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The simulation of drainage sources in irrigation areas at the watershed scale is of
great significance for understanding the characteristics and drainage status of
irrigation districts under various water-saving irrigation and climatic conditions. In
this study, our focus was on the irrigation areas located on the south bank of the
Yellow River in Hangjin Banner. We aimed to analyze and simulate the flow rate
and overall drainage volume in the drainage ditch by developing a soil and water
assessment tool (SWAT) model. The measured drainage data were utilized to
calibrate and validate the model to explore the structure and sources of drainage
in the selected study area. The results indicated that the average annual drainage
volume of the study area was 4355.65 × 104 m³, and the primary source of
drainage was subsurface drainage, which accounted for approximately 68% of
the total drainage. Subsurface flow was the second-largest source, contributing
approximately 31%, while surface drainage accounted for a negligible proportion,
contributing merely 1% to the drainage. Concerning the proportion of drainage
relative to the total drainage in each irrigation area, the Balahey irrigation area
accounted for approximately 20%, the Jianshe irrigation area for approximately
45%, and the Dugui irrigation area for approximately 35%. Moreover, the model
parameters were optimized using SWAT-CUP software to obtain the R2, NSE, Re,
and RMSE values of 0.65, 0.60, −8.54%, and 384.65 × 104 m3, respectively, for the
model calibration period, and the corresponding values were 0.63, 0.56, −7.82%,
and 389.65 × 104 m3, respectively, for the validation period. The traceability
simulation results for irrigation drainage are of crucial importance for the efficient
utilization of water resources in this study area.
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1 Introduction

Drainage problems are prevalent in irrigated areas worldwide
(Arslan, 2012). Land drainage is one of the key inputs for improving
yields per unit area of farmland. Effective drainage management can
enhance field salinity control (Ritzema et al., 2006) by removing
excess water, preventing groundwater table rise, and buffering
against shallower groundwater tables (Ritzema, 2016). It also
contributes to the regulation of groundwater levels in the crop
growth season to increase crop production (Fisher et al., 1999; Li
P. et al., 2018; Li S. et al., 2018). The development of irrigated
agriculture is of vital importance for sustaining the growing world
population. Nevertheless, in the absence of appropriate drainage
measures, this development may give rise to environmental
problems like salinization and waterlogging within irrigated agro-
systems. In particular, in arid regions with shallow groundwater
tables, the drainage process is critical for controlling waterlogging
and salinization problems in irrigation districts (Wen et al., 2022;
Disasa et al., 2024). Inappropriate drainage practices typically lead to
the elevation of the groundwater table, as reported by Singh (2019a)
and Yan et al. (2023). Subsequently, this elevation tends to trigger
problems that pose a threat to crop growth in irrigation areas, as
indicated by Wichelns and Qadir (2015) and Ren et al. (2017).
Therefore, clarifying the drainage structure and determining the
total amount of drainage water is essential for formulating an
effective drainage management strategy. This is crucial for
improving agricultural water use efficiency (Schilling et al., 2012;
Yan et al., 2022b) and ensuring the sustainable development of the
agricultural economy. Additionally, quantifying discharge is vital for
assessing flow paths (Schilling and Zhang, 2004; Zhao et al., 2023).

The drainage problems within irrigated agriculture are
significantly impeded by the dearth of high-quality data, posing a
particularly serious concern in arid regions (Brunner et al., 2007).
Diverse irrigation scheduling results in uncertainties and complexities
in the simulation of drainage water at different regional scales (Wen
et al., 2020). The optimization of field drainage systems presents a
formidable challenge, owing to the requisite management of dynamic
groundwater levels. Such fluctuations have the potential to impact soil
moisture, thereby complicating the design and operation of drainage
systems. The issues faced by irrigated areas have typically been
evaluated using traditional methods that require extensive data
collection. However, advancements in computer technology now
enable us to accurately simulate hydrologic and agricultural
processes more easily than conducting costly and time-consuming
field trials. Understanding the interaction between surface drainage
and groundwater, along with factors like rainfall, irrigation practices,
and soil types, is essential. This complexity requires data analysis and
innovative strategies to ensure efficient drainage while preserving soil
health and preventing waterlogging (Li et al., 2020). Some studies have
focused on field and small regional drainage evaluation by performing
simulation studies (Zulu et al., 1996; Samani et al., 2004; Singh, 2012).
The simulation results derived from their field experiments are
typically more reliable and precise compared to those of large-scale
simulations. However, the methods used in these studies generally
require extensive field experiment data (Jouni et al., 2018; Lakhiar et al.,
2024). Complex drainage systems and varying physical conditions
increase the uncertainty and complexity of regional-scale drainage
estimates (Wu et al., 2019). Regional drainage studies involve the

utilization of distributed data, whereas conventional hydrological
measurements provide only point data, as indicated by Wondzell
et al. (2009). Regional studies are unable to yield reliable outputs, on
account of the deficiency in essential and widespread data, as suggested
by Kasahara and Hill (2008). These practices mandate substantial
amounts of data that are arduous to procure. Recently, researchers
have employed numerous simulation models to address water issues
globally (Maleki Tirabadi et al., 2021; Knöll et al., 2020; Mainuddin
et al., 2020). Some simulation models are used to quantitatively
describe drainage management in the complex agro-hydrological
process (Jouni et al., 2018). Wen et al. (2020) devised a “semi-
distributed model” to scrutinize drainage overflow by considering
the surface and subsurface drainage in an irrigated region of China.
This model has attained extensive acclaim as a valuable instrument for
evaluating the salinity and water-related issues in agricultural areas.

Nevertheless, the majority of these models necessitate inputs of
soil properties that pose challenges in quantification. Additionally,
they employ small time intervals and demand daily datasets, at a
minimum, of hydrologic phenomena. Empirical, statistical,
conceptual, and physically based numerical models are available
to simulate irrigation-scale drainage. However, in recent years, the
most prevalently utilized drainage models encompass drainage
coefficient models (Dewandel et al., 2008; Jafari et al., 2012),
regression models (Lei et al., 2002), and models based on
machine learning algorithms (Mohan and Vijayalakshmi, 2009).
These models are commonly used due to their simplicity and
applicability. However, these models are less accurate and lack a
physical basis (Xing et al., 2017).

The soil and water assessment tool (SWAT) model, as proposed
by Gassman et al. (2014), constitutes a potent and flexible
interdisciplinary modeling tool capable of simulating a broad
spectrum of watershed problems. It operates by first dividing the
watershed into sub-watersheds; each subarea is further divided into
hydrologic response units (HRUs). Subsequently, the simulations
for each HRU in the sub-watershed are aggregated by weighted
averages. Neitsch et al. (2011) furnished a detailed account of the
model’s functionality. The SWAT can model surface and
groundwater volumes (Aouissi et al., 2014; Nikolaidis et al., 2013;
Zettam et al., 2020). Addab and Bailey (2022) used the SWAT to
simulate the effects of subsurface drainage on watershed salinity and
explore the effects of regional-scale implementation of subsurface
drainage on salinity transport and export in irrigated semi-arid
watersheds. The SWAT model was additionally utilized to
mathematically represent tile-drained farmland and watersheds.
The successful application of the SWAT model in these studies
has furnished a novel tool for elucidating the drainage structure of
the watershed and ascertaining the total amount of drainage.

In the arid zone of the Northwestern region, ineffective drainage
systems have given rise to substantial land salinization issues that
demand urgent attention. These salinization issues result in elevated
groundwater levels in irrigation areas, and the shallow depth of the
groundwater aggravates soil salinization, leading to a pronounced
cycle of deterioration. Farmland situated along the Yellow River and
regions with deficient drainage are afflicted by severe waterlogging
conditions. It is imperative to manage groundwater levels through
improved drainage practices to ensure the protection and
productivity of agricultural production. The south bank irrigation
area of the Yellow River, located in Hangjin Banner, constitutes a
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prominent large-scale irrigation system within the arid zone of
Northwestern China. However, the drainage structure in this
region remains inadequately defined, and the total drainage
volume requires further empirical validation and assessment. The
complexity of drainage dynamics is augmented by various
influencing factors, including irrigation practices, precipitation
patterns, evaporation rates, and interactions with groundwater
recharge. This intricate interplay complicates the accurate
identification of drainage sources and their composition when
relying exclusively on conventional monitoring techniques. To
enhance our understanding of the hydrological characteristics
and drainage conditions of this irrigation area, it is essential to
implement advanced simulation methods for a comprehensive
analysis of drainage sources. Consequently, this study
investigated the drainage traceability of the irrigation area by
employing the SWAT model to ascertain the drainage structure.
Additionally, it elucidated the drainage volumes from diverse water
sources, including precipitation and irrigation water (Yellow River
water and groundwater), with the aim of contributing to the
formulation of an efficacious drainage strategy for the area.

2 Materials and methods

2.1 Study area

Hangjin Banner is located in the northwestern part of the Ordos
Plateau, between 106°55′ and 109°16′ east longitude and 39°22′ and
40°52´ north latitude. The along-river irrigation area of Hangjin

Banner, located in the northern part of the banner, is separated from
Bayannur City within the Inner Mongolia Autonomous Region.
This area administers four towns, namely, Balagong Town,
Jirigalangtu Town, Hohhmudu Town, and Dugui Tara Town,
arranged in sequence from east to west along the river. The
geographical location of the along-river irrigation area of Hangjin
Banner is illustrated in Figure 1.

Hangjin Banner is characterized by a mesothermal continental
climate, and the rainfall is relatively small compared to other
regions. The temperature fluctuations during spring and autumn
are more pronounced, with a multi-year average air temperature of
7.4°C–7.5°C, a maximum air temperature of 38.3°C to 37.9°C, a
minimum air temperature of −5.3 to −30.8°C, and a multi-year
average frost-free period of 158 days. Both annual and daily air
temperature differences are relatively significant. The average
annual rainfall is 145.1–214.9 mm, showing a decreasing trend
from east to west. Precipitation is mainly concentrated in July,
August, and September. Evapotranspiration (ET) is very strong, with
a multi-year average value of 2273.7–2381.4 mm, which is the
leading cause of drought and low rainfall in the study area. In
the regional distribution, ET is greater in the west than in the east,
and the maximum ET occurs in the period from May to June.

Furthermore, the along-river irrigation area of Hangjin Banner
is part of the Yellow River alluvial plain, characterized by a relatively
flat terrain with elevations ranging from 1,012 to 1,080 m. The
landform is dominated by the Yellow River alluvial plain and the
accumulation of wind-accumulated sand dunes, and the irrigation
plain is a long and narrow strip of land with a width of less than
10 km. Three main soil types are dominant in the area along the river

FIGURE 1
Map of the Hangjin Banner river irrigation district.
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in Hangjin Banner, namely, tidal soil, salt soil, and wind-sand soil.
The Yellow River is a transit river along the south bank of Hangjin
Banner. However, the mainstream section of the Yellow River in
Hangjin Banner starts from Sanshenggong Junction in the west and
ends at Maobulakongtui in the east, with a length of approximately
214 km. The Yellow River enters the region from Shizuishan in
Ningxia, and its water mainly comes from the mainstream of the
Yellow River above Lanzhou. The sand mainly comes from the
tributary streams between the Shangxiao and Anning areas. The
Shizuishan station is the entry station of Inner Mongolia, with a
multi-year average runoff of 260.7 × 108 m3 and a multi-year average
sand content of 3.01 kg/m3.

2.2 Construction of the SWAT model

2.2.1 Description of the SWAT model
The SWAT model was selected for its robust ability to simulate

land use, hydrology, and water quality processes, making it
particularly well-suited for large-scale agricultural systems such as
the south bank irrigation area. As a distributed hydrological model
operating at the watershed scale, the SWAT primarily focuses on
simulating the quality and quantity of both surface water and
groundwater. One of its prominent advantages compared to
other distributed models, such as the variable infiltration capacity
(VIC) model, resides in its efficacy for tracing drainage sources. The
SWAT adeptly accounts for the influences of topography, climate,
soil, and land use on hydrological processes, enabling detailed
simulations of water flow within the basin. Additionally, it can
differentiate among various hydrological processes, including
surface drainage, subsurface flow, and subsurface drainage, which
significantly enhances its capabilities for drainage source tracing.
The SWAT is a distributed hydrological model belonging to the
watershed scale, which is mostly used to simulate the water quality
and quantity of surface water and groundwater. The SWATmodel is
a distributed physical hydrological model of a long-term watershed
simulation, developed based on the Simulator for Water Resources
in Rural Basins (SWRRB). The SWRRB conducts simulations
predicated on the division of the watershed into several sub-
watersheds. Then, each sub-watershed is further divided into
several hydrological response units (hydrological response units)
according to the watershed’s land use, soil, and slope distribution of
the watershed. The hydrologic response unit is the most basic
calculation unit of the SWAT model, which represents the
subsurface of the watershed and is the aggregate of land use, soil
type, and slope. Individual hydrologic response units are modeled
using a one-dimensional soil column to simulate soil water and crop
processes, and each hydrologic response unit is modeled without
spatial information, i.e., the hydrologic response units are
independent of each other and no water exchange occurs. After
the terrestrial portion of the hydrologic cycle is completed for each
hydrologic response unit, the loads from all hydrologic response
units in the sub-basin are summed with the lakes, wetlands, and
groundwater in the sub-basin to complete the sub-basin loads. The
net loads of the sub-region are calculated across the entire basin
stream network.

The SWATmodel mainly contains the hydrological process sub-
model, soil erosion sub-model, and pollution load sub-model.

However, this study did not involve the calculation of soil
erosion and pollution. This study mainly focuses on the
hydrological process model. The hydrological process model is
also known as the production and sink flow model, and its
simulation process is primarily divided into five parts, namely,
hydrological land cycle stage, surface drainage calculation, ET
calculation, soil water calculation, and groundwater calculation.
Neitsch et al. (2011) provided a detailed model functioning in
the extant literature. Figure 2 shows the SWAT model simulation
flow chart.

2.2.2 Sub-area division
Distributed modeling approaches to watersheds typically divide

them into spatially discrete cells and then solve the model equations
in the divided cells. Nevertheless, the resolution of the
computational cells is typically somewhat superior to the initial
spatial resolution of the input data. Therefore, it is necessary to have
some aggregation of parameter values in each computational cell.
Taking the average or using an overall representative value is the
simplest way to obtain the input parameter values in any of the
computational units. However, the characteristic relationship
between watershed response and watershed characteristics is not
linear, and the average value does not truly reflect the impact of the
input variables. Utilizing a larger proportion of the overall category
as a representative value might overlook a smaller but significant
proportion of the category, thus constituting a potential source of
uncertainty.

2.2.2.1 Calculation of hydrological parameters based
on DEM

The digital elevation model (DEM) includes two information
types, namely, ground plane coordinates and elevation data.
Automatic extraction of the water system or sub-area from
DEM encounters two problems, i.e., the determination of the
direction of the water flow in depressions and flats and the
determination of the location of the beginning of the river
channel. Generally, based on the DEM, the minimum river
catchment area threshold method is used to form the basic
network structure of the river water system.

During the computation of the grid flow direction, the
ARCSWAT is capable of calculating the threshold area range of
the cell catchment area. Users can adjust the threshold magnitude,
thereby modifying the fineness of the river and the number of sub-
areas. Notably, a larger catchment area correlates with a reduced
number of sub-areas to be partitioned. According to the results of
DEM processing of Hangjin Banner by ArcGIS, the threshold value
of Hangjin Banner irrigation district’s catchment area ranges from
0.76 × 104 to 151.01 × 104 acres, and the number of sub-areas divided
ranges between 1 and 128.

2.2.2.2 Division of the sub-area
The SWAT model automatically divides rivers and sub-areas by

reading the DEM of the watershed from the high terrain as the
watershed boundary. It calculates each grid cell’s flow direction and
catchment area from the elevation data. It divides the river network
of the watershed based on the computed flow direction and
catchment area. This method is highly applicable for delineation
in natural watersheds.
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Due to the limitation of DEM resolution, there is a deviation
from the actual situation when calculating the grid cells’ flow
direction and catchment area based on DEM alone in plain
irrigation areas. In this paper, the burn-in approach was used to
import the drainage ditch of the study area as a river into the model,
which was used as the basis for the model to divide the river channel.
After importing, the catchment area threshold was set to 1,500 ha
(according to the local conditions), and after selecting the watershed
outlets, the study area was finally delineated into 35 sub-watersheds.

Figure 3 shows the sub-watershed delineation and the
correspondence between the sub-watershed delineation results
and each irrigation area.

2.2.3 Hydrological response module
The slopes in the watershed were defined into three categories

based on the DEM, namely, 0%–8%, 8%–16%, and greater than 16%,
and overlaid with the land use and soil type maps to determine an
area threshold of 15% for soils, land use, and slopes based on the
combination and distribution characteristics of land use, soils, and

slopes. Hydrologic response units were delineated, and
239 hydrologic response units were generated throughout
the watershed.

2.3 Data collection

The meteorological input files for precipitation, air temperature,
humidity, and wind speed were sourced from four stations: Linhe,
Hohmudu, Chaokai, and Ertuoqqi. These data were edited and
imported into the meteorological database in the format required for
the SWAT input files. Additionally, solar radiation data were
generated automatically using the WGEN_CFSR_World
meteorological generator, which is considered a reliable source.
However, the precision and accuracy of these data significantly
affect the simulation outcomes of the SWAT model. During the
model’s parameter calibration process, it is challenging to fully align
the model with the characteristics of the study area, leading to
potential limitations in the simulation’s accuracy. These limitations

FIGURE 2
SWAT model simulation flowchart.

FIGURE 3
Division map of the Hangjin Banner watershed.
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highlight areas that need improvement to enhance the model’s
performance and reliability in future applications.

2.4 Methodology for evaluating the model

This study evaluates the applicability of the model using the
coefficient of determination from linear regression (R2),
Nash–Sutcliffe efficiency (NSE), relative error (Re), and root
mean squared error (RMSE), as shown in Equations 1–4.

The linear regression coefficient of determination R2 was
calculated as follows:

R2 �
∑n
i�1

Qo − �Qo( ) Qp − �Qp( )2[ ]
∑n
i�1

Qo − �Qo( )2∑n
i�1

Qp − �Qp( )2. (1)

The Nash efficiency coefficient NSE was calculated as follows:

NSE � 1 −
∑n
i�1

Qo − Qp( )2
∑n
i�1

Qo − �Qo( )2 . (2)

The relative error Re was calculated as follows:

Re � Qp − Qo

Qo
× 100%. (3)

The root mean square error is calculated as follows:

RMSE �
													
1
n
∑n
i�1

Qo − Qp( )2,√
(4)

where Qo is the measured value, Qp is the simulated value, �Qo is the
measured mean value, �Qp is the simulated mean value, and n is the
number of datasets.

3 Results and discussion

3.1 Sensitivity analysis of model parameters

The SWATmodel encompasses hundreds of parameters, among
which 14 parameters with a significant impact on runoff were
chosen. Table 1 shows the LH-OAT sensitivity analysis method
and multiple regression models for sensitivity analysis, and the
confidence intervals were determined using the Sufi-2 algorithm
in the SWAT-CUP. The sensitivities of the parameters were assessed
based on P and t values. Here, P represents the significance level of
the parameter’s sensitivity, and t represents the magnitude of
sensitivity, such that a larger absolute value of t implies greater
sensitivity. Conversely, a value closer to 0 for P indicates a more
significant variable. Additionally, the larger the absolute value of t,
the more pronounced the sensitivity of the parameter. Among the
14 parameters, 7 exhibited extremely significant effects (P < 0.01),
namely, the number of curves of the moisture condition (CN2), the
base flow α factor (ALPHA_BF), the number of delayed days of
groundwater (GW_DELAY), the soil ET compensation factor
(ESCO), soil effective water capacity (SOL_AWC), soil saturated
infiltration coefficient (SOL_K), and depth to groundwater where
backflow occurs (GWQMN). These parameters were used as the
main rate objects during parameter rate determination.

3.2 Calibration and validation of the model

The period spanning from 2017 to 2018 was designated as the
calibration period, while the period from 2019 to 2020 was assigned
as the validation period. We utilized SWAT-CUP software to
calibrate the model parameters, drawing on the actual measured
flow of drainage. The Sufi-2 algorithm, included in the model, was
employed for this purpose. Based on a sensitivity analysis, we

TABLE 1 Sensitivity analysis of 14 parameters in the SWAT model.

Parameter Description Unit t P

CN2 Curve number — −34.60 0.00

ALPHA_BF Baseflow alpha factor Day −19.13 0.00

GW_DELAY Groundwater delay time Day 16.40 0.00

ESCO Soil evaporation compensation factor — −9.61 0.00

SOL_AWC Soil available water capacity mm/mm 9.08 0.00

SOL_K Soil-saturated hydraulic conductivity mm/h −8.67 0.00

GWQMN Threshold depth of water in the shallow aquifer required for return flow to occur mm 6.05 0.00

CH_K2 Effective hydraulic conductivity in main channel alluvium mm/h 2.51 0.01

CH_N2 Manning’s “n” value for the main channel — 2.07 0.04

GW_REVAP Groundwater “revap” coefficient — −0.81 0.42

SOL_BD Soil bulk density g/cm3 0.70 0.49

OV_N Overland flow manning’s “n” — 0.66 0.51

SURLAG Surface runoff lag Day 0.60 0.55

ALPHA_BNK Baseflow alpha factor for bank storage Day −0.04 0.97
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selected seven parameters that showed high significance for
calibration, as detailed in Table 2. Additionally, we defined the
calibration range for these parameters and determined the
calibration methods, according to their specific characteristics.

Figure 4 presents a comparison between the simulated and
measured values of monthly discharges in the study area from
2017 to 2020. The consistency in the trends between these
simulated and measured values, as depicted therein, is fairly in
line with the research carried out by Liu et al. (2024), in which they
simulated the drainage flow at the principal drainage outlets in the
Hetao Irrigation District by employing the SWAT-MODFLOW-RT
3D model. Table 3 shows the results of parameter calibration and
validation, with R2, NSE, Re, and RMSE values of 0.65, 0.60, −8.54%,
and 384.65 × 104 m3, respectively, for the model calibration period,
and 0.63, 0.56, −7.82%, and 389.65 × 104 m3, respectively, for the
validation period. In accordance with the evaluation guidelines of
Moriasi et al. (2015), the NSE coefficient falling between 0.5 and just
below 0.65 is deemed to signify an “acceptable” performance of the
model. In the context of this study, the analysis of monthly
simulated values revealed a satisfactory level of agreement with
observed data during both the calibration and validation phases,
indicating that the model can reliably capture the underlying
patterns in the data. The R2 and NSE values in our study align
closely with those obtained from Zafarmomen et al. (2024); Kannan

et al. (2010); and Wu et al. (2017). Our findings reveal that the NSE
values exceed those reported by Xiao et al. (2023) in their
investigation of the Xiaoxingkai Lake Basin in China, which
implies a superior model performance in our study. Nevertheless,
the R2 values are lower than those of their study, indicating that the
explained variance is relatively less compared to their simulation
outcomes. However, our results are inferior to those reported by Tan
et al. (2022), who employed the SWAT model to simulate riverine
phosphorus flux in the Yarlung Zangbo River, yielding higher NSE
and R2 values. Zhang S. et al. (2024) calibrated and validated data
from drainage outlet monitoring points in the Ningxia Yellow River
Irrigation District using the SWAT. The R2 value in the calibration
period was 0.72 and that in the validation period was 0.79, which are
slightly better than the results obtained in our study. Furthermore,
the RMSE for both the calibration and validation periods in our
study was comparable to the values noted by Wen et al. (2020) for
general drainage ditch command areas in the Hetao Irrigation
District. In contrast, our results were less satisfactory than the
simulation outcomes put forward by Alakbar and Burgan (2024)
in the Antalya Basin. Nevertheless, our simulation results remain
generally within an acceptable range and have the potential for
further improvement through parameter optimization.

Based on the simulation results, there were two peaks of
drainage per year. The first peak occurred in April–June, which
was the pre-fertility period of the crop, with higher irrigation and
more drainage generated. The second peak occurred in
October–November, which was fall watering, leading to a rise
in the groundwater table and increased drainage of the area.
These simulation results are in alignment with the findings of
Wen et al. (2020), which indicated that the irrigation areas were
irrigated with spring irrigation in May and fall irrigation in
October. Furthermore, the study revealed that both subsurface
drainage and groundwater table depth manifested a delayed
response to irrigation, with peak values being observed in
May, June, and November. Our findings suggest that the
drainage volume attains its peak around June and reaches its
lowest point in January during the non-irrigation period. This is
highly congruent with the research findings of Guo et al. (2024)
regarding the Nukus irrigation area, which is situated
downstream of the Amudarya River.

TABLE 2 Calibration results of the seven most significant parameters in the
SWAT model.

Parameter Minimum Maximum Final

CN2 −0.60 0.20 −0.39

ALPHA_BF 0.00 1.00 0.86

GW_DELAY 0.00 500.00 38.28

ESCO 0.00 1.00 0.33

SOL_AWC()l −0.30 0.30 0.03

SOL_K() −0.30 0.50 0.30

GWQMN 0.00 5000.00 130.43

FIGURE 4
Simulated andmeasured results ofmonthly drainage in the south bank irrigation area of the Yellow River in Hangjin Banner during the calibration and
validation periods, 2017-2020.
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3.3 Water balance analysis

Water balance is the basis for analyzing and researching
hydrological phenomena and processes, and it is one of the most
important indicators for evaluating the accuracy of hydrological
model calculations. The fundamental principle underlying water
balance is the law of mass conservation by Equation 5. In the
calculation process, the SWAT model adheres to the water
balance of each hydrological response unit, which is gradually
extended to the sub-area and then to the entire area.

The soil water balance equation in the SWAT model is

SWt � SW0 +∑t
i�1

Rday − Qsurf − Ea −Wseep − Qgw( ), (5)

where SWt is the final soil water content; SW0 is the pre-soil water
content; t is the time step; Rday is the surface input on day i, which
includes both precipitation and irrigation components; Ea is ET on
day i; Qsurf is the surface drainage on day i;Wseep is the net seepage
outflow from the bottom of the soil profile on day i; and Qgw is the
flow of water through the loam on day i.

Table 4 shows the results of soil moisture balance calculations.
The data presented in Table 4 demonstrate that the soil water storage

within the irrigation area maintained a relatively stable state. Specifically,
precipitation contributed 39.4% to the water supply, whereas irrigation
accounted for 61.6% within this region. Our findings are in accordance
with the study conducted by Wang et al. (2024) in the Hetao Irrigation
District of Inner Mongolia, where similar patterns were also observed.
However, these values deviate from the findings of the study by Sawyer
(2010), who reported that the recharge ought to be 10%–20% of annual
rainfall in the South Fork Watershed, Iowa (41°35′N, 93°36′W). This
may be because the south bank irrigation area of the Yellow River in
Hangjin Banner requiredmore irrigation water recharge due to huge ET
caused by climatic conditions and other factors. On the contrary, ET
served as the principal output component of water within the irrigation
area, accounting for 83.0% of the water output and exceeding the
amount of precipitation during the corresponding period. These
results generally disagree with the findings of Sawyer (2010) and
Green et al. (2006) in Iowa. The simulated ET reported in these two
studies accounted for 70% and 74% of the rainfall, respectively. This may
be due to the dry and hot summers in our study area; thus, ET was huge
(Yan et al., 2021; Yan et al., 2022a; Li et al., 2022). The ET is the major
water consumption component in the arid irrigation district. Our results
indicate that surface drainage constituted less than 1% of the
precipitation, which is significantly lower than the 5% reported by
Green et al. (2006). According to their study, surface drainage was
identified as 5% of precipitation. Additionally, our study shows that total
drainage in the area accounted for 13.2% of the water inputs. Yu et al.
(2016) found that the ratio of drainage to water inputs was 11.4% in the
Hetao Irrigation District from 2006 to 2012, similar to our results. From
2017 to 2020, the drainage volume in this study area accounted for 22.3%
of the irrigation water volume, which is inconsistent with the findings
reported by Wen et al. (2020), where the average annual drainage
volume in the Hetao Irrigation District constituted 10.5% of the annual
irrigation water volume. This discrepancy may be attributed to the loose
soil texture and high permeability coefficient in this study area, which
facilitates a greater occurrence of drainage.

3.4 Drainage structure analysis

On the basis of the simulated total drainage within the study
area and the calculated contributions of surface drainage,

TABLE 3 Results of calibration and validation of water discharge in the study area.

R2 NSE Re RMSE (104 m³) Average annual drainage (104 m³)

Measured value Analog value

Calibration period 0.65 0.60 −8.54% 384.65 4502.20 4117.55

Validation period 0.63 0.56 −7.82% 389.65 4983.40 4593.75

FIGURE 5
Annual drainage structure of the south bank irrigation area of the
Yellow River in Hangjin Banner.

TABLE 4 Average water balance in the south bank irrigation area of the Yellow River in Hangjin Banner, 2017-2020 (104 m³).

Change in water
storage

Precipitation Irrigation
volume

ET Surface
drainage

Subsurface
flow

Subsurface
drainage

81.56 13543.94 19574.55 21314.30 27.53 1,347.26 2980.87
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subsurface flow, and subsurface drainage via the SWAT model, the
drainage type of the south bank irrigation area of the Yellow River
in Hangjin Banner was mainly dominated by subsurface drainage.
According to Figure 5, it accounted for 74.56%, 63.26%, 76.01%,
and 63.84% of the total annual drainage during the period from
2017 to 2020. Wen et al. (2020) found that the subsurface drainage
accounted for 67.3% of total drainage in the Hetao Irrigation
District from 2008 to 2010 and from 2021 to 2013, which agrees
with our results. This is also congruent with the results estimated by
Green et al. (2006) within the period from 1994 to 2004 in Iowa,
where the proportion was 71%. Our results showed that subsurface
drainage accounted for 31% of total drainage, and surface drainage
only accounted for 1%. Bailey et al. (2022) reported that from
2006 to 2011, in the South Fork Watershed, Iowa, surface drainage
constituted 46% of the total water yield, while the subsurface flow
accounted for 7%. This finding contrasts with our study, likely due
to the flat terrain and small overall slope of Hangjinqi, which,
influenced by gravity, allows ample time for infiltration and the
generation of subsurface flow. Nevertheless, this result is in
alignment with the findings of Zhang T. et al. (2024), regarding
the Ningxia irrigated areas. They reported that, owing to the high
water use efficiency within their study area, there was almost no
visible surface runoff. The changes in the drainage structure of the
irrigation area each year have been relatively minor. Table 5 shows
that in both 2017 and 2019, the ratio of subsurface drainage to
subsurface flow was approximately 3:1, indicating a similar
drainage structure for these years. Similarly, in 2018 and 2020,
the ratio of subsurface drainage to subsurface flow was
approximately 9:4, reflecting a consistent drainage structure.
Despite the fact that the total drainage volume fluctuates from
year to year, the proportions of surface drainage, subsurface flow,
and subsurface drainage with respect to the total volume remain
consistently comparable. This implies that the drainage structure
within the area is relatively stable over an extended period.

3.5 Drainage structure analysis for each
irrigation area

Table 6 shows the discharge from each irrigation district in
relation to the total discharge from the watershed for the period
2017 to 2020, and Figure 6 shows the ratios of drainage to total
drainage for each irrigation area. It is observed that the
proportion of the drainage volume of each irrigation area to
the total drainage volume of the entire irrigation area exhibited
minimal variation from year to year. Specifically, from 2017 to
2020, the drainage volume generated by the Balahey irrigation
area accounted for approximately 20% of the total drainage
volume, that of the Jianshe irrigation area accounted for
approximately 45%, and that of the Dugui irrigation area
accounted for roughly 35%.

Figure 7 shows the drainage structure of each irrigation
district. Balahey irrigation area had the smallest annual change
in drainage structure. The proportion of all types of drainage
fluctuated within 3% each year. The proportion of the loamy
medium flow and subsurface drainage each accounted for half
of the total drainage and did not produce surface drainage. The
relatively high proportion of the loamy medium flow in the
Balahey irrigation area might be associated with the
predominance of sandy soil within the region, given that sandy
soil possesses a larger permeability coefficient. As per the research
by Frederiksen and Molina-Navarro (2021), soils with a high clay
content are predominantly characterized by subsurface drainage,
whereas if the sandy soil content is elevated, it tends to facilitate the
subsurface flow. The Jianshe irrigation area demonstrated
substantial variations in the proportion of each type of drainage
on an annual basis, which was analogous to the variations in the
total drainage. In 2017 and 2019, the proportion of loamy medium
flow was relatively low, amounting to less than 20%. In contrast,
during 2018 and 2020, this proportion was relatively high,

TABLE 5 Contribution of different types of drainage to total discharge (104 m³).

Year Surface drainage Subsurface flow Subsurface drainage Total drainage

2017 18.36 953.33 2,847.27 3,818.96

2018 33.42 1,588.90 2,793.83 4,416.15

2019 10.16 812.22 2,605.11 3,427.49

2020 48.18 2,034.57 3,677.28 5,760.03

Average 27.53 1,347.26 2,980.87 4,355.66

TABLE 6 Annual discharge of each irrigation area (104 m³).

Year Balahey irrigation area Jianshe irrigation area Dugui irrigation area Total

2017 798.42 1,675.38 1,345.17 3818.96

2018 840.87 2,078.00 1,497.27 4416.15

2019 720.50 1,519.62 1,187.36 3427.49

2020 1,068.17 2,695.03 1,996.82 5760.03

Average 856.99 1,992.01 1,506.65 4355.66
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accounting for nearly 30%. Nevertheless, on the whole, subsurface
drainage continued to play a dominant role in the drainage of the
Jianshe irrigation area. The inter-annual variation in the drainage
structure of the Dugui irrigation area was within 7%. Although the
proportion of surface drainage in the Dugui irrigation area only
accounted for about 1% of the total drainage, it was the highest
among the three irrigation areas. Overall, the drainage sources in

the Dugui irrigation area were still dominated by subsurface
drainage, supplemented by the loamy medium flow.

4 Conclusion

This study utilized the distributed SWAT model to establish
a hydrological cycle model that is applicable to the south bank
Irrigation Area of Hangjin Banner in Ordos City. The
establishment was achieved by collecting the Digital Elevation
Model (DEM), soil, land use, meteorological, and irrigation data.
The model input process for plain irrigation district drainage
ditches was optimized, and the model parameters were calibrated
and validated using SWAT-CUP software. The results indicated
that the model is capable of effectively simulating the drainage in
the study area. Our findings revealed that the average annual
drainage of the irrigation area was 4355.65 × 104 m³. The primary
source of this drainage was subsurface drainage, which
accounted for approximately 68% of the total. In addition, the
subsurface flow was identified as the second largest source,
contributing approximately 31%, while surface drainage made
a minimal contribution, accounting for only 1%. With respect to
the distribution of drainage among different irrigation districts,
the Balahey irrigation district contributed approximately 20%,
the Jianshe irrigation district accounted for approximately 45%,
and the Dugui irrigation district constituted approximately 35%.

In this study, we selected 14 parameters for sensitivity analysis,
among which only 7 were found to be extremely important and were

FIGURE 6
Ratio of drainage to total drainage of irrigation areas
in 2017–2020.

FIGURE 7
Drainage structure of irrigation districts in 2017–2020.
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subjected to verification and validation, but the results were not
satisfactory. Therefore, we suggest that future research should
consider incorporating additional performance metrics to ensure
the reliability of the SWAT model. Moreover, due to objective
factors, this study merely focused on the volume and sources of
irrigation drainage, failing to precisely quantify agricultural water
consumption and irrigation water use efficiency.

For future studies, it is of paramount importance to refine the
parameters and, potentially, restructure the SWAT model to attain
more precise simulation results. It is advisable to prolong the
observation period and validate the performance of the model in
light of empirical data. Moreover, a larger dataset should be
utilized to augment the precision of the research. Future
investigations could utilize various hydrological models to
evaluate the impact of different drainage techniques and
volumes on soil salinization, helping identify optimal drainage
strategies. Furthermore, it is of critical importance to investigate
the efficacy of responsible drainage practices in alleviating soil
salinization and forestalling its recurrence. It is also necessary to
ensure that these practices are customized to suit local climatic and
soil conditions. Furthermore, the potential of using groundwater as
an alternative water source should be investigated, along with an
assessment of how drainage from saline–alkali lands may affect
groundwater resources.
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