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Drained and diked salt marshes (DDSM) habitats, a typical form of coastal wetland,
are undergoing ecological recovery, offering valuable insights into strategies for
restoring and protecting biodiversity in reclaimed coastal wetlands. Richness,
abundance, and composition of the collembolan community is expected to vary
in response to changes in plant and soil in DDSM habitats and agricultural
farmlands. However, knowledge on these variations remains limited.
Therefore, we aimed to reveal the species richness, abundance, and
composition of the collembolan community and the effect exerted by plant
and soil variables in DDSM and agricultural farmlands. Soil samples were collected
in coastal DDSM (northern enclosure and southern enclosure) and wheat
farmland areas in Ningbo City, southeastern China, in April 2023. Species
richness, rather than abundance, of the collembolan community, was
significantly lower in DDSM habitats than in wheat farmlands. The collembolan
community composition differed significantly between these two habitats.
Ceratophysella skarzynskii Weiner (1996), Desoria sp12, Isotoma pinnata
Fabricius (1781), and Sinella sp. were exclusively in DDSM habitats. Instead, the
genera Arrhopalites, Heteraphorura, and Parisotoma preferred wheat farmlands.
Plant coverage and height were important variables affecting collembolan
community composition in DDSM habitats. DDSM habitats can sustain specific
collembolan species, and their soil biodiversity warrants attention, particularly
following rigorous reclamation measures. This study provides important
information for restoring and protecting biodiversity in reclaimed coastal
wetlands.
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1 Introduction

Several countries have reclaimed extensive coastal tidal flats for
agricultural land to meet the increasing demand for food and
resource supply (Connor et al., 2001; Eyers and Chmura, 2007;
Hong et al., 2010; Janousek et al., 2021; Sato and Kanazaw, 2004).
However, such reclamation activities have resulted in severe
ecological and environmental issues, including the loss of bird
habitats, extinction of local species, reduction in marine
biological resources, and extensive pollution in coastal areas
(Janousek et al., 2021; Sato and Kanazaw, 2004; Yan et al., 2017).
Recently, many countries have strictly controlled land reclamation
projects and have strengthened ecological restoration (Cornu and
Sadro, 2002; Janousek et al., 2021). Following a clamp down on
reclamation efforts, a diverse spectrum of transitional ecosystems,
ranging from tidal flats to agricultural lands, can be found in China’s
coastal regions. Drained and diked salt marshes (DDSM) are a
typical form of coastal wetland. Since 2018, China has issued several
documents and implemented multiple measures to strengthen the
ecological management of coastal reclamation. Habitat restoration
and biodiversity protection of coastal wetlands are receiving
increasing attention (Liu et al., 2022).

The restoration of coastal wetlands has focused increasingly on
removing dikes and other tidal barriers (Eyers and Chmura, 2007).
However, the expertise and methods available for restoring and
protecting biodiversity and its function in DDSM habitats reclaimed
from tidal flats along the eastern coast of China are limited (Liu et al.,
2022). Without further human management, most DDSM habitats
are currently undergoing natural succession. This process gradually
transforms them into ecosystems capable of sustaining higher
biodiversity and providing essential ecosystem functions. In this
transitional state, DDSM are undergoing ecological recovery,
offering valuable insights into strategies for restoring and
protecting biodiversity in reclaimed coastal wetlands. Species
richness and community composition in DDSM habitats vary
substantially compared to the original tidal flats and targeted
agricultural farmlands (Berrenstein et al., 2013; Monfils et al.,
2015; Park et al., 2017). Although these marshes are important
for protecting and maintaining coastal terrestrial biodiversity
(Hazelden and Boorman, 2001; Martínez et al., 2009), a notable
mismatch exists between knowledge of community composition and
developing restoration strategies for DDSM habitats. Therefore,
understanding biodiversity and its underlying drivers in DDSM
habitats is imperative to restore and protect biodiversity in coastal
reclaimed habitats.

The transformation from tidal flats to DDSM habitats depends
the level of ground water, decreases water salinity, alters plant
richness, increases vegetation coverage, introduces terrestrial
mammals, and accelerates microbial decomposition along with
subsidence (Drexler et al., 2019; Janousek et al., 2021; Spencer
et al., 2017). Consequently, these changes impact soil aeration,
lower soil salinity, alter soil structure (Cornu and Sadro, 2002;
Janousek et al., 2021), cause the sequestration of more carbon
and nitrogen (Adams et al., 2012), promote thriving soil
microbial communities, and affect microbial functions and
carbon storage (Fitch et al., 2022). Therefore, the soil fauna
adapts to thrive and function in these coastal areas. However,
while community composition of plants (Berrenstein et al., 2013),

birds (Monfils et al., 2015), soil microbes (Fitch et al., 2022), and
benthic animals (Park et al., 2017; Ryu et al., 1997) in these habitats
have been studied, the diversity of soil fauna in DDSM habitats
remains unclear.

Soil fauna is an important component of the coastal habitats of
dunes (Goralczyk, 1998), tundra (Babenko, 2017), forests
(Fuangarworn and Lekprayoon, 2010), wetlands (Ge et al.,
2014b), and farmlands (Tao et al., 2013; Wang et al., 2015). It
plays key roles in ecological processes, such as leaf litter breakdown,
soil microstructure formation, and carbon and nitrogen cycling
(Cárcamo et al., 2001; Islam et al., 2024). Recently, the soil fauna
has gained importance in evaluating biodiversity and soil quality in
reclaimed coastal habitats because of its active role and sensitive
response to habitat changes (Ge et al., 2014a; Ge et al., 2017). Among
various soil fauna, springtail (Hexapoda: Collembola) are among the
most abundant and widely distributed arthropods inhabiting coastal
wetlands and agricultural landscapes (Li et al., 2018; Lima et al.,
2023).They thrive in almost all terrestrial ecosystems and are
frequently used as model organisms in ecological research
(Potapov et al., 2020). Collembola play a crucial ecological role
by feeding on microbes, grazing on decomposing plant material, and
interacting with plant roots, thereby influencing the growth and
distribution of prokaryotes, fungi, and plants (Potapov et al., 2023).
Through these interactions, they contribute significantly to nutrient
cycling by processing and stabilizing organic matter. Moreover,
springtails are highly sensitive to environmental changes, making
them valuable bioindicators (Li et al., 2023). Diversity, functional
characteristics, coverage, and presence of plants can change the food
resources and habitat of collembolan communities (Krab et al., 2019;
Zhang et al., 2021). Collembolan density and diversity significantly
increase with plant species variety, plant functional group richness,
and coverage (Krab et al., 2019; Li et al., 2018). Moreover, variations
in soil organic matter, water content, and pH are possible factors
affecting species richness and composition of collembolan
communities in wetlands and farmlands (Dou et al., 2019;
Sterzynska and Ehrnsberger, 2000). There is a widespread
opinion that wetlands support a limited number of soil fauna,
including Collembola, owing to waterlogging, anaerobic
conditions, low temperatures, and a relative lack of
microorganisms (Sławska, 2000). Additionally, construction of
embankments, dikes, and activities linked to pond aquaculture
and livestock in DDSM habitats have resulted in greater
heterogeneity in plant community structure and soil environment
compared with its original tidal flat. Generally, they manifest as
higher abundance of grassland, freshwater, salt-tolerant, or exotic
species, lower soil moisture, and soil salinity (Santoro et al., 2023).
Instead, plant composition and diversity vary less, while the soil
parameters vary more in targeted agricultural farmlands due to
monoculture and frequent human management. Therefore,
richness, abundance, and composition of the collembolan
community is expected to vary in response to changes in plant
and soil in DDSM habitats and agricultural farmlands. However,
information on these variations is limited.

This study aimed to determine species richness, abundance, and
composition of soil collembolan communities as well as the
underlying environmental factors in DDSM and farmland
habitats in reclaimed coastal areas. We investigated collembolan
communities and associated plant and soil variables within DDSM
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habitats and adjacent wheat farmlands in Southeastern China. Based
on the outcomes of earlier studies on the variability of soil
collembolan communities in reclaimed wetlands and farmlands
(Santoro et al., 2023; Zhang et al., 2021), we posited the
following hypotheses: 1) species richness and abundance of
collembolan communities are lower in DDSM habitats than in
wheat farmlands; 2) species composition of collembolan
communities differs between DDSM habitats and wheat
farmlands; and 3) plant variables play a greater role in shaping
the composition of collembolan communities in DDSM habitats,
whereas soil variables are more influential in wheat farmlands. The
results of this study are expected to expand our knowledge of soil
biodiversity in DDSM habitats and agricultural farmlands, and
provide a broader perspective on the recovery trajectories of
reclaimed marshes.

2 Materials and methods

2.1 Study area

The study area was situated in Ningbo City, Zhejiang Province,
China, spanning 120°55′–122°16′E and 28°51′–30°33′N. Ningbo is in
the central part of China’s coastline; its topography is characterized
by higher elevations in the southwestern region and lower elevations
in the northeastern sector. Urban zones have altitudes ranging from
4 to 5.8 m, whereas suburban ones from 3.6 to 4 m. The region has a
subtropical monsoon climate characterized by mild and humid
conditions during the four seasons. The city’s mean annual
temperature is 17.5°C, with the highest recorded temperature in
July reaching 29.1°C and the lowest in January decreasing to 5.8°C.
The average annual precipitation is 1,530 mm, of which 60% falls
betweenMay and September (Gao et al., 2023). The total land area of
Ningbo is 9,816 km2. By the end of 2023, the city’s permanent
population was 9.697 million, of which 79.9% was urban (http://www.
ningbo.gov.cn/col/col1229099787/index.html, 03 September 2024).

The Zhejiang Province had reclaimed a total of 108,760 ha of
coastal land by 2010, with Ningbo City’s reclamation area and
wetlands being the most extensive reclaimed (37.8%) and wetland
(47.97%) areas in the Province (Yang et al., 2018). The study was
performed in the Dasong Enclosure and adjacent farmlands in
Zhanqi Town, Yinzhou District of Ningbo City
(121.80°–121.89°N, 29.68°–29.7°E). Formerly, this area was an
open tidal flat. It was enclosed by seawalls (dikes) in 2012 and
featured a typical DDSM habitat. Subsequently, it became an
enclosed area named the Dasong Enclosure. The latter was used
for agriculture, allowing a few farmers to breed fish, shrimp,
shellfish, ducks, and sheep. However, fish breeding and poultry
rearing were prohibited in the Dasong Enclosure in 2019, allowing
plants that prefer moist habitats, such as Phragmites australis
Trinius, Spartina alterniflora Loisel, and Arundo donax Linnaeus,
to grow and dominate the Dasong Enclosure (unpublished data
from Lihu Xiong). Based on the results of a field investigation in
September 2022, in contrast to the outside tidal flats, the Dasong
Enclosure presented a reduction in soil moisture, a decline in
salinity, and a notable increase in hydrophytic vegetation
(unpublished data from Lihu Xiong). In contrast to adjacent crop
fields with rice and wheat rotation models, the Dasong Enclosure

exhibited a higher plant richness, composition, and coverage, as well
as greater bird and mammal diversity (unpublished data from Lihu
Xiong). However, the soil animal community remains largely
unexplored in the DDSM habitats within the Dasong Enclosure
and its adjacent farmlands.

2.2 Experimental design

DDSM and wheat farmland sites selected for the present study
(Supplementary Table S1) were established to investigate the
biodiversity of the soil collembolan community within the
northern region of the Dasong Enclosure (NE, 121.80°–121.89°N,
29.69°–29.79°E) and the southern region of the Dasong Enclosure
(SE, 121.84°–121.86°N, 29.68°–29.71°E). The NE and SE habitats
were originally separated by a river. After the establishment of the
Dasong Enclosure, the river channel was modified. As a result, the
NE and SE habitats are now separated by a 10-m-wide partially
man-made river, and connected only by a 5-m-wide and 15-m-long
stone bridge (Supplementary Figure S1).

Wheat farmland (WF) sites were situated in the agricultural
region of Zhanqi Town, which have been reclaimed for agricultural
land use for more than 40 years. The WF sites were distant
approximately 3.2 km from the Dasong Enclosure area. Ten
plots, each measuring 10 × 10 m, were established with a
minimum separation of 50 m from one another in the NE, SE,
and WF habitats (Supplementary Table S1; Supplementary Figure
S1). Soil samples of Collembola were collected from these 30 plots.

2.3 Collembola collection and species
identification

Within each plot, three soil samples were collected at a depth of
0–10 cm using an auger with a 7-cm inner diameter. Three samples
were randomly collected at 3-m intervals. Subsequently, soil samples
from the 0–10 cmwere collected tomeasure soil moisture within a 2-
m diameter circle around the center of each plot. Soil moisture was
quantified using a gravimetric method. The height (cm) of 10 plants
was randomly measured within a 2-m circle around each soil sample
in each plot. Plant coverage, ranging from 0 to 1, was measured for
each plot. Field collection was conducted on 16 April 2023. Ninety
soil samples were collected: 3 soil samples/plot × 10 plots/
habitat × 3 habitats.

Collembola were extracted from each soil sample by 10 days
using dry Tullgren funnels, preserved in 95% ethanol, and stored
at −20°C for further identification. Collembola were identified to the
species level according to relevant publications (Christiansen and
Bellinger, 1998; Potapov, 2021; Xie et al., 2019; Yin et al., 1998) using
a set of stereomicroscopes (Olympus SZX16, Tokyo, Japan;
equipment sourced from China; and Nikon Eclipse 80i;
Shanghai, China).

2.4 Statistical analyses

All data were analyzed using R 4.4.1 (Team, 2024). The full list of
species and their corresponding abundances in the NE, SE, and WF
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habitats are presented in Supplementary Table S2. Species richness
(number of species) and abundance (number of individual species)
were used to describe the quantitative characteristics of each
collembolan community. Consistent with the quantitative
classification criteria outlined in the literature (Wei et al., 2022),
a dominant species was defined as presenting an abundance of 10%
or more within the community. Common species represented 1%–
10% of overall abundance. In contrast, species classified as rare
amounted to less than 1% of the community.

To evaluate the diversity of the collembolan community in each
habitat, Shannon and Simpson indices were calculated by the
“diversity” function from the vegan package (Team, 2024). The
Shannon index (Shannon, 1948) measures both richness and
evenness. Its usual values vary around 1.5–3.5, with values
greater than 3.5 indicating that habitat is highly important for
biodiversity (Magurran, 2004). The Simpson index (Simpson,
1949) measures evenness, and varies from 0 to 1, with values
closer to 1 indicating better evenness among species.

An extrapolated species diversity analysis method was employed
to determine whether the field survey of each collembolan
community was sufficient (Chao et al., 2014). This method
reasonably extrapolates the observed species richness, that is, the
number of species, based on existing trends, thereby obtaining
corresponding theoretical values. The values were calculated
using the “iNEXT” function from the iNEXT package (Hsieh
et al., 2024). This study used observed abundances to calculate
species richness for rarefaction and extrapolated samples.
Rarefaction/extrapolated curves were plottted (Colwell et al., 2012).

To verify Hypothesis 1, a non-parametric statistical test, the
Kruskal–Wallis test, was employed to assess variations in the
richness, abundance, Shannon, and Simpson indices of
collembolan communities, as well as the abundance of individual
species across NE, SE, and WF habitats. This approach was
necessitated by the noncompliance of these variables with the
assumptions of normality and homogeneity of variance. Post-hoc
multiple comparisons utilizing pairwise Wilcoxon rank-sum tests
were conducted to delineate specific habitats exhibiting significant
differences. The Holm method was used to adjust the p-values to
control for the error rates of multiple comparisons. The
“shapiro.test” function from the stats package was used to assess
the normality of the variables, while the “leveneTest” function from
the car package was employed to evaluate the homogeneity of
variance (Fox and Weisberg, 2019). The “kruskal.test” function
from the stat package was employed to conduct the
Kruskal–Wallis test, while the “pairwise.wilcox.test” function
from the stat package was used to conduct pairwise Wilcoxon
rank-sum tests (Team, 2024).

To test Hypothesis 2, the composition of soil collembolan
communities in NE, SE, and WF habitats was analyzed using
non-metric multi-dimensional scaling (NMDS) based on the
Bray–Curtis dissimilarity index. NMDS is a sorting method that
simplifies multi-dimensional space objects into lower-dimensional
spaces while retaining the original relationships between objects. In
cases with many samples and species, the NMDS model can more
accurately reflect the numerical sorting information of the distance
matrix and is therefore considered the most robust non-restrictive
sorting method (Minchin, 1987). This visualization was achieved
through the “metaMDS” function from the vegan package (Oksanen

et al., 2024). Only the species present in a minimum of three
sampling plots were considered (Xie et al., 2021). This exclusion
was based on the observation that species found in only one or two
plots exhibited consistently low abundance.

To test Hypothesis 3, environmental factors, including soil
moisture, plant height, and plant coverage, were used
(Supplementary Table S1). Spearman’s correlation was used to
evaluate the relationships between species richness, abundance of
collembolan communities, and environmental factors. Spearman
correlation was conducted using the “cor” function from the
corrplot package (Wei and Simko, 2021). General linear
regression was used to evaluate the importance of
environmental factors affecting species richness and
abundance of collembolan communities in each habitat using
the “lm” function from the stats package (Team, 2024). Distance-
based redundancy analysis (DB-RDA) (Legendre and Legendre,
2012) was used to identify environmental factors related to
collembolan community composition in each habitat.
Moreover, hierarchical partitioning (HP) (Lai et al., 2022) was
introduced to DB-RDA to describe the relative contributions of
individual environmental factors by the “rdacca.hp” function
from the rdacca.hp package (Lai et al., 2022). To eliminate the
influence of extreme values and reduce the weight of high-
abundance species, community data in each habitat were
standardized using Hellinger transformation by the
“decostand” function from the vegan package (Oksanen et al.,
2024). The variation explained by environmental variables was
assessed using adjusted R2 values. The permutation test of
hierarchical partitioning for canonical analysis with
999 permutations was performed to evaluate significance using
the “permu.hp” function in the rdacca.hp package (Lai
et al., 2022).

3 Results

3.1 Species richness and abundance

Overall, 43 collembolan species were identified among
2,405 individuals. Species richness was 16, 21, and 26 in NE, SE,
and WF habitats, respectively (Supplementary Table S2). Species
richness was significantly higher in the WF habitat than in the NE
habitat (Figure 1A). The abundance of collembolan communities in
NE, SE, and WF habitats was 471, 1,126, and 808, respectively. No
significant differences in abundance of collembolan communities
existed among the three habitats (Figure 1B).

Based on the current field survey, species rarefaction curves
in all habitats tended to level off gradually. When the number of
Collembola collected in NE, SE, and WF habitats reached 942,
2252, and 1,616 individuals, respectively, the extrapolation
curves suggested that the corresponding richness was expected
to be 18.06, 23.52, and 27.47. These values would have
represented an increase of 12.88%, 10.71%, and 5.65%,
respectively, in species richness (Figure 2).

The Shannon indices of the collembolan community in NE, SE,
and WF habitats were 1.147, 1.755, and 2.141, respectively, with the
latter two being significantly higher (p < 0.05) than the first one
(Figure 3A). The Simpson indices of the collembolan community in
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NE, SE, and WF habitats were 0.516, 0.724, and 0.808, respectively,
with the latter two being again significantly higher (p < 0.05) than
the first one (Figure 3B).

3.2 Species composition

Bionychiurus changbaiensis Sun and Wu (2012) and F. ozaena
sp1 Yosii (1977) were prevalent in the WF habitat but rare in the NE
and SE habitats (Figure 4; Supplementary Table S2). The abundance of
B. changbaiensis was notably higher in the WF habitat than in NE (p <
0.001) and SE (p < 0.001) habitats (Figure 5A). The abundance of F.
ozaena sp1 was significantly higher in the WF habitat than in the NE
(p < 0.05) habitat (Figure 5D). Sinella curviseta Brook (1882) and

Ceratophysella sp2 were dominant in the SE habitat but rare in NE and
WF habitats (Figure 4; Supplementary Table S2). S. curviseta was
significantly more abundance in the SE habitat than in NE (p <
0.001) and WF (p < 0.001) habitats (Figure 5E). Instead, no
significant differences in the abundances of Ceratophysella sp2 were
observed among the three habitats (Figure 5B). Sinella sp was uniquely
prevalent in the NE habitat, where its abundance was significantly
higher than that in both SE (p < 0.05) and WF (p < 0.05) habitats
(Figure 5F). Instead, Desoria choi Lee (1977) was dominant across all
habitats, and its abundance in theWFhabitat differed significantly from
that in NE (p < 0.001) and SE (p < 0.001) habitats (Figure 5C).

The abundances of Arrhopalites sp1 (Supplementary Figure S2A),
Ceratophysella sp1 (Supplementary Figure S2E), Parisotoma ekmani
Fjellberg (1977) (Supplementary Figure S2G), and Sinella sp5
(Supplementary Figure S2H) were notably higher in the WF habitat
than in NE and SE habitats (p < 0.05, p < 0.01, p < 0.001, respectively).
The abundance of Ceratophysella skarzynskii Weiner (1996)
(Supplementary Figure S2B, p < 0.05) and Isotoma pinnata
Fabricius (1781) (Supplementary Figure S2F, p < 0.001) in the SE
habitat significantly exceeded that in NE andWF habitats, respectively.
The abundance of Ceratophysella sp1 in the SE (p < 0.05) andWF (p <
0.01) habitats was notably higher than that in the NE habitat
(Supplementary Figure S2C). Additionally, the abundance of Desoria
sp12 was significantly higher in the NE habitat than in SE (p < 0.001)
and WF (p < 0.001) habitats (Supplementary Figure S2D). No
significant differences in abundance were observed among the three
habitats for the other species.

According to NMDS results, the distribution of collembolan
species in NE and SE habitats was relatively dispersed; whereas in the
WF habitat, it was more concentrated. Collembolan communities in
the three habitats partially overlapped near the middle, indicating a
small overall similarity in species composition. The collembolan
communities in NE and SE habitats showed a relatively high degree
of overlap, suggesting that species composition in these habitats was
more similar than that in the WF habitat. The second axis separated
the collembolan community in theWF habitat from that in the other
two habitats (Figure 6).

FIGURE 1
Boxplots summarizing richness (A) and abundance (B) of collembolan communities in NE (northern enclosure), SE (southern enclosure), and WF
(wheat farmland) habitats.

FIGURE 2
Species diversity extrapolated results showing species richness of
collembolan communities in northern enclosure (NE), southern
enclosure (SE), and wheat farmland (WF) habitats. “Rarefaction” refers
to the rarefaction curves; whereas “Extrapolation” refers to the
extrapolation curves. Shaded areas represent 95%
confidence intervals.
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3.3 Role of environmental factors

Species richness correlated significantly with soil moisture (p <
0.05) and plant coverage (p < 0.01). Abundance in the collembolan
community correlated significantly with soil moisture (p < 0.01) in
the NE habitat according to Spearman’s correlation results
(Figure 7A). Instead, species richness and abundance were not
significantly correlated with environmental factors in SE and WF
habitats (Figures 7B,C).

Based on the outcomes of general linear regression analysis, only
species richness showed a significant increase with enhanced plant

coverage in the NE habitat (R2 = 0.157, p < 0.05) (Figure 8A).
Conversely, no other significant associations were identified between
species richness, abundance, and the environmental factors
examined in each habitat (Figures 8B–D).

The three environmental factors collectively explained 11.6% of
total variance in collembolan community composition in theNEhabitat
(adjusted R2 = 0.116). Plant coverage contributed significantly to
collembolan community composition (adjusted R2 = 0.794, p <
0.01). Plant coverage and soil moisture exerted a high synergistic
effect on collembolan community composition (adjusted R2 = 0.233)
owing to larger collinearity between the two factors. However, these
three environmental factors could not explain the relatively large
residual (88.4%) (Figure 9A).

Environmental factors collectively explained 8.7% of total variance
in collembolan community composition in the SE habitat (adjustedR2 =
0.087). Plant height contributed significantly to collembolan
community composition (adjusted R2 = 0.056, p < 0.05). Plant
height, soil moisture, and plant coverage showed a high synergistic
effect on collembolan community composition (adjusted R2 = 0.015).
Nevertheless, a substantial proportion of the residue (91.3%) was
unaccounted for by plant and soil variables (Figure 9B).

Environmental factors collectively explained 2.9% of total
variance in collembolan community composition in the WF
habitat (adjusted R2 = 0.029), although none of them contributed
significantly. Overall, 97.1% of variance could not be explained by
these environmental factors (Figure 9C).

4 Discussion

4.1 Species richness and abundance in
drained and diked salt marsh and
wheat farmland

The first part of Hypothesis 1 was confirmed: the collembolan
community’s species richness was lower in the DDSM habitat than
in wheat farmland. In the NE habitat, species richness was

FIGURE 3
Shannon (A) and Simpson (B) indices of collembolan communities in the northern enclosure (NE), southern enclosure (SE), and wheat farmland
(WF) habitats.

FIGURE 4
Species richness stack map of collembolan communities in
northern enclosure (NE), southern enclosure (SE), and wheat farmland
(WF) habitats. Only species common or dominant in at least one
habitat are shown. S1, Arrhopalites sp1; S5, Bionychiurus
changbaiensis; S8, Bourletiella sp3; S9, Ceratophysella skarzynskii;
S10, Ceratophysella sp1; S11, Ceratophysella sp2; S12, Coreanura sp1;
S13, Desoria choi; S14, Desoria sp12; S16, Desoria sp7; S17, Desoria
sp8; S20, Entomobrya sibirica Stach (1963); S23, Folsomia octoculata
Handschin (1925); S24, Folsomia ozaena sp1; S25, Folsomides sp1;
S27,Heteraphorura seolagensis Lee (1974); S28, Isotoma pinnata; S29,
Isotoma sp1; S30, Parisotoma ekmani; S34, Rambutsinella sp1; S35,
Sinella curviseta; S36, Sinella sp; S39, Sinella sp5.
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significantly lower than in wheat farmland. Contrary to Hypothesis
1, the average abundance of collembolan communities in the DDSM
habitat was almost equivalent to that in wheat farmland. Similarly,
Yahya et al. (2020) found that collembolan abundance was lower in
wetlands than in wheat-rice farmland, but the difference was not
significant.

Overall, species richness and abundance exhibited different
responses in the two habitats. The results of this study partially
align with the findings from a study on reclaimed coastal areas along
the west coast of the Yellow Sea in China, which detected higher
taxonomic richness and abundance of soil macrofauna in wheat
farmlands and lower values in unutilized wetlands (Ge et al., 2014b).
The expected outcome of species richness could be due to frequent
waterlogging, anaerobic conditions, and a relative lack of
microorganisms in the DDSM habitat of the study area (Sławska,
2000). For example, the present study area was found to harbor
significantly fewer soil microorganisms in the halophyte plants
Suaeda salsa Linnaeus, S. alterniflora Loisel, and Phragmites
communis Trinius growing in coastal wetlands than in adjacent
rice fields (Li and Shen, 2011). Additionally, specific plot conditions
in DDSM habitats with low plant richness and coverage could
contribute to lower species richness. Plots NE9, NE10, SE4, and
SE8 showed lower plant coverage, especially the NE9 and
NE10 plots, which were located in the drainage engineering area
and frequently subject to disturbances from workers, vehicles, and

FIGURE 5
Abundance of six main species in northern enclosure (NE), southern enclosure (SE), and wheat farmland (WF) habitats. Abundance of each dominant
species in at least one of the three habitats: (A) S5, Bionychiurus changbaiensis; (B) S11, Ceratophysella sp2; (C) S13, Desoria choi; (D) S24, Folsomia
ozaena sp1; (E) S35, Sinella curviseta; (F) S36, Sinella sp.

FIGURE 6

Non-metric multidimensional scaling (NMDS) ordination
based on the Bray–Curtis dissimilarity index of collembolan
community composition in northern enclosure (NE), southern
enclosure (SE), and wheat farmland (WF) habitats. NMDS was
conducted to assess the dissimilarity of species composition
between each habitat (stress = 0.097). Each point in the figure
represents a plot, and closure proximity indicates greater similarity
in species composition.
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construction activities (Supplementary Figure S3). As vegetation
cover and land use affect the taxonomic richness of soil fauna in
coastal wetlands and farmland (Ge et al., 2014b), we speculated that
poor conditions with low vegetation cover or bare land in certain
areas of DDSM habitats lowered species richness of the collembolan
community. Furthermore, species richness of the collembolan
community was significantly lower in the NE habitat than in the
SE habitat. This coincided with lower elevation of the NE habitat
(0.04 ± 0.9 m) compared with the SE habitat (1.08 ± 1.71 m)
(unpublished data from Lihu Xiong), suggesting that the soil
drainage process is likely slower in the NE habitat. Consequently,
variations in elevation may have led to more extensive and frequent
waterlogging in the NE habitat than in the SE habitat (Sławska,
2000). Elevation and drainage processes within DDSM habitats can
influence soil salinity, waterlogging conditions, and microorganisms
(Li and Shen, 2011). Indeed, soil salinity (Owojori et al., 2009),
waterlogging environments (Sławska, 2000), and soil microbial
biomass (Filser et al., 2002) have been shown to affect
abundance, survival, and juvenile production of collembolan
communities. Consequently, we propose that changes in salinity,
waterlogging environments, and microbial communities, may
indirectly affect species richness across DDSM habitats.

The significantly higher abundance of dominant species in the
DDSM habitat may be attributed to unexpected results

(Wiwatwitaya and Takeda, 2005). D. choi was dominant in NE
and SE habitats, representing 13.01% and 21.58% of total abundance
among collembolan communities in this study (combined collected
Collembola), respectively. The collembolan community tends to be
dominated by a handful of species across various habitats, thereby
contributing to abundance and composition of the community
(Sousaa et al., 2004; Wiwatwitaya and Takeda, 2005).

4.2 Collembolan community composition in
drained and diked salt marsh and farmland

Species composition of the collembolan community differed
between the DDSM habitat and wheat farmland, confirming
Hypothesis 2. Several collembolan species, inhabit wetlands, and
many of them are found exclusively in these habitats (Sławska,
2000). A similar phenomenon was observed in this study. C.
skarzynskii, Desoria sp12, I. pinnata, and Sinella sp were only
present in the DDSM habitat, in which they were also dominant.
Accordingly, they might be specialized for such areas.
Microtubercules and hair are key adaptations enabling
Collembola to thrive in moist environments (Marx et al., 2012).
Both C. skarzynskii and I. pinnata exhibited these features, which
may explain their dominance and exclusivity in DDSM habitats.

FIGURE 7
Spearman correlation of species richness, abundance of the collembolan community, and environmental factors in NE (A), SE (B), and WF (C)
habitats. Rich, species richness; Abun, abundance; SM, soil moisture (%); Height, plant height (cm); Coverage, plant coverage.
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Arrhopalites sp1, Heteraphorura seolagensis, P. ekmani, and Sinella
sp5 were exclusively distributed in wheat farmland and were
significantly dominated in this habitat in the present study.
Previous studies have reported that Collembola from the genera
Ceratophysella, Isotomurus, Ballistura, Arrhopalites, and
Sminthurides were stenotypic species in mire habitats (Sławska,
2000); whereas Isotogastrura mucrospatulata Palacios-Vargas,
Lima and Zeppelini (2015) was endemic in tidal flats (Lima
et al., 2023). Similarly, we found that certain Collembola from
the genera Ceratophysella, Desoria, Sinella, and Isotoma were
preferentially distributed in DDSM habitats. We also observed
that certain species from the genera Arrhopalites, Heteraphorura,
and Parisotoma were particularly well-adapted to the cultivated
environment of wheat farmland. Therefore, we suggest that these
species, which dominate and are exclusive to DDSM and wheat
farmland, could serve as potential indicators for restoring and
protecting soil biodiversity in reclaimed coastal wetlands.

Some Collembola were found in both DDSM and wheat
farmland habitats, but showed habitat preferences. S. curviseta,
Ceratophysella sp1, B. changbaiensis, and F. ozaena sp1 existed in
both habitats; however, the first two were significantly dominant in
DDSM, whereas the last two were significantly dominant in wheat
farmland. D. choi was dominant in both the DDSM habitat and
wheat farmland, but was significantly more abundant in the former.
As Desoria mulyeongariensis prefers wetland habitats in Korea (Lim
and Park, 2011), we speculated that D. choi might also prefer and
thrive in moist habitats in coastal marshes. Therefore, although
distributed in both habitats, certain collembolan species from the
genera Sinella, Ceratophysella, and Desoria preferred DDSM
habitats, whereas the genera Bionychiurus and Folsomia favored
farmland habitats. A similar phenomenon was observed by Chang

et al. (2013), who found that species from the genus Folsomia were
preferentially distributed in rice and soybean farmlands, with marsh
soils and located in temperate zones. This suggests that habitat
preferences by collembolan species may be driven by specific
environmental factors, such as soil moisture, organic content,
and the availability of food resources (Potapov et al., 2020).
These factors could play a crucial role in shaping the distribution
of these species, with certain genera thriving in the DDSM habitats
compared to the more disturbed conditions of farmland. Further
research is needed to examine the mechanisms guiding habitat
preferences.

The Shannon and Simpson indices of collembolan communities
were significantly higher in wheat farmland than in the DDSM
habitat, indicating a clear separation between the two areas
regarding species diversity and evenness. Additionally, a
significant difference in the Shannon and Simpson indices was
observed between the NE and SE habitats. The higher species
richness and the greater dominance of certain species in the SE
habitat, compared to the NE habitat, may have contributed to this
difference (Shannon, 1948; Simpson, 1949). Therefore, the
biodiversity of the collembolan community across DDSM
habitats warrants further attention. Whereas, the composition of
the collembolan community was similar in the two reclaimed DDSM
habitats, according to the outcomes of NMDS, its composition in
wheat farmland differed from that of the DDSM habitat. Xie et al.
(2021) found that certain collembolan species contributed to the
structure and pattern of different habitats. In the present study,
Arrhopalites sp1, Desoria sp7, Folsomia inoculata sp1, Folsomia
octoculata, H. seolagensis, P. ekmani, and Sinella sp5 only existed
in wheat farmland; therefore, these seven species contributed to the
significant separation between wheat farmland and DDSM habitat.

FIGURE 8
Linear relationships between species richness and abundance of the collembolan community and certain environmental factors in NE (A, B) and SE
(C, D) habitats. The solid line represents a significant (p < 0.05) result; dotted lines represent non-significant (p > 0.05) results.
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4.3 Relationships with soil and
plant variables

Our findings partially support Hypothesis 3. Plant parameters
significantly affect the composition of collembolan communities in

the DDSM habitat; however, contrary to our expectations, soil does
not significantly influence the collembolan community in
wheat farmland.

In DDSM habitats, plant height and coverage were important
environmental factors affecting the composition of the collembolan
community. Collembola are detritivores or fungivores, whose
abundance can be quite high in some wetlands (Batzer and Wu,
2020), and are affected by plant variables. Plant species richness,
biomass, coverage, and vegetation type contribute to collembolan
community composition because diverse plant communities
provide a wide range of food resources (Maceda-Veiga et al.,
2016; Zhang et al., 2023). Collembola are particularly abundant
in wetlands with vegetation and tend to accumulate in areas where
plant growth and leaf litter accumulate (Giordano et al., 2014).
These microhabitats offer a wealth of food sources and shelter from
predators and environmental pressure in wetlands (Giordano et al.,
2014; Maceda-Veiga et al., 2016). Similarly, the significant influence
of plant height and coverage on collembolan communities observed
in this study may be due to the greater availability of food resources
and shelter in the DDSM habitat. Although soil moisture exhibited a
significant positive correlation with species richness and abundance
of the collembolan community (Figure 7), its individual influence
was not pronounced based on the DB-RDA results. This study
revealed considerable collinearity between soil moisture and factors,
such as plant coverage and height. Consequently, the observed
positive correlations among soil moisture, species richness, and
abundance may be attributed to the substantial contributions of
plant coverage and plant height (Figure 8). We did not detect a
significant contribution of soil moisture to collembolan community
composition in the DDSM habitat; however, other studies did. The
lengths of the antenna and body of Collembola were negatively
associated with soil water content, which could be explained by there
being more opportunities for these organisms to migrate on the
surface of a coastal mudflat when it was submerged in water (Li et al.,
2023). These findings suggest that the relationship between the
collembolan community and soil moisture is case-specific.

Collembola respond to plant and soil variables in farmlands
(Chang et al., 2013; Dou et al., 2019; Xie et al., 2021); however, we
did not detect significant relationships between collembolan
communities and these variables. Studies have reported positive
correlations between plant variables and collembolan communities
in wheat farmlands. For example, wheat roots (Becker et al., 2001) and
crop identity (Chauvat et al., 2014) are key determinants of
collembolan community composition in wheat fields. However,
other studies have reported different findings; wheat litter (Sereda
et al., 2015) and crop species (Bokova et al., 2023) do not significantly
influence the collembolan community in wheat farmlands.
Additionally, some studies have reported the significant influence
of soil moisture on the collembolan community in wheat fields (Asif
et al., 2016; Salmon et al., 2021). Suitable soil moisture may increase
the accessibility of microorganisms to food, thereby affecting the
collembolan community (Meyer et al., 2021). However, some studies
have only detected minor or insignificant roles of soil moisture on
collembolan composition (Shaki and Ahmed, 2015) and suggested
that Collembola tended to be abundant in wetter soil and soil with
sufficient amounts of nutrients (Shaki and Ahmed, 2015; Steinberger
et al., 1984). In this study, insufficient soil nutrients in the reclaimed
farmland may have contributed to the non-significant effect of soil

FIGURE 9
UpSet matrix layout of variation partitioning based on DB-RDA
and hierarchical partitioning results showing the relative importance
of three environmental factors on collembolan community
composition in the NE (A), SE (B), and WF (C) habitats. Each row
corresponds to an environmental factor in the dot-matrix plot on the
right. For each column, the isolated black dot represents the marginal
effect of each environmental factor, lines connecting multiple dots
represent the common effect of the corresponding environmental
factors. The percentage of variation explained by each component
(from variation partitioning) is shown in the top column diagram. The
column diagram on the left shows the individual effect of each
environmental factor (from hierarchical partitioning); its value is equal
to its marginal effect in addition to its average shared common effect
with other environmental factors. Coverage, plant coverage; Height,
plant height (cm); Soil moisture (%).
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moisture. Therefore, further studies combining soil moisture and
nutrients are needed.

Large residuals in ether the DDSM habitat or wheat farmland
could not be explained by plant and soil variables. Besides variables
measured in this study, other parameters, such as plant genetic
diversity, plant roots (Chateil et al., 2013), soil pH or organic matter
(Becker et al., 2001), particle size (Salmon et al., 2021), climate [e.g.,
flooding (Krediet et al., 2023) or warming (Zhang et al., 2023)],
topography, and management (e.g., tillage, fertilizer) (Chang et al.,
2013) or dikes (Ge et al., 2017) have also been reported as key
determinants of collembolan composition in wetlands and wheat
farmlands. Therefore, more plant and soil variables and their
interactions should be considered in future studies.

Although reclamation generally leads to a loss of marine
biodiversity, this study confirmed that reclamation of tidal flats
to DDSM habitats could maintain a certain richness and abundance
of the soil collembolan community after 11 years. Therefore,
ensuring high biodiversity in DDSM habitats and reclaimed
farmlands may help maintain local biodiversity, consistent with
other studies on reclaimed forests and farmlands (Ge et al., 2014a).
Overall, the results of this study provide basic knowledge of the soil
faunal biodiversity in DDSM habitats and their targeted farmlands
in subtropical areas. Whether DDSM habitats are restored to their
original tidal flats or left to succeed to their targeted agricultural
farmland, they can maintain a certain unique and general
biodiversity of soil fauna, providing a “biodiversity resource.”
Future investigations ought to reveal the function of collembolan
communities in processes of restoration of biodiversity and the
conservation of reclaimed DDSM and agricultural areas. These
findings will contribute to the development of restoration
strategies for reclaimed coastal areas in southeastern China.

5 Conclusion

This study aimed to determine the richness, abundance, and
composition of the collembolan community and the underlying
environmental factors in the DDSM habitat and adjacent farmland.
This study showed that species richness, rather than the abundance of
collembolan communities, was higher in the DDSM habitat than in
wheat farmland. The composition of collembolan communities differed
significantly between the DDSM habitat and wheat farmland. Certain
species from the genera Ceratophysella, Desoria, Sinella, and Isotoma
were preferentially distributed in the DDSM habitat, whereas C.
skarzynskii, Desoria sp12, I. pinnata, and Sinella sp were present
exclusively in the DDSM habitat. We also observed that certain
species from the genera Arrhopalites, Heteraphorura, and Parisotoma
were particularly well-adapted to the reclaimed wheat farmland. Plant
coverage and height were important factors affecting collembolan
community composition in the DDSM habitat; whereas plant
coverage, height, and soil moisture were not critical in wheat
farmland. Furthermore, a snapshot investigation was performed and
certain environmental factors were considered in the present study.
Multiple investigations explaining community variations on different
temporal scales and more potentially critical environmental variables
should be considered to understand soil biodiversity and its underlying
processes in DDSM and farmlands. Overall, this study suggests that
DDSM habitats have the potential to support certain collembolan

species, and soil biodiversity within these habitats warrants attention,
especially after stringent reclamation activities have been implemented.
Furthermore, these soils could be considered as a “biodiversity resource”
during restoration processes.
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