paths, the GreyGNN-MARL model not
only reduces the time for crowd evacuation, but also helps reduce
damage to vegetation and the environment, thereby providing more
favorable conditions for subsequent ecological restoration. By
combining multi-source data, the model can identify high-risk
areas for fires and provide scientific path planning support for

vegetation restoration and carbon storage, striving to reduce the
negative effects of fire on the environment through path
optimization and promote the sustainable recovery of the ecosystem.

2 Related work

2.1 Fire evacuation path optimization
algorithms

Fire evacuation path optimization algorithms play a critical role
in emergency management during fires, with the primary goal of
providing the safest and most effective evacuation routes for people
during a fire event, thereby minimizing loss of life and property.
Traditional path optimization methods typically rely on Geographic
Information Systems (GIS) and classic graph-based algorithms, such
as Dijkstra’s and A* algorithms, which can efficiently find the
shortest paths in static environments (Chen et al., 2020; Wang
et al., 2025a). However, these methods struggle to adapt to the real-
time requirements of path safety and responsiveness in the rapidly
changing conditions of a fire disaster, leading to limited practical
application effectiveness (Kodipalli et al., 2023).

In recent years, with the advancement of deep learning and
intelligent optimization algorithms, fire evacuation path
optimization has gradually incorporated data-driven and
intelligent optimization approaches to address the complexities of
dynamic fire scenarios (Sharma et al., 2020; Wang et al., 2025b).
Graph Neural Networks (GNNs) have emerged as a valuable tool in
disaster management due to their advantages in processing graph-
structured data. They can model complex geographical
environments as graph structures and analyze the risks and fire
spread in different areas, thus providing support for dynamic path
planning (Salami et al., 2023). Meanwhile, intelligent optimization
algorithms, such as Particle Swarm Optimization (PSO) and Ant
Colony Optimization (ACO), exhibit strong global search
capabilities in path optimization, enabling the identification of
safe routes in risk environments created by fire spread
(Bouguettaya et al., 2022). Nevertheless, relying solely on deep
learning or optimization algorithms still presents limitations in
practical fire evacuation path optimization, primarily due to a
lack of dynamic updating mechanisms that can effectively
respond to the rapid expansion of fire.

Furthermore, to enhance the intelligence and real-time
capabilities of path planning, this paper primarily explores the
application of Multi-Agent Reinforcement Learning (MARL) in
evacuation path optimization. By simulating various evacuation
strategies through the collaboration of multiple agents in
dynamic environments, the model can dynamically adjust path
planning to adapt to the rapid changes in fire conditions.

2.2 Application of SAR images in disaster
management

In disaster management, Synthetic Aperture Radar (SAR)
imagery has become an essential tool for monitoring natural
disasters due to its all-weather, all-hour observation capabilities.
SAR imagery can penetrate clouds and smoke, providing high-
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resolution surface information suitable for real-time monitoring of
various disaster scenarios, including floods, earthquakes, and
wildfires. Particularly in wildfire management, SAR imagery can
clearly capture the areas affected by fires, the direction and rate of
spread, offering robust data support for comprehensive monitoring
and assessment of fire situations (Gupta et al., 2021; Tlijani et al.,
2023). Traditional disaster management methods rely on ground
sensors and video surveillance, which are limited in their application
to large-scale fire scenarios and struggle to cover distant or dense fire
areas. In contrast, SAR imagery not only provides real-time
observations over a broader range but also acquires high-
precision surface information, such as the location of fire sources,
fire boundaries, vegetation density, and other critical features
(Karimzadeh et al., 2022; Subramanian et al., 2023). By
processing this SAR data, researchers can rapidly analyze fire
dynamics after an outbreak, providing an accurate information
foundation for disaster emergency decision-making (As shown
in Figure 1).

In recent years, with the advancement of deep learning and
intelligent analysis technologies, the accuracy and efficiency of SAR
image processing have been greatly enhanced. Leveraging deep
learning models such as Graph Neural Networks (GNN) and
Convolutional Neural Networks (CNN), SAR imagery can be
transformed into visual charts of fire situations, thereby

supporting dynamic modeling of disaster scenarios (Pi et al.,
2020; Wang and Wang, 2024; Yu and Zhenhua, 2024). However,
many current studies still focus on the application of SAR imagery in
disaster detection and monitoring, with less exploration of its
potential in disaster evacuation path optimization. Although SAR
imagery can provide precise information on fire spread, integrating
it effectively into real-time decision-making for path planning
remains an underexplored technical challenge (Alsamhi et al.,
2021). Therefore, fully leveraging the data support role of SAR
imagery in disaster management and combining it with evacuation
path optimization models is an important direction for enhancing
the speed and quality of wildfire emergency response and
decision-making.

2.3 Application of hybrid optimization
algorithms in path planning

In the field of path planning, hybrid optimization algorithms
have gradually become an effective tool for path planning in
complex environments due to their combination of global search
and local optimization capabilities. These algorithms typically
integrate various optimization methods, such as Particle Swarm
Optimization (PSO), Ant Colony Optimization (ACO), and Genetic

FIGURE 1
Schematic diagram of the application of SAR imagery in fire emergency management (based on multi-platform applications in related research).
Different SAR platforms used in traditional firemonitoring research, including satellite and aerial platforms. Please note that the SAR data used in this study
came from the Sentinel-1 satellite platform, not the aerial platform.
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Algorithms (GA), and leverage machine learning models to enhance
the adaptability and efficiency of the algorithms (Hu X. et al., 2023).
By combining the strengths of different algorithms, hybrid
optimization algorithms excel in multi-objective optimization,
making them particularly suitable for dynamic path planning in
complex disaster scenarios. In wildfire scenarios, path planning
must consider not only conventional factors such as path length
and time but also the potential threats of fire spread to the routes in
real-time. Traditional path planning algorithms (like A*, Dijkstra)
can find the optimal path in static environments but struggle to cope
with the real-time changes in fire conditions (Xu et al., 2022). To
address this issue, researchers have begun to introduce hybrid
optimization algorithms to improve the flexibility of path
planning. These methods dynamically adjust the weight
coefficients and sampling strategies in path selection, enabling
the generation of safer and more stable evacuation routes in
complex fire environments.

Furthermore, with the development of Multi-Agent
Reinforcement Learning (MARL) technology, hybrid optimization
algorithms have been increasingly applied to multi-agent
collaborative path planning. MARL’s application in fire scenarios
can simulate the cooperation of multiple evacuation teams, adjusting
routes in real-time to avoid collisions and adapt to the dynamic
changes in fire conditions (Yang et al., 2022). However, although the
combination of hybrid optimization algorithms and MARL can
enhance the flexibility and dynamic adaptability of path planning,

most existing studies focus on the theoretical aspects of the
algorithms, lacking practical application explorations supported
by multi-source data (Poudel and Moh, 2021). How to effectively
integrate hybrid optimization algorithms with fire data (such as SAR
imagery, fire emission data) to meet the path planning needs in
wildfires remains a significant technical challenge.

3 Methods

3.1 Overall model framework

This study proposes the GreyGNN-MARLmodel, which aims to
provide an intelligent solution for evacuation path optimization in
grassland fire scenarios. The core goal of the model is to achieve real-
time planning and adjustment of dynamic evacuation paths under
fire environments by combining multi-source data with intelligent
algorithms. The GreyGNN-MARL model consists of multiple
modules, mainly including graph neural networks (GNN)
modules, gray wolf optimization (GWO) modules, and multi-
agent reinforcement learning (MARL) modules. Through the
collaborative work of these modules, the model can optimize
evacuation paths in real time in complex and dynamic fire
environments. Figure 2 shows the overall architecture of the
GreyGNN-MARL model, covering the complete process from
multi-source data input to path planning output.

FIGURE 2
Overall structure of the GreyGNN-MARL model.
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At the input layer of the model, GreyGNN-MARL combines
multi-source data from Sentinel-1 SAR images, global fire emission
data (GFED), vegetation index, etc., and structures the fire scene
through data preprocessing. These data are processed by GNNs,
where each path (track1, track2, track3) represents a different data
processing flow. GNNs and SAR encoders are used to extract
geographic and fire information from multi-source data to form
a graph structure of the fire scene. In this process, nodes represent
different geographical locations or evacuation areas, while edges
represent the connection between nodes based on risk propagation
or traffic accessibility. Through this graph structure, the model can
dynamically capture the spread of fire and regional fire risk
information.

After the graph structure is constructed, the model enters the
GWOmodule, which performs preliminary optimization of the path
based on the graph feature matrix of GNN. The GWO algorithm
simulates the hunting strategy of gray wolf groups and uses adaptive
sampling density to dynamically adjust the weights in path selection
to generate multiple candidate evacuation paths. Compared with
traditional path planning methods, the GWO module can prioritize
avoiding high-risk areas and improve the safety and efficiency of
path selection.

Then, the MARL module further optimizes the evacuation path
throughmulti-agent collaboration. In a fire environment, theMARL
module uses multiple agents to adjust the evacuation strategy in real
time to cope with the dynamic changes caused by the spread of fire.
Each agent represents an evacuation team, which ensures that each
group of evacuees can avoid high-risk areas and adjust the
evacuation path in real time by sharing information and
collaborating. In a complex environment where the fire is
dynamically expanding, the MARL module can continuously
optimize the path to ensure that the evacuation process is more
adaptable and intelligent.

Through the organic combination of GNN, GWO and MARL
modules, the model forms a multi-level intelligent evacuation path

optimization system that can dynamically optimize the path in a fire
environment and improve the safety, real-time and adaptability of
the evacuation path.

3.2 Graph neural networks module

The Graph Neural Network (GNN) module is the core
component of the GreyGNN-MARL model used for constructing
and analyzing the fire environment. Its main task is to convert fire
scenes into graph structure representations based on multi-source
data (such as SAR images, fire emission data, and vegetation
indexes) to capture fire spread and regional risks at the node and
edge levels. Through the GNN module, the model can effectively
extract and process spatial and risk information in the fire
environment, providing accurate fire risk and regional
information support for the path optimization module (Chae
et al., 2022; Sannidhan et al., 2023; Wang et al., 2022). As shown
in Figure 3, the architecture of the GNN module includes data
preprocessing, feature initialization of nodes and edges, message
passing, and aggregation steps.

Initially, the GNN module converts key geographical
information and fire status in the fire scenario into a graph
structure G � (V, E), where V represents the set of nodes,
indicating different geographical locations or evacuation areas,
and E represents the set of edges, connecting different nodes
through travel or risk relationships. The initial features h(0)v of
each node v ∈ V are initialized using the following formula:

h 0( )
v � MLP xv( ) + Embedding Risk v( ),Vegetation v( )( )

where xv is the geographical feature of the node, Risk(v) denotes the
fire risk level of the node, and Vegetation(v) indicates the vegetation
coverage. Through a multi-layer perceptron (MLP) and embedding
layer, the GNN module transforms this information into an initial
node feature vector suitable for message passing.

FIGURE 3
GNNmodule architecture and workflow. Nodes “A” and “B” represent different geographical locations and evacuation areas. Node features include
geographical location, fire risk, vegetation cover, etc. Edges represent the connection between nodes, and weights reflect fire risk or traffic capacity.
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During the message passing phase, the GNNmodule propagates
and aggregates fire and risk information through edges between each
node, constructing dynamic features of the fire scenario. In the l-th
layer of message passing, the feature vector h(l)v of node v is updated
by the weighted aggregation of neighbor node features, with the
formula being:

h l+1( )
v � σ W l( )h l( )

v + ∑
u∈N v( )

α l( )
uvW

l( )
e h l( )

u
⎛⎝ ⎞⎠

where W(l) and W(l)
e are the weight matrices for nodes and edges,

respectively, N (v) denotes the set of neighboring nodes of node v,
α(l)uv is the attention weight for edge (u, v), measuring the influence of
node u on node v, and σ is the activation function.

To further enhance the accuracy of risk propagation in fire
scenarios, the GNN module introduces an attention mechanism in
message passing to dynamically adjust the weights α(l)uv of edges,
prioritizing the influence of high-risk nodes during fire spread. The
attention weights α(l)uv are calculated using the following formula:

α l( )
uv �

exp LeakyReLU a⊤ W l( )h l( )
u ‖W l( )h l( )

v[ ]( )( )
∑k∈N v( ) exp LeakyReLU a⊤ W l( )h l( )

k ‖W l( )h l( )
v[ ]( )( )

where a is the learned attention parameter vector, ‖ represents vector
concatenation, and LeakyReLU is the activation function. This
mechanism adaptively focuses on key nodes and high-risk edges
in the fire scenario, ensuring more precise fire risk assessment
during path optimization.

After multiple layers of message passing and feature aggregation,
the GNN module outputs the final node features h(L)v and edge
feature matrices, reflecting the risk levels of various regions and their
connectivity in the current fire scenario. The resulting graph
structure information H is then input into the Grey Wolf
Optimization (GWO) module to support further path planning
and optimization.

The GNN module forms a high-dimensional feature
representation of the fire scenario through multi-layer feature
aggregation, dynamic adjustment of attention weights (Ge et al.,
2022), and embedding of fire risks. This module not only effectively
captures the spatial relationships in the fire environment but also
dynamically models the fire spread process, laying a solid data
foundation for real-time path planning in the GreyGNN-
MARL model.

3.3 Grey wolf optimizer module

The Grey Wolf Optimizer (GWO) module in the GreyGNN-
MARL model is responsible for generating preliminary path
optimization in fire scenarios. Inspired by the hunting behavior
of grey wolves, the GWO algorithm dynamically adjusts path
sampling density and weight coefficients to provide global search
and optimization capabilities for evacuation routes (Sun et al., 2024;
Wei et al., 2024; Agarwal et al., 2023). In fire environments, the
GWO module utilizes the graph feature matrix generated by the
Graph Neural Network (GNN) to preliminarily plan multiple
candidate paths, ensuring that evacuation routes can avoid high-
risk areas as much as possible. As shown in Figure 4, the GWO

module includes key steps such as path initialization, dynamic
sampling, and iterative optimization.

The GWOmodule initializes three main search agents: the alpha
wolf (Alpha), beta wolf (Beta), and delta wolf (Delta), each playing
different roles in path optimization. The positions of these three
agents represent the coordinates of candidate evacuation routes,
with the initialization formula as follows:

X 0( )
α � Initialize Xstart, Xgoal( ), X 0( )

β � RandomInit(),
X 0( )

δ � RandomInit()
where X(0)

α represents the initial position of the alpha wolf,
initializing the path through the start and goal points, while X(0)

β

and X(0)
δ are the random initial positions for the beta and delta

wolves, respectively. This initialization ensures that the path search
process can begin with multiple candidate paths, increasing
path diversity.

During the path optimization process, the GWO module
improves the evacuation route’s risk avoidance effect by
dynamically adjusting the sampling density. Specifically, the
alpha, beta, and delta wolves repeatedly calculate the distances
between each other to update their respective path positions. The
path update formula for the t-th iteration is as follows:

X t + 1( ) � Xα t( ) − A · C ·Xα t( ) −X t( )| |
where A and C are control coefficients that adjust the convergence
and exploration capabilities of the path. The coefficient A is
dynamically calculated using the following formula:

A � 2 · a · r − a, a � 2 − 2t
T

where T is the maximum number of iterations, and r is a random
number controlling the dynamic changes in sampling density and
search range. By continuously adjusting the values of A and C, the
GWO module can increase sampling in high-risk areas, thereby
avoiding areas with strong fire spread and enhancing the safety
of the path.

Additionally, to ensure the stability of the optimization process
and the global nature of path selection, the GWO module
comprehensively evaluates the path distances between the alpha,
beta, and delta wolves in each iteration. The comprehensive path
evaluation formula is as follows:

Fitness X( ) � w1 · Distance X( ) + w2 · Risk X( ) + w3

· Smoothness X( )

where w1, w2, and w3 are weight coefficients that control the
proportion of path distance, fire risk, and path smoothness in the
optimization. Through this formula, the GWO module can balance
path length and risk avoidance, achieving multi-objective path
optimization.

After multiple iterations and dynamic sampling, the GWO
module generates a set of optimized candidate paths, with the
selected paths having high safety and shorter evacuation times.
These paths will serve as the initial path input for the Multi-
Agent Reinforcement Learning (MARL) module, further
supporting dynamic adjustment and real-time optimization of the
paths. The GWO module provides an efficient preliminary path
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optimization method for the GreyGNN-MARL model through
adaptive path sampling and multi-objective optimization strategies.

3.4 Multi-agent reinforcement
learning module

Multi-Agent Reinforcement Learning (MARL) extends
traditional reinforcement learning to environments where
multiple agents interact. Each agent learns to optimize its
strategy by receiving feedback from the environment while
considering the presence and actions of other agents. In MARL,
agents operate in a shared environment, learning to cooperate or
compete to achieve individual or collective goals. Each agent
simulates an “evacuation team,” which refers to a group of
individuals who need to evacuate urgently during a fire, usually
residents walking, residents riding bicycles, or families driving small
vehicles (such as cars). We assume that these evacuation teams are
small in size to allow for more flexible route adjustments and
avoidance of high-risk areas for fires. Larger-scale transportation
vehicles (such as buses) and large-scale team evacuations are not
within the scope of this study’s assumptions. The model focuses on
the rapid evacuation of small-scale teams. As shown in Figure 5, the
MARL module includes the state space definition of the agent, the
reward function design, and the policy update process.

In the MARL module, the state st of each agent is composed of
characteristics such as its position, fire risk information, and
distances to neighboring agents, with the state defined by the
following formula (Zhang et al., 2022):

st � Position xt, yt( ), Risk xt, yt( ), ∑
j∈N

Distance st, sj( )⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦
where Position(xt, yt) is the coordinate of the agent’s current
position, Risk(xt, yt) is the fire risk coefficient at the current
position, and N denotes the set of neighboring agents. This state
description allows agents to perceive changes in the surrounding fire
and distances to neighbors in the dynamic environment, supporting
path optimization.

Each agent selects an evacuation path by performing an
action at. The set of actions includes basic operations such as
moving forward, turning, and waiting, and agents choose action

FIGURE 4
Gwo model structure diagram.

FIGURE 5
Structural diagram of the GWO algorithm.
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at based on the current state st to avoid high-risk areas. The
agents’ decisions follow a reinforcement learning-based policy
update formula:

Q st, at( ) ← Q st, at( ) + α rt + γmax
a′

Q st+1, a′( ) − Q st, at( )[ ]
where Q(st, at) represents the state-action value function, α is the
learning rate, γ is the discount factor, and rt is the immediate reward
obtained by the agent at time t. This update formula allows agents to
balance exploration and exploitation, gradually learning the optimal
strategy to avoid high-risk areas.

To achieve efficient risk avoidance, the MARL module designs a
comprehensive reward function that considers factors such as path
safety, evacuation time, and distances between agents. The reward
function is defined as:

rt � w1 · −Risk xt, yt( )( ) + w2 · −Time st, at( )( ) + w3

· ∑
j∈N

Distance st, sj( )
where w1, w2, and w3 are weight coefficients controlling the
influence of risk avoidance, time minimization, and agent spacing
in the reward. This reward mechanism provides agents with
immediate feedback during the evacuation process, leading to the
selection of efficient risk-avoiding paths.

During the training process of the MARL module, the model
gradually optimizes path selection through the collaboration of
multiple agents, enabling them to achieve dynamic path
planning under changing fire conditions and uncertainties.
Information sharing and state synchronization among agents
also ensure global consistency in evacuation routes (Ünal et al.,
2022; Hu Y. et al., 2023). To further optimize the strategy, agents
update their decision policy using the following policy
iteration formula:

πt+1 a|s( ) � exp Q s, a( )/τ( )∑a′∈A exp Q s, a′( )/τ( )
where πt+1(a|s) represents the policy probability distribution, and
τ is the temperature coefficient controlling the level of exploration.
By soft-maximizing the Q-values, agents can explore a broader
range of path choices while favoring the optimal strategy with
higher Q-values.

In summary, the MARLmodule enables the GreyGNN-MARL
model to achieve intelligent evacuation route optimization in
dynamic fire environments through collaborative learning and
real-time decision-making among multiple agents, providing
reliable technical support for real-time risk avoidance in
complex disaster scenarios.

4 Experiment

4.1 Datasets

To ensure the practical application effectiveness of the
GreyGNN-MARL model in grassland fire scenarios, this study
selected high-quality public datasets that are multi-sourced and
multi-dimensional, including the Sentinel-1 SAR dataset, the
Global Fire Emissions Database (GFED), and the NASA LP
DAAC vegetation index dataset. These datasets provide
comprehensive fire scenario information, covering the
geographical structure of the fire area, the spread trend of the
fire, and the vegetation coverage, providing ample data support
for path optimization in dynamic fire environments. Table 1 shows
an overview of the datasets and their application scenarios.

The Sentinel-1 SAR dataset provides all-weather, all-hour
synthetic aperture radar imagery. SAR imagery can penetrate
clouds and smoke, accurately acquiring the location of the fire
source, fire boundaries, and surface features during the fire
(Lasaponara et al., 2023). This information is used to generate
the base graph structure of the fire area, helping the GNN
module capture geographical features and fire dynamics in the
fire scenario, providing high-precision input for environmental
modeling in path planning.

The Global Fire Emissions Database (GFED) provides data on
carbon emissions, fire intensity, and spread trends during the fire.
GFED data reflects the activity of the fire source and the type of
combustion during the fire occurrence period, which helps to label
high-risk areas and dynamically simulate the expansion of the fire
(Oliva et al., 2020). The model uses GFED data for real-time updates
of risk areas, ensuring that evacuation routes avoid high-risk areas of
fire spread, enhancing the safety of the evacuation process.

The NASA LP DAAC Vegetation Index dataset provides
vegetation indices (such as NDVI and EVI) for grassland areas,
as well as ecological characteristics such as vegetation coverage and
density (Huot et al., 2022). In fire scenarios, vegetation density and
type directly affect the speed of fire spread and the level of fire risk.
Through vegetation data, the GNN module can model the fire
scenario accurately, further enhancing the support for risk
avoidance strategies in path planning. Evacuation routes, and
enhanced evacuation efficiency and safety.

4.2 Experimental setup

The experiment was conducted in a high-performance
computing environment to support large-scale data processing
and efficient training of multi-module deep learning models. The

TABLE 1 Summary of experimental datasets.

Dataset Data content Application scenarios

Sentinel-1 SAR SAR imagery, including geographical information and fire source
location of the fire area

Capturing surface features, generating base graph structure of the fire area

GFED Fire carbon emissions, fire intensity, and trend of change Labeling fire risk areas, dynamically simulating the spread of the fire

NASA LP
DAAC

Vegetation indices (NDVI, EVI), vegetation density Assessing the impact of ecological characteristics on fire spread, assisting in
constructing fire risk maps
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hardware and software configurations and model parameter settings
are shown in Table 2 covering detailed configurations of hardware
devices, software platforms, key hyperparameters, and
model modules.

4.3 Evaluation metrics

To comprehensively evaluate the performance of the GreyGNN-
MARL model in fire evacuation route optimization, this study
designed multiple experimental metrics, including route planning
time, risk avoidance success rate, route safety, route smoothness, and
communication delay. These metrics quantitatively assess the model’s
performance from aspects of efficiency, safety, and stability, ensuring
its reliability and application value in actual fire scenarios.

Route planning time refers to the average time required for the
model to generate evacuation routes, calculated in seconds, used to
measure the model’s response efficiency.

Tavg � 1
N

∑N
i�1

Ti

where Ti represents the time for the i-th planning, andN is the total
number of plannings. The shorter the route planning time, the faster
the model’s response speed, the better it meets the real-time
evacuation needs in fire scenarios.

Risk avoidance success rate refers to the frequency at which the
model successfully avoids high-risk areas in the fire environment,
expressed as a percentage, used to evaluate the safety of route planning.

Rsafe � Nsafe

N
× 100%

whereNsafe represents the number of successful risk avoidances, and
N is the total number of tests. A higher risk avoidance success rate
means the model has a higher adaptability to changes in the fire,
effectively avoiding high-risk areas.

Route safety assesses the cumulative fire risk in the evacuation
route, calculated using the fire risk weight wrisk and the risk values ri
of each node on the route:

Spath � ∑L
i�1

wrisk · ri

where L is the total length of the route. The lower the route safety,
the more successful the route planning in avoiding high-risk areas,
enhancing the safety of evacuation.

Route smoothness is used to measure the continuity and
smoothness of the route, calculated by the angle changes between
segments in the route:

Ssmooth � ∑L−1
j�1

θj+1 − θj
∣∣∣∣ ∣∣∣∣

where θj represents the angle of the j-th segment of the route. A
smaller smoothness value indicates a more continuous and smooth
route, reducing the number of emergency turns, which helps to
improve the speed and safety of evacuation.

Communication delay refers to the delay time of the system in
receiving and processing multi-source data, used to evaluate real-
time responsiveness in IoT environments:

Dcomm � 1
M

∑M
k�1

dk

where dk is the delay of the k-th data transmission, and M is the total
number of transmissions. The lower the communication delay, the faster
the model can obtain environmental information and adjust the route,
helping to achieve efficient evacuation planning in fire environments.

These experimental metrics cover the model’s response speed,
the safety and smoothness of the route, and communication
efficiency, ensuring the GreyGNN-MARL model has
comprehensive performance in fire evacuation route optimization.

4.4 Results analysis and discussion

4.4.1 Parameter tuning results
In this experiment, Figure 6 illustrates the performance of the

GreyGNN-MARL model under different parameter settings,
including the impact of learning rate and discount factor on
model training outcomes.

TABLE 2 Experimental environment and model parameter settings.

Setting Configuration Details Setting Configuration Details

Hardware Processor 2.4 GHz, 28 cores Software Operating System Ubuntu 18.04

GPU NVIDIA Tesla V100, 32 GB
memory

Deep Learning Framework PyTorch 1.8.1

Memory 128 GB Graph Neural Network Library DGL 0.6.1

Storage 2 TB SSD Data Processing Library NumPy 1.19, Pandas 1.1

Hyperparameters Learning Rate 0.001 Configuration GNN Layers 3 graph convolutional
layers

Batch Size 64 GWO Population Size 30 grey wolves

Maximum Number of Iterations 500 Number of MARL Agents 5

Discount Factor (MARL) 0.95 GNN Node Feature Dimension 256 dimensions

Number of Attention
Heads (GNN)

8 MARL Policy Update
Frequency

Update every 5 steps
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As shown in Figure 6a, different learning rates significantly
affect the agents’ performance during Multi-Agent Reinforcement
Learning (MARL) training. With an increasing number of training
epochs, all curves exhibit a clear downward trend, indicating that the
agents are gradually learning more optimal evacuation strategies.
Specifically, the curve for a learning rate of 0.1 (blue) shows a rapid
initial decline and achieves a lower step count within fewer training
epochs, suggesting that a higher learning rate can accelerate model
convergence. However, as training progresses, the curve for a
learning rate of 0.1 displays greater volatility, indicating that a
high learning rate may lead to model instability. In contrast, the
curves for learning rates of 0.01 (green) and 0.001 (red) are more
stable in the later stages of training. Despite their slower
convergence, they ultimately achieve better convergence results.

Figure 6b shows the impact of different discount factors on the
agents’ training performance. The curve for a discount factor of 1
(blue) exhibits a rapid initial decline, reaching a lower step count
within fewer training epochs, indicating that considering long-term
rewards enables agents to quickly find optimal evacuation strategies.
However, as training progresses, the curve for a discount factor of
1 shows significant fluctuations, suggesting that considering a too
long-term reward period may lead to model instability in practical
applications. In contrast, the curves for discount factors of 0.999
(green) and 0.99 (red) show a more stable downward trend
throughout training, ultimately achieving lower and more stable
step counts. The curve for a discount factor of 0.999 balances
convergence speed and stability, demonstrating a better overall
performance. This indicates that an appropriate discount factor
can balance short-term and long-term rewards, enhancing the
model’s overall performance.

4.4.2 Ablation experiment results
In this study, we conducted ablation experiments on three

datasets—Sentinel-1 SAR Imagery, Global Fire Emissions
Database (GFED), and NASA LP DAAC Vegetation Index—to
evaluate the impact of different modules on the overall
performance of the GreyGNN-MARL model. By comparing the

performance of the full model with versions where specific modules
were removed, we can clearly see each module’s contribution to
overall performance.

As shown in Table 3, removing the GNN module significantly
increases evacuation time and reduces the avoidance success rate,
indicating the critical role of GNNs in extracting geographic
structure information and optimizing the path. Similarly,
removing the GWO module results in notable decreases in path
safety and path smoothness, demonstrating the importance of the
GWO module in optimizing path weights and parameters. When
the MARL module is removed, communication delay increases,
though other metrics are less affected, highlighting the MARL
module’s role in enhancing model collaboration and optimizing
evacuation strategies. The full model performs best across all
metrics, validating the effectiveness of the cooperative work of
all modules.

As shown in Table 4, removing the GNN module leads to a
significant increase in evacuation time and a lower avoidance success
rate, emphasizing the importance of GNNs in extracting dynamic
fire information and optimizing the path. Removing the GWO
module decreases path safety and path smoothness, highlighting
the critical role of GWO in path weight and parameter optimization.
Removing the MARL module increases communication delay,
though other metrics are minimally affected, underscoring the
importance of MARL in model collaboration and evacuation
strategy optimization. The full model performs best across all
metrics, affirming the benefits of all modules working in unison.

As shown in Table 5, removing the GNN module significantly
increases evacuation time and reduces the avoidance success rate,
highlighting the role of GNNs in constructing the fire scene network
structure and optimizing the path. Removing the GWO module
decreases path safety and path smoothness, illustrating the GWO
module’s critical role in optimizing path weights and parameters.
Removing the MARL module increases communication delay,
though other metrics are minimally affected, showing MARL’s
importance in enhancing model collaboration and optimizing
evacuation strategies. The full model performs best across all

FIGURE 6
Effect of different learning rates and discount factors on the training results of the GreyGNN-MARL model. (a) shows the change in the number of
steps (steps per episode) that the agent performs in each session as the number of training sessions increases at different learning rates (0.001,0.01, and
0.1). (b) shows the training performance of the agents under different discount factors (0.99,0.999 and 1).

Frontiers in Environmental Science frontiersin.org10

Zhang et al. 10.3389/fenvs.2025.1522933

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1522933


metrics, validating the effectiveness of the cooperative work of
all modules.

Through analysis of the ablation experiment results across the
three datasets, the vital roles of the GNN, GWO, and MARL
modules in the GreyGNN-MARL model are evident. Each
module enhances the model’s performance in different aspects,
confirming the rationality and effectiveness of the model design.
These results provide important references for further optimization
and improvement of the model.

According to the experimental results in Table 6, the model
shows similar computational complexity and running efficiency on
different datasets.

On all datasets, the number of parameters of the model is
between 15.2 M and 15.5 M, and the floating point operation
volume is roughly between 4.5 G and 4.8 G, indicating that the
computational requirements of the model on these three datasets are
relatively consistent. The inference time is between 120 ms and
125 ms, showing that the model has good real-time response
capabilities and can quickly optimize the evacuation path. The
training time is slightly different on different datasets. The
training time for the Sentinel-1 SAR image dataset is 300 s, the
GFED dataset is 290 s, and the NASA LP DAAC vegetation index
dataset is 310 s. These results show that despite the different datasets,
the model can still maintain a relatively stable computational
efficiency during training. Overall, the GreyGNN-MARL model
performs well in computational efficiency and performance, and

can efficiently perform path optimization tasks in a variety of datasets
and fire scenarios, proving its wide applicability and practicality.
These experimental results also verify that the model has strong
real-time response capabilities in practical applications, can quickly
provide optimized evacuation paths in the response phase, and can
process data of different complexities in the training phase.

4.4.3 Comparative experiment results
In the comparative experiments, we evaluated the performance

of the GreyGNN-MARL model in fire evacuation path optimization
against results from other traditional path planning algorithms and
single-agent reinforcement learning algorithms. Tables 7–9 present
the experimental results on the Sentinel-1 SAR Imagery, Global Fire
Emissions Database (GFED), and NASA LP DAAC Vegetation
Index datasets, respectively.

As shown in Table 7, the GreyGNN-MARLmodel demonstrates
the best performance across all metrics. In terms of evacuation time,
the GreyGNN-MARL model achieves an evacuation time of 20.05,
significantly lower than the best-performing traditional algorithm
(Single-agent RL), which has an evacuation time of 27.58. For
avoidance success rate, the GreyGNN-MARL model achieves
85.45%, much higher than other models, showing its superior
ability to navigate around high-risk areas. In terms of path safety,
the GreyGNN-MARL model scores 3.94, significantly better than
other models, indicating its advantage in selecting safer paths.
Additionally, the GreyGNN-MARL model outperforms other

TABLE 3 Ablation study results for the Sentinel-1 SAR Imagery dataset.

Model Evacuation time Avoidance success rate Path safety Path smoothness Communication delay

No GNNs 24.67 72.15% 7.32 14.52 18.35

No GWO 39.52 60.78% 9.25 15.34 19.46

No MARL 27.91 68.23% 6.15 13.78 20.78

Full Model 19.35 85.45% 4.15 10.25 13.45

TABLE 4 Ablation study results for the GFED dataset.

Model Evacuation time Avoidance success rate Path safety Path smoothness Communication delay

No GNNs 28.54 66.45% 9.05 16.72 30.78

No GWO 27.85 58.32% 5.28 17.18 25.45

No MARL 29.93 63.54% 6.52 15.12 18.12

Full Model 21.25 82.48% 4.23 11.35 14.56

TABLE 5 Ablation study results for the NASA LP DAAC Vegetation index dataset.

Model Evacuation time Avoidance success rate Path safety Path smoothness Communication delay

No GNNs 30.12 69.78% 7.25 15.84 14.92

No GWO 42.19 62.14% 7.78 18.12 23.12

No MARL 34.76 65.32% 7.02 16.47 22.78

Full Model 20.72 84.62% 3.95 12.54 12.35
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models in path smoothness and communication delay, further
validating its superior performance in complex fire environments.

According to the results in Table 8, the GreyGNN-MARLmodel
also outperforms other models on the GFED dataset. Specifically, the

GreyGNN-MARL model achieves an evacuation time of 18.99,
significantly lower than the best-performing traditional algorithm
(Single-agent RL), which has an evacuation time of 29.75. For
avoidance success rate, the GreyGNN-MARL model achieves

TABLE 6 Training results of the GreyGNN-MARL model on the Sentinel-1 SAR image dataset, GFED dataset, and NASA LP DAAC vegetation index dataset.

Dataset Parameters (M) Flops (G) Inference time (ms) Training time (s)

Sentinel-1 SAR Imagery 15.2 4.7 120 300

GFED Dataset 14.8 4.5 115 290

NASA LP DAAC Vegetation Index 15.5 4.8 125 310

TABLE 7 Comparison of different models on the Sentinel-1 SAR Imagery dataset.

Model Evacuation
time

Avoidance success
rate

Path
safety

Path
smoothness

Communication
delay

A* Algorithm (Zhu et al., 2024) 28.45 68.32% 5.98 16.32 13.55

Dijkstra Algorithm (Mirahadi and
McCabe, 2021)

30.76 64.58% 6.32 17.84 12.84

Bellman-Ford Algorithm (Bhat et al.,
2024)

32.14 66.74% 5.87 18.02 14.67

Floyd-Warshall Algorithm (Gómez
et al., 2023)

29.86 65.12% 6.13 17.34 13.23

Single-agent RL (Young and Aguirre,
2021)

27.58 69.45% 5.74 16.08 14.08

GreyGNN-MARL (Full Model) 20.05 85.45% 3.94 10.25 11.43

TABLE 8 Comparison of different models on the GFED dataset.

Model Evacuation
time

Avoidance success
rate

Path
safety

Path
smoothness

Communication
delay

A* Algorithm 30.92 63.41% 6.22 17.32 14.32

Dijkstra Algorithm 32.87 62.58% 6.48 18.68 13.68

Bellman-Ford Algorithm 34.15 61.94% 6.05 18.47 15.47

Floyd-Warshall Algorithm 31.68 64.82% 6.27 17.06 14.06

Single-agent RL 29.75 67.17% 5.89 16.22 15.22

GreyGNN-MARL (Full
Model)

18.99 82.48% 4.23 11.35 14.56

TABLE 9 Comparison of different models on the NASA LP DAAC Vegetation Index dataset.

Model Evacuation
time

Avoidance success
rate

Path
safety

Path
smoothness

Communication
delay

A* Algorithm 31.45 66.34% 6.34 17.67 13.67

Dijkstra Algorithm 33.87 63.24% 6.58 18.98 12.98

Bellman-Ford Algorithm 35.14 62.48% 6.21 19.83 14.83

Floyd-Warshall Algorithm 32.68 65.17% 6.41 18.54 13.54

Single-agent RL 30.75 67.06% 6.02 16.29 14.29

GreyGNN-MARL (Full
Model)

18.18 84.62% 3.24 12.54 12.35
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82.48%, showing its strong capability to navigate efficiently in fire
scenarios. In terms of path safety, the GreyGNN-MARL model
scores 4.23, significantly safer than other models. Additionally, the
GreyGNN-MARL model shows superior performance in path
smoothness and communication delay, demonstrating its
effectiveness in fire evacuation path optimization.

As shown in Table 9, the GreyGNN-MARL model significantly
outperforms other models on the NASA LP DAAC Vegetation
Index dataset. In terms of evacuation time, the GreyGNN-MARL
model achieves an evacuation time of 18.18, significantly lower than
the best-performing traditional algorithm (Single-agent RL), which
has an evacuation time of 30.75. For avoidance success rate, the
GreyGNN-MARL model achieves 84.62%, indicating its significant
advantage in navigating high-risk areas. The GreyGNN-MARL
model also demonstrates superior performance in path safety,
path smoothness, and communication delay, further validating its
advantages in complex fire environments.

The GreyGNN-MARL model consistently outperforms
traditional path planning algorithms and single-agent
reinforcement learning algorithms across various datasets,
demonstrating its significant advantages in fire evacuation path
optimization. These results validate the effectiveness and
reliability of the GreyGNN-MARL model in practical applications.

4.4.4 Evacuation path results
Figure 7 illustrates the fire localization and dynamic monitoring

process in fire evacuation route planning. Figure 7a shows the initial
satellite image of the fire area, with the yellow contour representing
the boundary of the study area. Figure 7b further focuses on the area
where the fire is most concentrated, marking the high-risk fire area
with a black frame, showing the concentrated distribution of the fire
and helping to identify the main direction of fire spread. Figure 7c
displays the evacuation distribution of agents during the fire
simulation process, with orange and pink markers representing

different evacuation agents, showing their concentrated avoidance
and evacuation distribution in high-risk fire areas. Through this
visualization result, it can be seen that the model effectively identifies
and locates high-risk fire areas using multi-source data, and achieves
avoidance and evacuation optimization in high-risk areas through
dynamic path adjustments of agents. The fire spread and evacuation
point distribution in the figure indicate that the model can adjust
evacuation strategies in real-time according to fire changes in the fire
environment, ensuring the safety and efficiency of evacuation routes.

Figure 8 shows the fire spread dynamics and fire boundary
identification process in the fire area. In Figure 8a, a satellite image of
the early stage of the fire is shown, and the purple area indicates the
main burning range of the fire. Through Figure 8b, combined with
geographic information system (GIS) data, the high-risk area of the
fire area is marked in red, and the yellow boundary line marks the
outer edge of the fire, providing the geographical boundary of the
fire spread. This image highlights the high-risk area of the fire and its
outer boundary, which is convenient for further analysis of the trend
of fire spread. Figure 8c shows the boundary detection results of the
fire area, where the yellow boundary line clearly outlines the
expansion range of the fire, can track the dynamic changes of the
fire in real time, and provides an important basis for subsequent
evacuation route planning. Through these visualization results, we
can clearly see the high-precision performance of the model in fire
monitoring and boundary identification.

Figure 9 shows the distribution of buildings in the fire scenario
and the evacuation route planning recommended by the model. The
large image on the left shows the dense distribution of buildings in
the fire-affected area, with the black area representing high-risk
buildings for fire. Through the redmagnifying glass display, the right
side of the figure further enlarges the layout details of the buildings
in this area to more clearly show the structure of the high-risk fire
area. The bottom figure shows the details of the evacuation routes
planned by the model in the high-risk area, with paths avoiding

FIGURE 7
Fire localization and agent distribution in firemonitoring and evacuation route planning. (a) Shows the initial fire satellite image of the study area, with
the yellow contour as the boundary of the study area; (b) focuses on the fire-concentrated area, marking the high-risk fire area with a black frame; (c)
shows the evacuation distribution of agents during the fire simulation process, with orange and pink markers indicating different agents.
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dense buildings and fire hotspot areas to ensure safe evacuation.
From Figure 9, it can be seen that the model in this paper can carry
out efficient path planning under complex building layouts. The
model’s path recommendations in high-risk fire areas take into

account building density, fire risk levels, and path smoothness,
generating evacuation routes that avoid fire hotspots and dense
areas, providing relatively safe passages for evacuating personnel.
This intelligent path planning has important practical value in fire

FIGURE 8
Visualization of fire spread dynamics and fire boundary identification in the fire area (Color Description: purple indicates themain burning area of the
fire, red indicates the high-risk area, and yellow indicates the outer edge of the fire. Part (a) shows the initial fire spread, (b) shows the high-risk area, and
(c) shows the outer boundary of the fire).

FIGURE 9
Building distribution in fire scenarios and details of evacuation route planning.

Frontiers in Environmental Science frontiersin.org14

Zhang et al. 10.3389/fenvs.2025.1522933

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1522933


environments, helping to reduce evacuation time and increase the
success rate of risk avoidance. The result verifies the model’s ability
to plan effective evacuation routes in complex urban environments.

5 Conclusion

This paper proposes a grassland fire evacuation route
optimization strategy based on the GreyGNN-MARL model to
address the dynamic and complex evacuation needs in grassland
fires. The model integrates the real-time monitoring capabilities of
Synthetic Aperture Radar (SAR) imagery, the structured extraction
of fire scene geographic information by Graph Neural Networks
(GNNs), the dynamic adjustment of path weights by the Grey Wolf
Optimization (GWO) algorithm, and the intelligent collaboration of
Multi-Agent Reinforcement Learning (MARL) in high-risk
environments, successfully achieving the intelligent planning and
dynamic optimization of grassland fire evacuation routes.
Experimental results show that the GreyGNN-MARL model
significantly outperforms traditional evacuation route planning
methods in terms of evacuation time, risk avoidance success rate,
route safety, route smoothness, and communication delay, especially
in dynamic fire scenarios, providing effective technical support for
emergency management of grassland fires.

Although this study has achieved good experimental results,
there are still some limitations. First, the applicability and
performance of the model in larger-scale and more complex fire
scenarios have not been fully verified. The current experiments are
mainly based on simulated environments and limited data sets.
Practical applications may face more complex terrain, climate
change and sudden fire situations, which may affect the stability
and response speed of the model. Secondly, the training and
optimization process of the model is relatively complex, and the
demand for computing resources is high, which may bring
challenges in practical applications with limited resources,
especially in the real-time evacuation decision-making process.
How to ensure rapid response is still a problem that needs to be
further solved. In addition, when dealing with various types of fires,
cross-regional evacuations, etc., the model may require additional
adaptation and optimization to ensure its wide application in
various fire emergency scenarios.

In future research, we will further optimize the GreyGNN-
MARL model to improve its applicability and computational
efficiency in complex fire scenarios, and ensure that evacuation
route planning can respond more quickly to dynamic changes at the
fire scene. In order to enhance the practicality of the model, we plan
to apply it to real fire data for verification, especially through
cooperation with emergency management departments, using
real-time data from actual grassland fires and other types of fires
to verify the effectiveness of the model. In addition, we will introduce
more actual fire data for verification to further explore the
application potential of the model in emergency safety

management, especially in fire spread prediction and risk
avoidance decision-making. At the same time, we also plan to
combine more advanced optimization algorithms and intelligent
technologies to strive to further improve the performance and
security of the model, provide more solid technical support for
grassland fire emergency response, and contribute to future
grassland ecological protection and security.
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