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Facing the challenges brought about by global climate change and biodiversity
loss, accurately assessing ecological environmental quality (EEQ), and its driving
factors are crucial for formulating effective strategies for ecological protection
and restoration. However, there remains limited understanding of the
interactions and causal relationships between multiple factors, with existing
studies mainly focusing on the impact of individual factors on EEQ and their
correlations. This study took Myanmar as the research area, employing a Remote
Sensing Ecological Index (RSEI) model and spatial autocorrelation analysis to
quantitatively evaluate the spatial distribution characteristics of Myanmar’s EEQ in
2020 and reveal its spatial dependence. Furthermore, by innovatively integrating
the Geodetector and Geographical Convergent Cross Mapping (GCCM)
methods, this study systematically analyzed the impacts and causal
relationships of various factors on the spatiotemporal differentiation of EEQ.
The results indicate that: (1) Myanmar’s overall EEQ was relatively good, but there
is significant spatial heterogeneity; (2) Local spatial autocorrelation analysis
revealed a clear spatial clustering pattern of EEQ in Myanmar; (3) Geodetector
analysis identified DEM, slope, Net Primary Productivity (NPP), land use, and
human footprint as the dominant factors influencing EEQ, with significant
interactions among these factors; (4) GCCM analysis further verified the
significant causal effects of DEM, slope, NPP, and human footprint on EEQ,
while the causal effects of temperature, precipitation, and land use are relatively
weaker. This study established a technical framework for analyzing the spatial
differentiation and causes of EEQ, unveiling the mechanisms of ecological
evolution driven by natural and human factors. It enriched the understanding
of human-environment interactions within coupled systems and delved into the
complex mechanisms and causal effects among multiple factors within the
ecological system. These insights enhanced our understanding of the intricate
relationships between EEQ and its influencing factors, providing valuable
references for ecological protection and sustainable development in Myanmar.
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1 Introduction

The world’s ecological environment faces unprecedented
challenges. Climate change (Wilkes et al., 2024), population
growth (Xiao et al., 2022), overexploitation of resources (Yang
et al., 2022) and the intensification of human activities have
increased the vulnerability of ecosystems. The degradation of
natural ecosystems not only affects biodiversity but also threatens
human sustainable development and ecological security (Zhu et al.,
2023; Huang C. et al., 2024). Globally, many regions experience
continuous deterioration in water resources, soil, and air quality,
making the assessment and protection of EEQ urgent priorities
(Reed et al., 2015; Vasseur et al., 2017). Against this backdrop, the
scientific community has increasingly recognized the importance of
timely assessing the current state of EEQ, revealing its
spatiotemporal variation patterns, and exploring the driving
mechanisms of ecological changes. However, despite a substantial
amount of existing research, there are still many shortcomings in
EEQ assessment, particularly in the analysis of causal relationships
between EEQ and its influencing factors, which urgently require
more in-depth exploration (Geng et al., 2022; Duo et al., 2023). This
work is essential in order to develop strategies to protect and restore
the environment and to achieve a harmonious relationship between
humans and nature.

EEQ assessment is a key topic in both ecological and
geographical research. Traditional approaches to EEQ
assessment often rely on single indicators or simplistic index
systems, such as environmental quality indices and ecological
footprints, which fail to fully capture the structure and function
of ecosystems (Zhang L. et al., 2022; Sun et al., 2023). These
traditional methods struggle to fully reveal complex ecological
relationships and to comprehensively assess ecosystems and their
dynamic evolution (Wang et al., 2024). Since the 1990s, new tools
for large-scale EEQ assessment have been made available through
the rapid development of remote sensing technology. To
effectively characterise the spatio-temporal patterns of EEQ,
Xu et al. introduced the Remote Sensing Ecological Index
(RSEI), which is based on remote sensing data and integrates
four indicators (Xu et al., 2019). Since then, many scholars have
applied the RSEI model in regional EEQ assessments, producing
promising results. For example, Liu et al. applied the RSEI model
to analyse the spatio-temporal evolution of EEQ in grassland
areas in Xinjiang, China, and found that grassland ecological
environments showed improving trends with significant spatial
differentiation and clustering characteristics (Liu et al., 2023).
Similarly, Wan et al. used the RSEI model to evaluate the EEQ of
the Yangtze River Economic Belt, revealing regional disparities in
EEQ and their driving factors (Wang et al., 2024). Zhang J. et al.
(2024) using the RSEI model, analyzed the spatiotemporal
patterns of EEQ in the Yellow River Basin, finding a
fluctuating improvement in EEQ, with significant regional
differences closely related to human activities. These studies
indicate that remote sensing data provides higher spatial
resolution and temporal continuity for EEQ assessment at
both regional and global scales, facilitating dynamic
monitoring of ecological changes (Pettorelli et al., 2014; Wu
et al., 2021). It also enables more accurate identification of
ecological changes and stressors in different regions, offering

support for the formulation of regional ecological
protection policies.

The formation of the spatiotemporal patterns of EEQ is the
result of long-term interactions between natural factors and human
activities (Li et al., 2022; Bai et al., 2023). Existing studies show that
topography, climate, vegetation, and land use are important factors
affecting EEQ (He and Shi, 2022; Lu et al., 2022; Xiao et al., 2022).
Zhang X. et al. (2024) found that topographic complexity and
vegetation cover are key determinants of EEQ in the
Heilongjiang region of China (Li et al., 2021). Demonstrated that
temperature and precipitation exert stable effects on production,
living spaces, and ecological spaces, and these effects vary spatially.
Yu et al. (2023) analysed the impact of land use on EEQ, identifying
urban expansion and agricultural development as the main drivers
of ecosystem degradation, using a geographically weighted
regression model. This series of studies highlights the interactive
effects between natural factors and human activities, emphasizing
the importance of local differences in influencing EEQ (Shi et al.,
2024). Previous research has typically focused on single factors or
localized impacts, while in cross-regional and multi-scale
comparisons, how to comprehensively consider whether causal
relationships exist between different factors and EEQ remains a
challenge in current research (Liang L. et al., 2024). However, most
studies to date have focused on the individual impacts of natural
factors or human activities, or their interactions, while the analysis of
the complex interactions and causal mechanisms between these
factors remains relatively insufficient (Li et al., 2022; Xiao et al.,
2023; Lin et al., 2024). In reality, ecosystems are complex, coupled
human-environment systems, characterised by complex interactions
and feedbacks between natural factors and human activities
(Franzke et al., 2022; Reed et al., 2022; Tan et al., 2023). This
understanding has prompted researchers to shift towards more
dynamic and systematic analytical frameworks, promoting the
application of interdisciplinary methods to gain a more
comprehensive understanding of complex ecological relationships
and mechanisms of ecological change (Liang L. et al., 2024).
Therefore, the analysis of EEQ driving factors must consider
both the independent effects of natural and socio-economic
factors, as well as their interactions and causal mechanisms.

Although scholars worldwide have made substantial progress in
assessing EEQ and its driving mechanisms, several shortcomings
still exist. First, most studies focus on the correlation between EEQ
and influencing factors, but there is limited exploration of causal
relationships (Liang C. et al., 2024). While correlation analysis can
reveal the strength and direction of relationships between variables,
it cannot determine causal dependencies or pathways of influence
(Huang Z. et al., 2024; Li et al., 2024; Tang et al., 2024). Relying solely
on correlation analysis makes it difficult to address the root causes of
EEQ changes and may lead to biased decision-making in ecological
management. Second, many studies rely on traditional statistical
models, such as multiple linear regression, which are often based on
the assumption of linear relationships between variables. These
models often fail to capture the nonlinear relationships and
complex interactions between EEQ and its influencing factors
(Wang et al., 2015; Ankori-Karlinsky et al., 2024; Ma et al.,
2024). In reality, the ecological environment system is a complex
nonlinear system characterized by multi-scale interactions and
feedback mechanisms among its elements. Traditional linear
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models cannot accurately reveal the evolutionary patterns and
driving mechanisms. Therefore, combining the Geodetector and
GCCM models to overcome the limitations of traditional statistical
models has become an important trend in current research (Yang S.
et al., 2024). These models can more accurately reveal the nonlinear
relationships and causal mechanisms between factors, providing
more effective tools for future ecological and environmental
management.

In order to address these limitations, this study selects Myanmar
as the area of study. Based on the quantitative assessment of
Myanmar’s EEQ spatiotemporal patterns in 2020, this study
applies the Geodetector and GCCM models to systematically
analyze the influencing factors of EEQ and their interactions.
This study reveals the nonlinear relationships and causal
mechanisms between various factors and EEQ. The Geodetector
method effectively identifies the interactions between influencing
factors, while the GCCM model reveals the nonlinear causal
dependencies between variables. A broader and deeper
understanding of the spatial differentiation mechanisms of EEQ
is gained by combining these two methods.

2 Materials and methods

2.1 Study area and data sources

2.1.1 Study area
Myanmar was located on the central southern peninsula,

stretching from 92°20′to 101°11′east longitude and 9°58′to
28°31′north latitude (Figure 1). The country had a complex
geography with rich ecosystems and extensive biodiversity.
Myanmar had a diverse climate, dominated by a tropical
monsoon climate with marked seasonal variations in rainfall and
temperature. It was important for ecological and environmental
protection, agricultural development and climate change research
because of its unique geographical location and rich natural
resources. However, Myanmar’s environment had been severely
degraded by increasing deforestation, air pollution, land
degradation and water pollution as a result of accelerated
urbanisation and rapid economic development. Therefore, there
was an urgent need for a systematic assessment of the quality of
Myanmar’s ecological environment and research into the causal
relationships behind these environmental problems.

2.1.2 Data and preprocessing
The data used in this study can be divided into two parts, one of

which is used to evaluate the EEQ ofMyanmar. The relevant data are
based on MODIS datasets provided by the United States Geological
Survey (USGS), with a spatial resolution of 500 m. These datasets
include three types of data from 2020: MOD13A1 (vegetation index
products, reflecting vegetation cover), MOD11A2 (land surface
temperature products, monitoring temperature variations), and
MOD09A1 (surface reflectance products, representing surface
spectral characteristics). These datasets were acquired and
processed using the Google Earth Engine (GEE) platform, which
enables efficient handling of long-term series and large-scale
datasets, facilitating the rapid generation of EEQ assessments for
Myanmar. The other part of the data focuses on analyzing the

driving factors of EEQ changes in Myanmar, encompassing both
natural and social factors. These factors include nightlight (X1),
temperature (X2), human footprint (X3), population density (X4),
precipitation (X5), slope (X6), NPP (X7), land use (X8), GDP (X9),
and DEM (X10). Temperature and precipitation data were mainly
obtained from the University of East Aaglia (https://crudata.uea.ac.
uk); slope, slope direction and elevation data were obtained from
Geospatial Data Cloud (https://www.gscloud.cn); NPP data were
obtained from the GEE platform MODIS/006/MOD17A3HGF
dataset; human footprint data were obtained from the
2020 global human footprint data provided by the Urban
Environmental Monitoring and Modelling (UEMM) team of the
School of Land Science and Technology, China Agricultural
University; nighttime lighting data were obtained from the
National Geosystems Science Data Centre (http://nnu.geodata.
cn); GDP data were obtained from the Jiandong Chen and other
scholars pub. All TIF format data used in the study were resampled
with a uniform spatial resolution of 5 km and projected to the GCS_
WGS_1984 coordinate system.

2.2 Methodology

2.2.1 Technological route
In this paper, we constructed an integrated technical framework

for spatial and temporal differentiation of EEQ and causal analysis
(Figure 2). First, the spatial distribution characteristics of EEQ in
Myanmar were quantitatively assessed using the RSEI model by
acquiring MODIS image data of the study area in 2020 based on the
GEE platform. The local spatial autocorrelation technique has been
used to reveal the spatial dependence and clustering pattern of EEQ
and to identify the spatial differentiation pattern of EEQ. Then, the
intensity of influence and contribution of each factor and their
interactions on the spatial and temporal variability of EEQ were
quantitatively analysed using the geodetector model for 10 key
influencing factors such as climate, topography, vegetation, land
use and human activities. Finally, the GCCM model was used to
reveal the causal dependence and direction of action between the
influencing factors and the EEQ, and to explore the intrinsic driving
mechanism of the ecological environment evolution.

2.2.2 RSEI model
The Remote Sensing Ecological Index (RSEI) was a

comprehensive method for evaluating the EEQ, which differed
from the traditional ecological index. It coupled four natural
indicators, namely, NDVI, WET, LST and NDBSI, through
principal component analysis to objectively reflect the EEQ, with
the value ranging from 0 to 1, and the larger the value represented
the better the EEQ; moreover, the method removed the influence of
subjective anthropogenic factors, and it was a kind of objective
monitoring and evaluation of the regional EEQ (Xu et al., 2019;
Zhou et al., 2024). Among them, two indicators, greenness and
dryness, could reflect the land cover changes caused by human
activities, and humidity and heat could reveal the response of EEQ to
climate change, therefore, by combining these four ecological and
natural factors that are closely related to human survival, the
strengths and weaknesses of regional EEQ were intuitively
reflected (Du et al., 2024). Initially, it was been used as an
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assessment index for the evaluation of the status of the urban
ecological environment and, in the course of its development, it
was been widely used in the assessment of the ecological
environment.

2.2.2.1 Greenness
The Normalised Vegetation Index (NDVI) reflects the

vegetation cover in the region and can be used to provide a
comprehensive understanding of the spatial distribution of

FIGURE 1
Myanmar study area.

FIGURE 2
Research framework.
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vegetation and vegetation density across the study area from remote
sensing data. The formula is calculated as in Equation 1 below:

NDVI � ρNIR − ρred
ρNIR + ρred

(1)

In the formula: ρNIR and ρRED are the near-infrared band and
red band reflectivity.

2.2.2.2 Wetness
Moisture can reflect the ecological environment in the soil

moisture, through the soil moisture composition characterisation
of surface water body conditions, to reflect the degree of EEQ, so it is
an important indicator for monitoring the environment, which is
inverted by remote sensing tassel cap transformation. The formula is
as in Equation 2:

WET � c1ρblue + c2ρgreen + c3ρRED + c4ρNIR + c5ρswir1 + c6ρswir2 (2)

2.2.2.3 Dryness
Dryness characterized the dryness of the land and consisted of

the normalized building bare soil index and the normalized building
index. Calculate the formula as in Equations 3–5:

SI � ρswir1 + ρred( ) − ρblue+ρnir( )[ ]
ρswir1 + ρred( ) + ρblue+ρnir( )[ ] (3)

IBI �
2ρswir1

ρswir1+ρnir −
ρnir

ρnir+ρred +
ρgreen

ρgreen+ρswir1( )
2ρswir1

ρswir1+ρnir +
ρnir

ρnir+ρred +
ρgreen

ρgreen+ρswir1( ) (4)

NDBSI � IBI + SI
2

(5)

2.2.2.4 Heat
Heat is represented by surface temperature, which plays an

important role in vegetation growth and is also an extremely
important part of measuring environmental change, and surface
temperature inversion provides insight into the spatial distribution
of surface temperature and changes in surface temperature across
the region. The formula is calculated as in Equation 6 below:

LST � 0.02 *DN − 273.15 (6)

2.2.3 Local spatial autocorrelation
Local spatial autocorrelation analysis explored the spatial

similarities and distribution characteristics of geographic
phenomena (Ding et al., 2024). Commonly used metrics were
Moran’s I and Local Moran’s I. Local Moran’s I could reveal the
degree of autocorrelation between each geographic unit and its
neighbouring units, helped to identify agglomeration or discrete
patterns, and accurately identified the spatial location and extent of
agglomerations, thus revealing spatial heterogeneity. The method
consisted mainly of the following steps: firstly, identifying the study
area and its geographical units; secondly, calculating the local
autocorrelation value of each unit; and finally, identifying areas
with significant autocorrelation through the significance test (Ai
et al., 2024). This analysis provided a scientific basis for spatial
planning and policy-making by providing an in-depth

understanding of the structure and distribution of spatial data.
The formula is calculated as in Equation 7 below:

Ii � Xi − X0

S2
∑n

j�1,j ≠ 1

wij xj − x0( ) (7)

In the formula: S is the standard deviation of each individual
observation, wij is the row-standardised spatial weight matrix; the
range of I values lies in [-1, 1], and for a given level of significance,
the observations in the region are spatially clustered when I is
significantly positive, spatially dispersed when I is significantly
negative, and independently randomly distributed among the
observations when the value of I is zero.

2.2.4 Geographical convergent cross mapping
model (GCCM)

The geographically convergent cross-mapping model was a
method for the identification of causal relationships and the
estimation of causal effects on the basis of spatial cross-sectional
data by integrating the theory of dynamical systems and the
generalised embedding theory (Gao et al., 2023). Based on
dynamical systems theory, if the independent variable X and the
dependent variable Y were observed from the same dynamical
system and controlled by the same manifold M, then the
relationship of one-to-one mapping between Mx and My could
be obtained.

Ŷs

∣∣∣∣∣∣∣∣∣Mx � ∑L+1
i�1

wsiYsi|Mx( ) (8)

wsi

∣∣∣∣∣∣∣∣∣Mx � weight Ψ x, si( ),Ψ x, s( )[ ]
∑L+1
i�1

weight Ψ x, si( ),Ψ x, s( )[ ]
(9)

weight Ψ x, si( ),Ψ x, s( )[ ] � exp −dis Ψ x, si( ),Ψ x, s( )[ ]
dis Ψ x, s1( ),Ψ x, s( )[ ]{ } (10)

In Equations 8–10, s is the spatial unit in which the value of Y is
predicted; Ŷs is the prediction result; L is the dimension of the
embedding; si is the spatial unit used in the prediction; Ysi is the
observation at si and is simultaneously the first component of the
state in My, denoted Ψ(y, si); and wsi is the corresponding weights
defined in Equation 8. Ψ(y, si) is determined by its one-to-one
mapping point Ψ(x, si), and in addition, Ψ(x, si) is the L+1 nearest
neighbour of the focal state Ψ(x, s) in the state spaceMx. Weight ( )
is the weight function between two states in the shadow manifold;
exp ( ) is the exponential function; dis ( ) is the distance between two
states in the shadow manifold function.

The cross-mapping prediction effect is measured by the
Pearson’s correlation coefficient ρ between the true observations
and the corresponding predicted values with the following formula:

ρ � Cov Y,Ŷ( )
VarYVarŶ

√ (11)

In Equation 11, Cov(Y, Ŷ); Var(Y) is the variance of Y; Var(Ŷ) is
the variance of Ŷ.

2.2.5 Geodetector
Geodetector was an exploratory method based on spatial

heterogeneity to analyze the impact of driving factors on
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indicators (Wang and Xu, 2017). This method was based on the
similarity in the spatial distribution of independent and dependent
variables. The advantage of this method was that it could analyze
both categorical and qualitative data and identify interactions
between two factors. It was widely used in the study of spatial
differentiation of geographic elements. The formula is calculated as
in Equation 12 below:

q � 1 −
∑L
h�1

Nh * σ
2
h

N * σ
2

(12)

In the formula, q is the size of the influence of the driver factor
on the indicator, the value is between 0 and 1, the larger the value,
the stronger the influence; N is the sample of the study area; is the
variance of the indicator; h is the grading, L is the number of grading
strata, h = 1, 2, 3, . . . , L.

3 Result

3.1 RSEI correlation with component
indicators

To verify the effectiveness of the RSEI in assessing EEQ, this
study analyzed the correlation between the RSEI and its component
indices. The principal component analysis (PCA) results indicated
that the four principal components for Myanmar in 2020 were
79.08%, 15.93%, 4.95%, and 0.03%, respectively. The first principal
component (PC1) had a variance contribution rate of 79.08%,
showing that it effectively integrated the information from the
four indicators: NDVI, WET, NDBSI, and LST, thus providing a
comprehensive reflection of the EEQ. Correlation analysis (Figure 3)
further revealed the quantitative relationships between the RSEI and
each of the indices. NDVI and WET were found to be significantly
positively correlated with the RSEI, while NDBSI and LST were
significantly negatively correlated with it. This indicated that indices
with positive effects on EEQ (such as vegetation coverage) increased
as the RSEI value rose, whereas indices with negative effects (such as
built-up land) decreased as the RSEI value rose. The strong
correlations between the RSEI and its component indices
confirmed the reliability and effectiveness of the RSEI in
providing a comprehensive assessment of EEQ.

3.2 Assessment of EEQ in Myanmar

To more accurately assess and quantify the spatial distribution
characteristics of Myanmar’s EEQ in 2020, the RSEI model was used
for evaluation. The EEQ values were divided into five categories with an
interval of 0.2: Excellent (0.8–1), Good (0.6–0.8), Moderate (0.4–0.6),
Fair (0.2–0.4), and Poor (0–0.2) (Figure 4). The results indicated that
Myanmar’s EEQ exhibited significant spatial heterogeneity. Overall, the
EEQwas higher in the eastern andwesternmountainous regions and the
northern areas, while it was lower in the central plains and southern
coastal regions. The “Excellent” and “Good” categories accounted for
16.91% and 60.05% of the total land area, respectively, while the
“Moderate,” “Fair,” and “Poor” categories accounted for 17.00%,
5.45%, and 0.05%, respectively. This suggests that Myanmar’s overall
ecological environment was relatively good, with areas of high-quality
EEQ significantly larger than those of low-quality EEQ.

To further explore the spatial variation of EEQ, latitude and
longitude profile analyses were conducted. The latitude profile
analysis (from north to south) showed a complex fluctuating trend
in EEQ. The northern regions generally had higher EEQ values, but two
areas with relatively low EEQ are observed at 150–450 km and
1,000–1,100 km from the northern border. These areas might be
associated with higher population density and dense industrial and
agricultural activities. In contrast, the regions between 600–900 km
from the northern border showed relatively stable EEQ values, likely
due to less human interference and favorable natural conditions. The
longitude profile analysis (from west to east) revealed that the EEQ
values in the range of 100–400 km from the western border were
relatively low, while those between 0–100 km and 400–900 km
maintained higher EEQ levels. The lower EEQ in the central region
might be attributed to high population density, frequent human
activities, and rapid urban expansion. Conversely, the eastern and
western regions, dominated by mountains and plateaus, exhibited
higher EEQ, which could be attributed to extensive forest cover,
favorable natural conditions, and stable ecosystems.

3.3 Characterisation of EEQ spatial
clustering in Myanmar

The spatial clustering characteristics of Myanmar’s EEQ showed
significant positive spatial correlation (Moran’s I = 0.75, P < 0.001),

FIGURE 3
Correlation of components with RSEI. (A) is the correlation between WET and NDVI RSEI, (B) is the correlation between LST and NDBSI RSEI.
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indicating a strong clustering trend (Figure 5). Specifically, high-
high clusters were mainly distributed in the eastern, western, and
northern mountainous regions, accounting for 35.65% of the total
land area, while low-low clusters are primarily concentrated in the
central plains and southern coastal areas, covering 19.70% of the
total land area. Additionally, at the 0.001 significance level, 44.18%
of the area exhibited spatial autocorrelation; at the 0.01 significance
level, 17.61% of the area showed spatial autocorrelation; and at the
0.05 significance level, 17.28% of the area demonstrated spatial
autocorrelation. This indicates that the spatial clustering pattern
of Myanmar’s EEQwas statistically significant. High clustering areas
were mainly located in the complex terrain regions of the eastern,
western, and northern parts of Myanmar, where forest cover was
high. These regions were subject to minimal human disturbance,
which helped maintain ecological stability. In contrast, low
clustering areas were concentrated in the central plains and
southern coastal regions, where human activities were more

frequent, and the areas were heavily influenced by agricultural
expansion and urbanization. These regions have sparse vegetation
and fragile ecosystems, leading to lower EEQ values.

3.4 Correlation analysis between EEQ and
factors in Myanmar

The study used the Geodetector model to analyse the correlation
and interaction between these factors in order to quantitatively
assess the impact of various factors on Myanmar’s EEQ (Figure 6).
The results showed that the explanatory power of the different
factors differed significantly from each other. X8 (q = 0.62), X3 (q =
0.50), X7 (q = 0.49), and X6 (q = 0.42) were identified as the
dominant factors influencing Myanmar’s EEQ, with q-values all
greater than 0.40. X2 (q = 0.32) and X10 (q = 0.26) also
demonstrated some explanatory power, whereas X5 (q = 0.09),

FIGURE 4
Myanmar EEQ Assessment (A). Spatial distribution of Myanmar EEQ at various levels, (B). Variation of Myanmar EEQs in latitude, (C). Variation of
Myanmar EEQs in longitude.

FIGURE 5
Myanmar EEQ spatial clustering characteristics (A). Myanmar EEQ various spatial clusters and their share, (B). Myanmar EEQ clustering
characteristics significance, (C). Myanmar EEQ clustering characteristics scatter plot.
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X4 (q = 0.04), X1 (q = 0.02), and X9 (q = 0.01) had relatively weaker
influences. This suggests that land use, human footprint, NPP, and
slope are the key drivers of the spatial and temporal variations in
Myanmar’s EEQ.

Additionally, the Geodetector analysis revealed significant
interactions between the influencing factors. X2∩X3 (q = 0.60),
X6∩X3 (q = 0.61), X7∩X3 (q = 0.66), X8∩X7 (q = 0.71), X8∩X3
(q = 0.71), and X10∩X3 (q = 0.61) exhibited notable bivariate
enhancement effects, indicating synergistic effects between these
factors that jointly influence EEQ. On the other hand, X2∩X5 (q =
0.41) and X5∩X10 (q = 0.37) showed significant nonlinear enhancement
effects, uncovering potential interactive influences of climate and
topography on the ecological environment. These findings from the
Geodetector model highlight the complex driving mechanisms behind
the changes in Myanmar’s EEQ, revealing significant correlations and
interactions between natural and socio-economic factors.

3.5 Causal analysis of Myanmar EEQ
with factors

To further investigate the causal relationships between EEQ and
its influencing factors, the study employed the GCCM model for
causal inference and estimation of causal strength (Figure 7). The
results showed significant causal relationships between EEQ and
factors such as X10 (ρ = 0.43, P < 0.001), X7 (ρ = 0.54, P < 0.001), X6
(ρ = 0.46, P < 0.001), and X3 (ρ = 0.56, P < 0.001), with causal
strength (ρ) values exceeding 0.40. These findings suggested that
these factors were the key drivers of changes in Myanmar’s EEQ.
Additionally, X2 (ρ = 0.30, P < 0.001), X5 (ρ = 0.26, P < 0.001), and
X8 (ρ = 0.23, P < 0.001) also showed some causal relationships with
EEQ, with ρ values ranging between 0.20 and 0.30. However, X9 (ρ =
0.02, P < 0.001), X1 (ρ = 0.20, P < 0.001), and X4 (ρ = 0.00, P > 0.05)
exhibited weak or insignificant causal relationships with EEQ.

Overall, factors such as DEM, slope, NPP, and human footprint
were identified as the primary drivers influencing Myanmar’s EEQ,
with significant causal relationships. Temperature, precipitation,
and land use also had some causal effects on EEQ, but their
impact strength was relatively weaker. Meanwhile, socio-
economic factors (X9 and X4) showed either weak causal links or
no direct causal relationships with EEQ. The causal relationships
revealed by the GCCM model corroborated the findings from the

Geodetector analysis, highlighting the crucial roles of both natural
environmental factors and human activities in shaping the
spatiotemporal patterns of Myanmar’s EEQ.

4 Discussion

4.1 Spatial pattern of EEQ in Myanmar based
on RSEI

This study, based on the RSEI model, quantitatively assesses
Myanmar’s EEQ in 2020, revealing its spatial differentiation
characteristics and clustering patterns. The results show that
Myanmar’s overall EEQ is relatively good but exhibits significant
spatial heterogeneity. The EEQ is higher in the eastern, western, and
northern mountainous areas, while it is lower in the central plains and
southern coastal regions. This spatial differentiation pattern is closely
related to the region’s natural geographic conditions and the intensity of
human activities. The EEQ differences across regions reflect the spatial
imbalance of natural resource endowments and socioeconomic
development levels. Specifically, the complex terrain and good
vegetation cover in mountainous areas provide a superior ecological
background, whereas the intense agricultural development and
urbanization processes in the plains and coastal areas lead to
environmental degradation. This differential distribution is closely
related to the terrain, vegetation coverage, population distribution,
and socioeconomic development levels of different regions. Wang
et al. (2022) research in northern Anhui finds that areas with higher
terrain complexity and vegetation cover tend to have better EEQ. Zhang
Y. et al. (2022) demonstrated in metropolitan areas demonstrates that
regionswith higher population density, higher levels of urbanization, and
stronger economic development typically exhibited lower EEQ due to
the intensity of human activities. Similarly, Hui et al. found in their study
of Hunan that natural conditions were extremely important factors
influencing EEQ, while human activities were the primary drivers of its
degradation (Hui andCheng, 2024). These findings alignwith the results
of this study, demonstrating that both natural geographic features and
human activities jointly shape the spatial pattern of regional EEQ.
Additionally, Liao used an improved RSEI with information
granulation to assess the spatiotemporal changes of EEQ in the
ASEAN countries from 2000 to 2021 (Liao, 2022). The results
showed that the overall EEQ was relatively good, with 40.36% of the

FIGURE 6
Influences affecting EEQ in Myanmar (A). Contribution, ranking of influences, (B). Interactions.
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areas being in a good condition, and the areas with extremely poor or
extremely good EEQwere relatively small. Similarly, Jin et al. monitored
the EEQ of coastal East Asia and Southeast Asia using the Continuous
Remote Sensing Ecological Index (CRSEI) (Jin et al., 2023). They found
that the overall EEQ remained stable, with the EEQ in Myanmar’s
coastal regions staying relatively stable, while the EEQ of some Southeast
Asian countries, especially the continental coasts of Vietnam and
Cambodia, had significantly declined. The findings of these studies
are both similar and different to those of this research. The similarity lies
in the overall good EEQ, with some coastal areas having relatively poor
EEQ, and the areas with extremely poor or poor EEQ occupying a
smaller proportion. The difference, however, is that the proportion of
areas with extremely good EEQ in Myanmar is relatively high.

Spatial autocorrelation analysis further reveals the spatial
dependence characteristics of Myanmar’s EEQ. Local spatial
autocorrelation analysis not only identifies the spatial clustering
trend of EEQ but also identifies the high-high and low-low
clustering areas, corresponding to regions with relatively good and
poor EEQ, respectively. The high-high clustering pattern is found to be
concentrated in the eastern, western, and northern mountainous areas,
while the low-low clustering pattern is concentrated in the central plains
and southern coastal areas. This spatial clustering pattern reflects, on the
one hand, the controlling effect of stable natural environments on EEQ
and, on the other hand, shows that similar natural conditions and
human activity intensity lead to convergence in the EEQ of adjacent
regions. Xiong et al. (2021) pointed out that the spatial autocorrelation
of EEQ reflected the spatial spillover effects of ecosystem services, with
high-quality ecological environments typically concentrated in regions
with superior natural environments and less human interference, while
low-quality environments were commonly found in areas of frequent
human activity. Zhang et al. (2023) also found in their study of

northeastern China that regions with high and low EEQ exhibited
significant spatial clustering, closely related to regional development
imbalances. Therefore, the spatial pattern of EEQ is not only
determined by local natural conditions and human activities but is
also significantly influenced by surrounding areas. This highlights the
importance of considering spatial relationships and differences when
formulating ecological protection and restoration policies and suggests
that tailored ecological management measures should be implemented
based on local conditions.

Overall, the RSEI model effectively assesses and characterizes
regional EEQ, and through local spatial autocorrelation analysis,
provides empirical support for a deeper understanding of the
interaction between human activities and the natural
environment in Myanmar’s spatiotemporal patterns.

4.2 Driving mechanisms of the spatial
pattern of EEQ in Myanmar

The results from the Geodetector and GCCM models indicate that
land use, human footprint, NPP, and slope are the dominant factors
influencing the spatial pattern of EEQ in Myanmar. Factors such as
temperature, precipitation, and land use patterns also have some
influence, while socioeconomic factors like population density,
nighttime light, and GDP show a relatively weak relationship with
EEQ. These findings are similar to the study conducted by Xu et al. in
China, which highlighted the significant impact of terrain complexity
and vegetation cover on EEQ, followed by the intensity of human
activities and land use patterns (Xin et al., 2014). Similarly, Zhao et al.
found in their research on northeast China that natural factors (terrain,
climate, and vegetation) primarily determined the spatial differentiation

FIGURE 7
Causal relationship between influencing factors and EEQ. (A–J represent the causal relationship between influences X1~X10 and EEQ).
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of EEQ, while human factors (land use and urbanization levels) had a
relatively smaller impact (Zhao et al., 2025). These studies suggest that
the spatiotemporal patterns of EEQ exhibit certain universality across
regions, though the relative importance of influencing factors may vary
based on regional natural endowments and human activity
characteristics.

It is noteworthy that the Geodetector analysis revealed significant
interactions among the driving factors of EEQ, indicating that these
factors do not operate independently but are interrelated and mutually
constrained. This aligns with the complexity and nonlinearity of
ecosystems. Some studies have shown that natural elements such as
terrain, climate, vegetation, and soil exhibit intricate interactions and
feedback mechanisms that collectively affect ecosystem structure and
function. Simultaneously, human activities, through changes in land
use, resource exploitation, and environmental pollution, directly or
indirectly influence natural ecological processes, thus affecting EEQ.
This finding is similar toWaseem et al.’s study, which found that urban
expansion degraded natural vegetation, affecting local microclimates
and hydrological processes, ultimately reducing EEQ (Waseem et al.,
2021). At the same time, the study by Li et al. is similar, as they found
that urban expansion led to the degradation of natural vegetation, which
affected local microclimates and hydrological processes, ultimately
reducing EEQ (Li et al., 2013). Additionally, Yu et al. emphasized in
their study in Beijing, China, that urban expansion is one of the main
causes of many ecological and environmental issues in urban and
surrounding areas, pointing out the complex interactions between
socioeconomic factors and natural factors (Yu et al., 2023).

The causal relationships revealed by the GCCM model further
validate the results of the Geodetector analysis, confirming that
terrain (elevation, slope), NPP, and human activities are key factors
driving the spatial pattern of EEQ in Myanmar, while temperature,
precipitation, and land use show strong causal relationships with
EEQ. This finding is supported by Guo et al. based on the GCCM
model, which identified vegetation cover, climate, and GDP as key
factors driving regional ecological changes. The causal relationships
between population density, NPP, and ecosystem health are found to
be weaker (Guo et al., 2024). Similar to this finding, Yang et al. also
reached a similar conclusion in their study on ecosystem services,
stating that vegetation cover, climate, and GDP are key drivers of
regional ecological changes, while the causal relationships between
population density, net primary productivity, and ecosystem health
are relatively weak (Yang Y. et al., 2024).

Additionally, the study finds that correlation analysis and causal
analysis reveal different aspects of the human-environment
relationship. Correlation analysis focuses on describing the
strength and direction of the relationship between variables but
cannot determine causality. Causal analysis, on the other hand,
identifies the causal dependencies and direction of influence
between variables, though it is somewhat limited in depicting the
interactions and feedback effects within complex systems. Therefore,
combining correlation and causal analyses, while considering the
complexity and nonlinearity of human-environment systems, is
crucial for understanding the mechanisms behind the formation
of EEQ. In future studies, there is a need to expand the applicability
of causal inference models like GCCM, enhancing their ability to
represent complex interactions and feedback effects. Furthermore,
the integration of data-driven analysis with mechanistic models
should be strengthened to simulate the dynamic evolution of

human-environment systems at multiple spatiotemporal scales,
more comprehensively revealing the mechanisms and driving
processes behind the spatiotemporal patterns of EEQ.

4.3 Recommendations for ecological
environmental protection and sustainable
development in Myanmar

The spatial differentiation patterns and driving mechanisms of
Myanmar’s EEQ provide important scientific evidence for regional
ecological management. Targeted ecological protection and
restoration strategies should be developed for areas with different
EEQ levels. In regions with “Excellent” and “Good” EEQ, such as the
eastern, western, and northern mountainous areas, ecological protection
should be prioritized, with strict restrictions on human activities to
maintain a strong natural ecological baseline. In contrast, for areas with
“Poor” and “Very Poor” EEQ, such as the central plains and southern
coastal regions, ecological restoration should be carried out through
measures such as adjusting land use structure, increasing vegetation
cover, controlling pollution, and improving the stability and resilience of
ecosystems. For areas with “Moderate” EEQ, regional coordination
should be strengthened, with a focus on protecting native vegetation,
increasing plant cover, and prioritizing ecological restoration tomaintain
ecosystem integrity. Additionally, the interactions between various
influencing factors and regional differences should be fully
considered. For example, in areas with complex terrain and rich
vegetation, the protection of native vegetation and the maintenance
of ecosystem integrity should be prioritized. In densely populated and
highly developed areas, land use management should be strengthened,
with strict adherence to ecological red-line policies, aiming to improve
land use efficiency. Furthermore, ecological protection and socio-
economic development are not mutually exclusive, but rather
complementary and mutually reinforcing. A healthy ecological
environment is the foundation for sustainable socio-economic
development, while the green transformation of the economy helps
improve environmental and economic quality. Therefore, while
promoting ecological civilization construction, Myanmar should also
accelerate economic structural adjustment, vigorously develop green
industries, adopt clean production technologies, and implement
energy-saving and emission-reduction technologies. By exploring
mechanisms for realizing the value of ecological products, a win-win
outcome for both environmental protection and socio-economic
development can be achieved.

4.4 Limitations and future prospects of
the study

This study establishes a comprehensive technical framework for
spatial differentiation and attribution analysis of EEQ. Based on
revealing the spatial pattern of EEQ, it further explores the
interactive effects and causal mechanisms of natural and socio-
economic factors on EEQ, providing a new perspective for the study
of human-environment interactions. This comprehensive
framework is not only applicable to exploring EEQ in Myanmar
or a specific region, but can also be extended to other countries and
regions to study the spatial patterns of EEQ in these areas,

Frontiers in Environmental Science frontiersin.org10

Shi et al. 10.3389/fenvs.2025.1514008

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1514008


uncovering the interactions and causal relationships between factors
influencing EEQ, and gaining a deeper understanding of their
driving mechanisms. Furthermore, although this study
innovatively combines the Geodetector model and the GCCM
model to quantitatively express the interactions and causal
relationships between the factors influencing EEQ, thereby
overcoming the limitations of traditional statistical models and
effectively identifying non-linear relationships and complex
interactions among variables, some limitations still exist.

Firstly, this study only evaluates the EEQ of Myanmar for the
year 2020 and analyzes its driving mechanisms, without conducting
a comprehensive analysis over a longer time scale. The study lacks an
investigation into temporal changes. Secondly, the interactions and
feedback mechanisms within ecosystems are highly complex. In this
study, only 10 key factors, such as topography, climate, vegetation,
land use, and human activities, were selected. However, this does not
mean that other factors do not affect EEQ. Additionally, although
this study innovatively combines the Geodetector model with the
GCCM model, the Geodetector model can only analyze the
interactions between two factors and cannot assess the
interactions among multiple factors. Therefore, future research
could extend across multiple temporal and spatial scales,
incorporate multi-source data, and use interdisciplinary methods.
Further inclusion of more natural and socio-economic factors would
help explore long-term changes in EEQ and their driving
mechanisms, thus enhancing the applicability of this framework.
Furthermore, future studies could consider using more advanced
statistical methods, machine learning models, or improving existing
models to enhance the accuracy of EEQ assessments and further
explore the interactions and causal relationships between
influencing factors and EEQ. Improving the accuracy and
reliability of EEQ evaluation and prediction would provide more
comprehensive and reliable decision-making support for regional
sustainable development.

5 Conclusion

This study focuses on Myanmar as the research area and
constructs a comprehensive technical framework for EEQ
assessment, using the RSEI model, spatial autocorrelation,
geographic detector, and GCCM model, as well as the
quantitative expression of multi-factor interactions and causal
relationships. This framework is applied to analyze the spatial
differentiation of EEQ and its driving factors. The main
conclusions of the study can be summarized as follows.

1) The distribution of EEQ exhibits significant spatial
heterogeneity and regional differences. Areas with intensive
human activity have poorer EEQ, while regions with complex
terrain and higher vegetation cover have better EEQ.

2) EEQ exhibits spatial dependence and significant geographic
regionality. High-quality areas are concentrated in regions
with complex terrain and good vegetation, while low-quality
areas are located in regions with frequent human activity.

3) DEM, slope, NPP, land use, and human footprint are the key
drivers of spatial differentiation in EEQ. Significant
interactions exist between these factors, revealing the

complex mechanisms driving ecological and environmental
changes, emphasizing the importance of comprehensively
analyzing the interrelationships of various driving factors.

4) DEM, slope, NPP, and human footprint have significant causal
effects on EEQ, indicating that both natural and socio-
economic factors have a significant impact on EEQ.

In conclusion, this study proposes a comprehensive technical
framework for analyzing the spatial differentiation of EEQ and its
causal mechanisms, expanding traditional ecological environment
assessment methods. The framework allows for the quantitative
expression of multi-factor interactions and causal relationships,
thereby broadening the research paradigm of human-
environment interactions.
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