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With the intensification of global climate change and environmental degradation,
the goals of carbon peaking and carbon neutrality have become crucial strategies
for promoting sustainable development in various countries. However, most
studies on ecological environment quality (EEQ) focus on urban areas, with
limited attention to county-level analyses, particularly regarding the complex
interactions between climate, topography, and human activities. This study aims
to address this gap by investigating the spatiotemporal evolution and
multidimensional driving factors of EEQ in 107 counties of Shaanxi Province,
China. Using the Google Earth Engine (GEE) platform and MODIS imagery, along
with methods such as the Remote Sensing Ecological Index (RSEI), Hurst
exponent, and GeoDetector, this study analyzed the evolutionary
characteristics and driving mechanisms of county-level EEQ, and explored
improvement and management strategies for different types of county EEQ
within the framework of dual carbon goals. The results indicate that: 1) From
2000 to 2020, the overall EEQ in Shaanxi Province showed a fluctuating upward
trend, improving from a moderate level to a good level, although some counties
experienced slight degradation from 2010 to 2020. 2) The spatial distribution of
county-level EEQ displayed a “low-high-low-high” gradient from north to south,
indicating superior ecological conditions in the southern and central-northern
counties, while northern regions faced significant ecological challenges. 3) The
future trend of EEQ in Shaanxi Province is expected to be one of continuous
improvement, although attention must be paid to the ongoing degradation risks
in highly urbanized areas. 4) The spatial differentiation of county-level EEQ is
primarily driven by climate factors and influenced by the synergistic effects of
multiple factors. For counties with varying levels of EEQ, it is essential to
comprehensively consider the interactions between climate, topography, and
human factors, and to implement tailored carbon sequestration enhancement
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strategies. The results not only propose targeted approaches to reinforce carbon
storage but also offer valuable policy guidance, thereby making a significant
contribution to achieving the dual carbon goals at the county level.

KEYWORDS

remote sensing ecological index (RSEI), hurst exponent, google earth engine (GEE),
geodetector, dual carbon goals

1 Introduction

The intensification of global climate change and environmental
degradation presents a significant challenge for contemporary
society (Zhao and You, 2020; Raven and Wagner, 2021; Arshad
et al., 2024). Climate change profoundly impacts global ecosystems
and places considerable pressure on economic development, food
security, and social stability in various countries (Gebara et al., 2023;
Tang H. et al., 2024; Wang et al., 2024a). In response to these
pressing issues, the concept of “dual carbon” goals has emerged as a
pivotal strategy in global environmental policy (Xinfa and Xue,
2022; Wang P. P. et al., 2024). The dual carbon goals refer to the
commitment to achieve peak carbon dioxide emissions and attain
carbon neutrality within specified timeframes (Zhao et al., 2022).
Within the context of China, the world’s largest emitter of carbon
dioxide, the dual carbon goals hold particular importance. China has
pledged to peak its carbon emissions before 2030 and achieve carbon
neutrality by 2060, aligning with the global commitments outlined
in the Paris Agreement (Xinfa et al., 2023). This ambitious objective
necessitates a transformation of the energy structure, industrial
upgrades, and substantial improvements in ecological protection
and carbon sequestration capacity (Li et al., 2023c). A high-quality
ecological environment can effectively mitigate carbon emissions
and enhance the stability and resilience of ecosystems by bolstering
natural carbon sequestration capabilities (Dang et al., 2024). In
central China, Shaanxi Province, with its complex geographic
features and diverse landforms, faces numerous challenges in
improving ecological quality (Zou et al., 2022b). Consequently,
examining changes in EEQ and enhancement strategies in the
context of dual carbon goals in Shaanxi can offer valuable
theoretical insights and practical experiences for the province and
beyond, and is of significant importance for achieving global carbon
reduction targets.

The quality of the ecological environment is a key indicator of a
country or region’s capacity for sustainable development (Fang et al.,
2023; Gebara and Laurent, 2023; Li et al., 2023b). Substantial
progress has been made in research on EEQ, resulting in the
development of various methods for monitoring and evaluation,
including the Analytic Hierarchy Process, Ecological Footprint
Analysis, and Integrated Ecological Index (Tothova and
Heglasova, 2022; Zhang Z. et al., 2022; Roesch et al., 2023).
However, traditional methods in long-term ecological monitoring
and analysis face significant challenges, such as difficulties in data
acquisition, strong subjectivity in indicator selection, and limitations
in the accuracy of evaluation results (Beaussier et al., 2019; Liao and
Jiang, 2020; Tothova and Heglasova, 2022). In contrast, satellite
remote sensing technology offers significant advantages, including
ease of data acquisition, broad spatial coverage, short revisit periods,
and high spatial resolution, making it an indispensable tool for

environmental monitoring, ecological surveys, and resource
assessments (Zhang H. et al., 2022; Dube et al., 2023).
Researchers globally have extensively explored the feasibility of
using remote sensing indices to monitor and assess
environmental quality. For example, the Normalized Difference
Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI)
are used to monitor vegetation growth (Wang et al., 2024b), the
Standardized Precipitation Evapotranspiration Index (SPEI) is
applied to drought assessment (Qin et al., 2023), and the Land
Surface Temperature (LST) index is utilized to study the urban heat
island effect (Wang et al., 2023). Xu Hanqiu’s Remote Sensing
Ecological Index (RSEI) (Xu HanQiu, 2013), which integrates
greenness, wetness, dryness, and heat, provides a more
comprehensive, accurate, and objective measure of ecological
quality, gaining widespread recognition. RSEI has been applied
across various spatial scales—national, provincial, and urban
clusters—for EEQ evaluation (Liu et al., 2023; Sun J. et al., 2023;
Zhang N. et al., 2023). The traditional method of obtaining RSEI
involves downloading remote sensing images and processing them
using software like ENVI or ArcGIS (Kamran and Yamamoto,
2023). While this method is practical for small-scale and short-
term studies, it presents limitations in data acquisition and analysis
for large areas (e.g., provincial, national, or global scales) over
extended time periods. The GEE platform (Gorelick et al., 2017),
designed for satellite imagery and geospatial data processing,
overcomes these limitations by providing a 40-year data span
with global coverage, making it highly advantageous for long-
term, large-scale remote sensing ecological research (Zhang N.
et al., 2023; Airiken and Li, 2024).

Despite considerable progress in research on EEQ, several
critical issues remain unresolved. Firstly, most studies have
focused on urban areas (Morandi et al., 2020; Casanelles-Abella
et al., 2021; Geng et al., 2022), overlooking assessments and
comparative analyses of EEQ at the county level and smaller
spatial scales. County-level analysis is essential as it captures
spatial heterogeneity and localized ecological dynamics that
broader urban or regional studies may overlook. Counties, as
fundamental administrative units, possess distinct socio-economic
and environmental characteristics that influence ecological quality.
By concentrating on the county level, our study addresses a
significant gap in the existing literature, enabling a more nuanced
understanding of ecological variations and facilitating the
development of targeted, region-specific environmental policies
and strategies. This granular approach enhances the ability to
manage and improve EEQ effectively across diverse local
contexts, promoting more equitable and sustainable ecological
development. Secondly, while significant efforts have been
devoted to exploring the driving mechanisms behind dynamic
changes in EEQ (Geng et al., 2022; Yang et al., 2023; Guo et al.,
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2024), comprehensive and systematic analyses of the interactions
between topography, climate, and human activities are still lacking.
Furthermore, existing research on long-term strategies for
improving EEQ predominantly emphasizes ecological protection
(Xu et al., 2020; Dong et al., 2024), with insufficient consideration of
these strategies within the context of the dual carbon goals.

This study focused on the EEQ at the county level in Shaanxi
Province from 2000 to 2020, aiming to reveal its spatiotemporal
evolution patterns and multidimensional driving mechanisms.
Guided by the dual carbon goals, the research explored strategies
to improve EEQ, tailored to different counties. The main objectives
were: 1) to analyze the spatiotemporal heterogeneity and
sustainability characteristics of county-level EEQ in Shaanxi
Province, utilizing the GEE platform and MODIS imagery; 2) to
quantify the impact of topography, climate, and human activities on
the spatial distribution of EEQ using the Geodetector; and 3) to
propose targeted and practical strategies for improving and
managing EEQ, aligned with the dual carbon goals. These
findings aim to provide scientific support and practical guidance
for the sustainable development of Shaanxi Province and similar
regions globally.

2 Materials and methods

2.1 Study area

Shaanxi Province (Figure 1), situated in central China along the
middle reaches of the Yellow River, serves as a crucial geographic
link between the eastern and western regions of the country (Li Y.
et al., 2023). Economically, it plays a pivotal role in driving
development in western China, with a diverse industrial base
encompassing high-tech industries, manufacturing, energy
production, and modern agriculture. The province is
distinguished by its unique geographical features, with the terrain
transitioning from the Loess Plateau in the north to the Guanzhong
Plain, and finally to the Qinba Mountains in the south, creating a
variety of landforms and a complex ecological landscape.
Additionally, Shaanxi’s counties exhibit a range of development
models, including industrial, agricultural, ecological, and energy-
focused types. These diverse county types display significant
differences in economic development, industrial structure, and
ecological pressures, making Shaanxi a representative and
valuable case for studying EEQ.

2.2 Data

This study utilized five data types: MODIS, topography, climate,
human activities, and administrative boundaries, as detailed in
Table 1. MODIS data were primarily employed to assess the
RSEI, with MOD09A1 used to calculate the WET and NDBSI
indices, while MOD11A2 and MOD13A1 were applied for
quantifying LST and NDVI, respectively. To minimize the impact
of cloud cover on the accuracy of RSEI estimates, MODIS images
from August to September were selected, followed by maximum
value compositing and cloud removal processing. Additionally, the

Modified Normalized Difference Water Index (MNDWI) was used
to remove water bodies in the images.

Topography, climate, and human activity-related data were
mainly used to estimate the driving factors affecting EEQ.
Drawing on existing studies (Chen et al., 2022b; Li D. et al.,
2023), and considering data availability and accuracy, this study
selected ten indicators across three dimensions—topography,
climate, and human activities—to comprehensively evaluate the
drivers of EEQ at the county level in Shaanxi Province.
Topographic factors included elevation (Ⅰ), slope (Ⅱ), aspect (Ⅲ),
and relief degree (Ⅳ), all derived from SRTM DEM data. Climate
factors focused on temperature (Ⅴ) and precipitation (Ⅵ), with
annual averages calculated using the 1-kmmonthly temperature and
precipitation datasets for China (Peng et al., 2017; Peng et al., 2018;
Peng et al., 2019; Shouzhang, 2020) published by Peng Shouzhang’s
research team. Human activity impacts were quantified using four
indicators: population density (Ⅶ), land-use intensity (Ⅷ),
nighttime light intensity (Ⅸ), and land-use carbon emissions (Ⅹ).
Population density, land-use intensity, and nighttime light intensity
were assessed using Worldpop (Tatem, 2017), GlobeLand30 (chen
et al., 2015), and NPP-VIIRS-like NTL data (Chen et al., 2021),
respectively. Land-use carbon emissions were evaluated using both
direct and indirect methods, with direct emissions calculated using
GlobeLand30 data and the carbon emission coefficient method,
while indirect emissions were quantified using the ODIAC
dataset (Oda et al., 2018). Notably, all calculations for the RSEI
and associated driving factors were performed within the
GEE platform.

3 Methodologies

Figure 2 depicts the process of investigating the spatiotemporal
characteristics and enhancement strategies for EEQ at the county
level in Shaanxi Province within the framework of the dual carbon
goals. This process includes: 1) assessment of EEQ; 2) development
of a multidimensional driving system for EEQ; and 3)
multidimensional analysis and optimization strategies for EEQ at
the county level in alignment with the dual carbon objectives.

3.1 Estimation process of RSEI

The RSEI is an index that employs remote sensing technology to
evaluate and monitor EEQ. It consists of four primary indicators:
greenness (NDVI), wetness (WET), temperature (LST), and dryness
(NDBSI) (Xu HanQiu, 2013). By reducing potential biases
associated with human subjectivity in ecological factor analysis,
RSEI improves the objectivity and accuracy of ecological quality
assessments, making it widely applicable in ecological monitoring
and evaluation (Yuan et al., 2021). The calculation methods for the
four indicators are as follows:

NDVI � ρNIR − ρRed
ρNIR + ρRed

(1)

WET � 0.1147ρRed + 0.2489ρNIR1 + 0.2408ρBlue + 0.3132ρGreen

− 0.3122ρNIR2 − 0.6416ρSWIR1 − 0.5087ρSWIR2 (2)
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FIGURE 1
The locations of the study areas.

TABLE 1 The specific information of data.

Type Data name Year Indicator Data source

MODIS MOD09A1 2000–2020 WET and NDBSI https://lpdaac.usgs.gov/products/
mod09a1v061

MOD11A2 LST https://lpdaac.usgs.gov/products/
mod11a2v061

MOD13A1 NDVI https://lpdaac.usgs.gov/products/
mod13a1v061

Topography SRTM DEM 2000 altitude, slope, aspect and relief degree http://gdex.cr.usgs.gov/gdex

Climate 1-km monthly mean temperature dataset for
china

2000, 2010
2020

temperature https://doi.org/10.11888/Meteoro.tpdc.
270961

1-km monthly precipitation dataset for China precipitation https://doi.org/10.5281/zenodo.318572

Human activities Worldpop 2000, 2010
2020

population density https://www.worldpop.org.uk

GlobeLand30 land use intensity and direct carbon
emission

http://www.globallandcover.com

ODIAC indirect carbon emission https://db.cger.nies.go.jp

NPP-VIIRS-like NTL data night light intensity http://nnu.geodata.cn/data

Administrative
boundary

county-level administrative boundary 2020 \ http://www.dsac.cn/
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LST � 0.02 × DNS − 273.15 (3)
NDBSI � SI + IBI( )/2

IBI �
2ρSWIR1

ρSWIR1 + ρNIR1

− ρNIR1

ρNIR1 + ρRed
+ ρGreen
ρGreen + ρSWIR1

[ ]
2ρSWIR1

ρSWIR1 + ρNIR1

+ ρNIR1

ρNIR1 + ρRed
+ ρGreen
ρGreen + ρSWIR1

[ ]
SI � (ρSWIR1 + ρRed − ρNIR1 + ρBlue( )

ρSWIR1 + ρRed( ) + ρNIR1 + ρBlue( )

(4)

where, ρRed, ρGreen, ρBlue, ρNIR, ρSWIR1 and ρSWIR2 represent the red,
green, blue, near-infrared, shortwave infrared 1, and shortwave
infrared two bands of MODIS imagery, respectively, while DNS

indicates the grayscale value of the imagery. Additionally, SI and IBI
stand for the soil index and the built-up index, respectively.

Given the differing units of measurement for the various
indicators (Equations 1–4), a range normalization method (Singh
and Singh, 2020) was applied to standardize the data. Subsequently,
RSEI was constructed using Principal Component Analysis (PCA)
(Kherif and Latypova, 2020). A higher RSEI value signifies better
EEQ. According to established classification standards for RSEI
(Yang et al., 2023; Zhang X. et al., 2023), EEQ was categorized
into five levels: worst (0–0.2), poor (0.2–0.4), moderate (0.4–0.6),
good (0.6–0.8), and excellent (0.8–1).

To validate the accuracy of the RSEI estimates, this study
conducted a correlation analysis between the 2020 RSEI results
and the China High-Resolution Ecological Environment Quality
Dataset (CHEQ). The analysis produced an R2 of 0.69 and an RMSE
of 0.12, demonstrating robust accuracy and reliability. These results

confirm the suitability of RSEI for further research and practical
applications.

3.2 Mann-Kendall test

The Mann-Kendall test is a quantitative, non-parametric
method commonly used for significance testing in time series
data (Dad et al., 2021). It is robust against outliers, making it a
reliable tool for trend detection. The calculation formula is
as follows:

S � ∑n−1
i�1

∑n
j�i+1

sign
Indexj − Indexi

j − i
( ) (5)

Var S( ) � n n − 1( ) 2n + 5( )
18

(6)

Z �

S − 1						
Var S( )√ , S> 0

0, S � 0

S − 1						
Var S( )√ , S< 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(7)

where, Indexi and Indexj represent the values corresponding to the
i-th and j-th elements in the series, sign is the sign function, and n is
the total number of observations. The standardized test statistic Z is
employed to determine significance. If the absolute value of Z
exceeds 1.96, the trend is considered statistically significant at the
95% confidence level.

FIGURE 2
Technology roadmap.
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3.3 Theil-Sen slope

The Theil-Sen slope estimation method is a highly robust non-
parametric analysis technique (Leo et al., 2020). It does not rely on
distributional assumptions, making it effective in mitigating the
effects of missing data and uneven distributions in time series
analysis. One of its key advantages is its resistance to data noise
and outliers, which enables stable and accurate trend assessments.
The calculation formula is as follows:

Sen � Median
Indexj − Indexi

j − i
( ) (8)

where, Indexi and Indexj represent the values corresponding to the
i-th and j-th elements in the sequence, while Median denotes the
median function. The sign of the Sen value indicates the direction of
change in the index, whereas its absolute magnitude reflects the
intensity of the change. A larger absolute value suggests a more
significant change, while a smaller value indicates a more gradual
shift. By combining the Mann-Kendall test with Theil-Sen slope
estimation, the significance of changes in EEQ can be
evaluated (Table 2).

3.4 Hurst exponent

The Hurst exponent is a statistical measure that describes
long-term dependence and self-similarity in time series data,
and it has been widely applied in fields such as hydrology,
economics, climatology, and geology (Grzesiek et al., 2024).
For a given time series Index(t){ }, where t � 1, 2, 3, . . . , n, the
mean series Index(T) and the cumulative deviation X(t,T) are
defined as follows:

Index T( ) � 1
T
∑T
t�1

Index t( ) (9)

X t,T( ) � ∑T
t�1

Index t( ) − Index T( )( ) (10)

If there exists an H such that the range R of the cumulative
deviations and the standard deviation S of the time series satisfy
R/S∝TH, this indicates the presence of the Hurst phenomenon,
with H referred to as the Hurst exponent. When H falls between
0.5 and 1, it signifies significant positive autocorrelation within the
series, with higher H values suggesting a stronger positive correlation
and implying that past trends are likely to continue into the future.
Conversely, if H is between 0 and 0.5, the series exhibits negative
correlation, with values closer to 0 indicating a more pronounced
negative correlation and an increased likelihood of trend reversal in the
near term. When H approaches 0.5, the autocorrelation of the time
series weakens, suggesting that the changes in the series are more
random and lack significant long-term dependence. By combining the
results of the Hurst exponent and Theil-Sen slope estimation, the
sustainability of changes in EEQ can be evaluated (Table 3).

3.5 Geodetector

The Geodetector is a statistical method utilized for analyzing
spatial data, designed to uncover the spatial heterogeneity of
geographical phenomena and their underlying drivers (Lin et al.,
2024). This method comprises four main modules: the factor
detector, interaction detector, risk detector, and ecological
detector. The factor detector evaluates the explanatory power of
individual factors on geographical phenomena, while the interaction
detector investigates the relationships between two factors and their
combined effects. A notable advantage of the Geodetector is its
independence from linear assumptions, enabling it to effectively
address nonlinear relationships and complex interactions, thus
demonstrating considerable robustness (Lin et al., 2024). The
explanatory power of each factor is represented by the q value,
calculated using the following formula:

q � 1 −
∑L
h�1

Nhσ2h

Nσ2

where, N denotes the total sample size, Nh represents the classified
sample size, σ2 refers to the variance of the entire sample, σ2h indicates
the variance of the classified samples, and L is the number of selected
factors. The q value ranges from 0 to 1, with its magnitude directly

TABLE 2 Classification of EEQ change trends.

Theil-sen
(sen × 10−4)

Mann-
kendall (Z)

Trend

< −5 < −1.96 Severe deterioration

< −5 −1.96~1.96 Slight deterioration

−5~5 −1.96~1.96 Stable

≥5 −1.96~1.96 Slight improvement

≥5 ≥1.96 Significant
improvement

TABLE 3 Classification of RSEI change sustainability.

Theil-sen (sen × 10−4) Hurst exponent (H)

0~0.45 0.45~0.55 0.55~1

≤ −5 Deterioration to improvement Random variation Continuous deterioration

≥5 Improvement to deterioration Continuous improvement

−5~5 Almost unchanged Almost unchanged
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reflecting the strength of a factor’s explanatory power. A q value
approaching one signifies that the examined factor almost entirely
determines the spatial distribution of the target variable, demonstrating

significant control; conversely, a q value near 0 suggests a lack of
association between the factor and the target variable, indicating a
negligible impact on its spatial pattern.

FIGURE 3
Average RSEI values of Shaanxi Province cities from 2000 to 2020.

FIGURE 4
(A–E) Average RSEI values of Shaanxi Province counties from 2000 to 2020. (F) Change trend of RSEI in Shaanxi Province from 2000 to 2020.
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4 Results

4.1 Temporal variation analysis of EEQ

From 2000 to 2020, the average RSEI across various regions in
Shaanxi Province demonstrated a significant fluctuating upward
trend, indicating a sustained and effective improvement in the EEQ
throughout the province (Figures 3, 4A–E). Ankang, Hanzhong, and
Shangluo cities, benefiting from favorable natural conditions and
high vegetation coverage, maintained the highest average RSEI
values in the province, thus preserving a healthy ecological status.
In contrast, Yulin City, situated in the Loess Plateau, experienced an
increase in average RSEI from 0.19 in 2000 to 0.36 in 2020, yet it
continues to face challenges regarding its overall ecological quality.
This situation can be attributed to the region’s harsh natural
conditions, including frequent droughts and severe soil erosion,
along with the cumulative ecological pressure resulting from
historical economic development. Xi’an, the city with the highest
level of urbanization, generally enjoys good ecological quality, a
trend bolstered by the positive influence of the southern Qinling
Mountains on regional ecology and the ongoing expansion of urban
greening initiatives. Notably, Tongchuan City achieved the most
significant increase in average RSEI during this period (0.24),
successfully advancing from a moderate level to a good state,
likely due to proactive ecological protection measures and
effective environmental management practices in the area.

4.2 Spatial heterogeneity characteristics
of EEQ

The EEQ in Shaanxi Province exhibited significant spatial
heterogeneity, following a gradient distribution pattern of “low-
high-low-high” from north to south (Figures 4A–E). High-quality
ecological counties were predominantly located in the Qinba
mountainous region of southern Shaanxi and the southern part
of Yan’an in northern Shaanxi, areas that typically possessed a
robust natural ecological foundation. In contrast, ecological quality
in Yulin City, northern Yan’an, and the highly urbanized counties of
the Guanzhong area lagged behind. Between 2000 and 2020,
counties with the worst average RSEI values completely
disappeared, and the number of counties categorized as poor
significantly decreased to nine, primarily concentrated in the
northern Loess Plateau and northern Guanzhong Plain. At the
same time, the number of counties rated as good or excellent
surged to 69, accounting for over 64%, highlighting a substantial
improvement in EEQ.

To better capture the spatial and temporal variations in Shaanxi
Province’s ecological environment and the significance of changes in
ecological quality, the RSEI index was analyzed for different time
periods using the Mann-Kendall test (Equations 5–7) and Theil-Sen
slope estimation (Equation 8) categorized according to Table 2. As
shown in Figures 4F, 5A–D; Table 4, the results indicate that
from 2000 to 2020, EEQ improved significantly across 78.39% of
Shaanxi Province (|Z| ≥ 1.96, passing the 95% confidence
significance test). Slightly improved areas were more dispersed,
accounting for 14.73% (|Z| < 1.96, not passing the 95% confidence
significance test), while severely and slightly degraded areas were fewer

and primarily concentrated in urban centers and peripheral zones,
particularly in the Guanzhong urban agglomeration, likely due to the
environmental pressures of rapid urbanization and industrialization.

Unlike the long-term trend from 2000 to 2020, the 5-year
intervals showed varied patterns of ecological change. From
2000 to 2005, 85.81% of the province experienced ecological
improvement, likely driven by ecological protection policies such
as the “Grain for Green” project and restoration initiatives. During
this period, 81.25% of the region exhibited slight improvement, with
significant gains concentrated in the northern Guanzhong Plain and
southern Loess Plateau. In contrast, slightly degraded areas were
scattered in southern Shaanxi’s Qinba Mountains and urban
expansion zones such as Dingbian County. From 2005 to 2010,
the cumulative effects of policies and diversified ecological
protection measures led to further improvements, with 86.95% of
the region seeing enhanced ecological quality. The proportion of
significantly improved areas increased to 8.29%, though their
distribution became more scattered. However, between 2010 and
2015, nearly half of the province experienced ecological degradation,
particularly in the central and southern parts of the Loess Plateau
and Guanzhong Plain, driven by rapid urbanization and
industrialization. This degradation trend persisted from 2015 to
2020, although the affected areas shifted, concentrating in southern
and central-northern Shaanxi, likely due to intensified human
activity and frequent natural disasters.

To better understand the temporal characteristics of areas with
varying ecological levels, the migration directions of the centroids
for different ecological grades in 2000, 2010, and 2020 were
calculated at 10-year intervals (Figure 5E). From 2000 to 2020,
the centroids of the excellent, good, moderate, poor, and worst
ecological levels were distributed sequentially from south to north.
The migration distances for all levels were notably greater during
2000–2010 compared to 2010–2020. The centroid of the excellent
level was primarily located in Ningshan County, in the northern
Qinba Mountains, with a slight west-to-east shift, likely due to the
stable ecological quality of the Qinba Mountains as a critical
ecological barrier. The centroid of the good level was positioned
at the northern edge of the Qinba Mountains and exhibited the
smallest migration. In contrast, the moderate level had the largest
migration, with its centroid moving from Weicheng District in the
Guanzhong Plain to Fu County in the Loess Plateau, covering
173.17 km between 2000 and 2010, reflecting significant
ecological improvement in the Loess Plateau. The centroid of the
poor level was located in central northern Shaanxi, with a smaller
shift from northern Baota District to northern Ansai District. The
worst level’s centroid was in the northern Loess Plateau and
displayed the second-largest migration range. It moved from
southern Zichang City to southwestern Yuyang District between
2000 and 2010, and slightly southwest to northern Jingbian County
between 2010 and 2020. These migration patterns underscore the
complexity and challenges of improving ecological quality in
this region.

4.3 Sustainability analysis of EEQ changes

To better understand future trends in the ecological quality
of Shaanxi Province, the Hurst exponent (Equations 9, 10) and
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Theil-Sen slopewere calculated for each pixel and classified according to
Table 3. The results are shown in Figure 5F; Table 5. The overall trend
indicates continuous improvement in ecological quality across 83.07%
of the province. However, 5.09% of the area, primarily in the
Guanzhong Plain urban agglomeration and central Hanzhong City,
shows ongoing degradation, reflecting the tension between ecological
protection and economic development during urbanization. Areas
transitioning from improvement to degradation account for 1.06%,
mainly in urban fringe zones that have seen ecological gains followed by

urban expansion over the past 2 decades. The smallest proportion,
0.17%, represents areas shifting from degradation to improvement,
mostly concentrated in Dingbian County. Nearly unchanged regions
make up 2.35%, largely scattered across the Qinba Mountains in
southern Shaanxi, where ecological stability has persisted.
Furthermore, 8.56% of the province has a Hurst index near 0.5,
making it difficult to predict future changes in ecological quality in
these areas. Enhancedmonitoring and timely adjustments to protection
strategies are needed to address potential environmental risks.

FIGURE 5
(A–D) Change trend of RSEI across different periods in Shaanxi Province. (E) Migration of the center of gravity for EEQ in Shaanxi Province from
2000 to 2020. (F) Trends in the sustainability of RSEI in Shaanxi Province from 2000 to 2020.

TABLE 4 Area proportion of RSEI change levels in Shaanxi Province from 2000 to 2020 (%).

Variation level 2000–2005 2005–2010 2010–2015 2015–2020 2000–2020

Severe deterioration 0.03 0.04 0.99 0.28 2.01

Slight deterioration 12.36 11.43 50.41 32.90 3.50

Stable 1.79 1.58 3.12 3.42 1.38

Slight improvement 81.25 78.66 45.32 61.09 14.73

Significant improvement 4.56 8.29 0.16 2.32 78.39
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4.4 Detection of driving factors influencing
EEQ at the county level

The factor detection results quantify the explanatory power of
various factors on the spatial variation of county-level ecological
quality, represented by the q value. A higher q value indicates a
stronger influence of the factor on the spatial distribution of
ecological quality. Analysis of the factor detection results for
2000, 2010, and 2020 (Figure 6A) ranked the average explanatory
power of different factors in Shaanxi Province as follows:
precipitation (Ⅵ) > slope (Ⅱ) > land-use carbon emissions (Ⅹ) >
land-use intensity (Ⅷ) > nighttime light intensity (Ⅸ) > aspect
(Ⅲ) > temperature (Ⅴ) > population density (Ⅶ) > elevation (Ⅰ) >

relief degree (Ⅳ). Multi-year q values showed stability for factors
with strong or weak explanatory power, while factors with moderate
explanatory power exhibited greater fluctuation. Precipitation,
slope, and land-use carbon emissions had strong and consistent
explanatory power, while population density, elevation, and relief
degree showed weaker, saturated effects. In contrast, factors with
moderate explanatory power (land-use intensity, nighttime light
intensity, aspect, and temperature) displayed fluctuating patterns
without a clear trend. Precipitation consistently had the highest q
value, highlighting its dominant role in influencing spatial variation.
It directly affected vegetation growth and water distribution, while
also impacting ecological processes such as soil erosion and the
hydrological cycle, making it a key driver of ecological quality in
Shaanxi. Slope ranked second, with q values consistently above 0.4.
Anthropogenic factors showed moderate explanatory power with
less variation, with land-use carbon emissions being the strongest
among them. As economic development and population growth
continued, carbon emissions from land-use changes became a major
pressure on ecological quality, especially during urbanization and
industrialization. The relatively low explanatory power of elevation
and relief degree, with q values below 0.2, indicated that these factors
were not primary drivers of spatial variation in county-level
ecological quality based on single-factor analysis.

Interaction detection analysis further reveals the synergistic
effects of different factors on the spatial variation of county-level
ecological quality. The results (Figures 6B–D) showed that factor
interactions significantly enhanced their explanatory power, with no

TABLE 5 Area proportion of RSEI sustainability levels in Shaanxi Province
from 2000 to 2020 (%).

Variation trend Area (hm2) Proportion (%)

Continuous improvement 170,811.67 83.07

Deterioration to improvement 344.01 0.17

Almost unchanged 4841.27 2.35

Random variation 17,599.89 8.56

Improvement to deterioration 2173.54 1.06

Continuous deterioration 9853.92 4.79

FIGURE 6
(A) Results of the factor detection. (B–D) Results of factor interaction detection for 2000, 2010, and 2020.
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evidence of independent or diminishing interactions. This suggested
that factor interactions were more influential than their individual
effects. The primary types of interaction observed were bivariate
enhancement and nonlinear enhancement, with the latter
accounting for two-thirds of all interactions. Among factor
combinations, precipitation—which had the strongest single-
factor explanatory power—continued to exhibit strong
explanatory power in combination with other factors. However,
the interaction outcomes did not always align with the explanatory
power of the individual factors. Notably, the interaction between
temperature, a weaker single-factor, and precipitation, the strongest
factor, yielded the highest explanatory power, even surpassing the
combination of precipitation and slope. This was attributed to the
direct influence of temperature and precipitation on key ecological
processes such as water balance, plant growth, and biodiversity,
which amplified their combined effect. In contrast, although slope
was a critical topographic feature, its combination with precipitation
had a less direct and significant impact on ecological quality than the
temperature-precipitation interaction. Most factor interactions had
q values exceeding 0.6, accounting for over 90% of all interactions.
The interaction between elevation and topographic relief
consistently produced the lowest q values across different years.
Consequently, county-level EEQ in Shaanxi Province is primarily
driven by climatic factors, coupled with the synergistic effects of
multiple other factors. When developing ecological protection
measures, it is essential to consider both the independent and
interactive effects of various factors and to implement
comprehensive management strategies for sustained ecological
improvement and coordinated regional development.

5 Discussion

5.1 Spatiotemporal characteristics of
county-level EEQ in Shaanxi Province

Shaanxi Province spans a vast area and crosses three major
climate zones. Its complex and diverse climate, combined with
varied natural environments, significantly influences the
ecosystem’s carrying capacity, resulting in pronounced
regional differences (Zhang et al., 2019). In northern Shaanxi,
the arid, low-rainfall climate exacerbates soil erosion, while the
region’s energy and chemical industries pose substantial
challenges to the ecological environment (Sun Y. et al., 2023).
The Guanzhong Plain, with its flat terrain, has experienced rapid
urbanization in recent years, leading to the encroachment on
ecological land and a marked increase in pollution emissions
(Yang and Cai, 2020). Southern Shaanxi, characterized by a
complex terrain of mountains and valleys, suffers from
environmental damage due to mining and tourism activities
(Kang et al., 2018). The province’s varied climate, geography,
and topography have shaped diverse county-level regions,
including industrial, energy, agricultural, and tourism zones.
Given these dynamics, scientifically assessing and optimizing
Shaanxi’s ecological quality is essential. However, most
existing research on EEQ evolution in Shaanxi has focused on
macro scales (Zhang R. et al., 2022; Zou et al., 2022a), with
limited in-depth studies at the county level.

This study explored the spatiotemporal changes and
sustainability characteristics of EEQ at the county scale. The
results indicate that, from north to south, the EEQ of Shaanxi
Province exhibited a distinct “low-high-low-high” gradient
pattern, highlighting the heterogeneity of ecological conditions
within the province. Counties in the southern and north-central
regions benefited from mild climates, more abundant water
resources, and better-preserved ecosystems, thereby possessing
high-quality ecological environments. In contrast, northern
counties faced harsher climatic conditions, limited water
resources, and increased anthropogenic pressures from
urbanization and industrial activities, leading to severe ecological
challenges. Furthermore, despite its central location, the Guanzhong
Plain experienced significant land use changes, soil pollution, and
resource depletion due to rapid urban expansion and intensified
industrialization, resulting in a relatively low level of EEQ. This
gradient pattern underscores the complex interactions between
natural and anthropogenic factors affecting the ecological health
of different regions. From 2000 to 2020, the RSEI in Shaanxi
Province followed a fluctuating upward trend, indicating
sustained and effective improvements in ecological quality,
consistent with the findings of Zou et al (2022a). However, the
study also revealed periods of degradation in certain counties. For
example, slight degradation occurred in the Guanzhong Plain and
the central and southern Loess Plateau between 2010 and 2015, and
in regions with high vegetation coverage in southern and central-
northern Shaanxi between 2015 and 2020. The distribution centers
of different ecological grades, from high to low, were arranged from
south to north, with a greater migration observed from 2000 to
2010 compared to 2010 to 2020. Moreover, sustainability analysis
suggests that Shaanxi’s ecological quality is likely to continue
improving in the coming years, although highly urbanized areas
may face risks of ecological degradation.

5.2 Analysis of driving factors of county-
level EEQ

The results of the interaction detection analysis indicate that
county-level EEQ is primarily driven by climatic factors, along with
the synergistic effects of multiple variables, a conclusion supported
by numerous studies (Zhang M. et al., 2022; Zhang Y. et al., 2022;
Sawut et al., 2023). While investigating the drivers of spatial
variation in county-level EEQ, we identified an intriguing and
significant phenomenon: although temperature (Figure 7A)
exhibited relatively weak explanatory power as a single factor
across different years, its interaction with precipitation (Ⅵ)
(Figure 7B)—the strongest factor—had the most significant
influence on spatial variation. This finding underscores the
complex, nonlinear relationships between ecosystem factors,
particularly the interactions between climatic variables. As key
climatic drivers, temperature and precipitation not only have
substantial individual impacts on ecological quality but also
interact to shape ecosystem spatial patterns (Cui et al., 2021).
Temperature affects physiological processes such as plant growth
cycles and water-use efficiency, while precipitation directly
influences water resource availability and soil moisture (Cui
et al., 2021; Tang H. et al., 2024). When these two variables
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interact, they produce additive or amplifying effects on ecological
quality through complex processes like changes in vegetation cover
and soil erosion, explaining why their interaction shows the
strongest explanatory power for spatial variation in
county-level EEQ.

Among topographic factors, slope demonstrated strong
explanatory power, second only to precipitation, in explaining
spatial variation of EEQ in Shaanxi Province. Slope, as a critical
topographic variable, influences soil and water conservation, runoff
patterns, and soil erosion rates, indirectly shaping vegetation
distribution and ecosystem structure, and thus having a profound
effect on ecological quality (Gadana et al., 2020). Despite the steep
slopes in southern Shaanxi, the region maintains relatively high
ecological quality (Figure 7C). The Qinba Mountains, characterized
by complex terrain and steep slopes, benefit from favorable
precipitation and abundant vegetation, which help mitigate soil
erosion and enhance ecosystem stability. Additionally, local
conservation policies and ecological restoration efforts have
further improved ecological quality. Therefore, although steep
slopes typically increase ecosystem vulnerability, their negative
impacts have been effectively mitigated by specific natural and
human factors, making slope an important driver of spatial
variation in the region’s EEQ.

Multi-period factor detection results revealed that the average
explanatory power of land-use carbon emissions ranked third,
following only precipitation and slope, indicating a long-term
and relatively strong impact on the EEQ at the county level.
Regions with higher carbon emissions often experience greater
ecological pressure (Figure 7D). On one hand, the ongoing
urbanization and industrialization processes led to the gradual
conversion of land types such as farmland, grassland, and forest
into construction land, resulting in substantial fossil fuel
consumption and biomass loss, thereby increasing carbon
emissions (Wang et al., 2019; Churkina et al., 2020). On the
other hand, high carbon emissions exacerbate ecosystem
degradation by affecting vegetation growth and water resource
allocation and imposing continuous pressure on ecological

processes through alterations in soil physicochemical properties
and other pathways (Kuzyakov et al., 2019; Ramesh et al., 2019).
Notably, land-use carbon emissions not only independently affected
county-level EEQ but also exhibited higher explanatory power for
ecological quality through interactions with other factors. This
suggests that during rapid urbanization and economic
development, climate conditions and human activities jointly
shape the spatial and temporal patterns of the ecological
environment. As a significant anthropogenic disturbance, land-
use carbon emissions impact key ecological processes such as
plant growth, soil and water conservation, and biodiversity, often
coupling with hydrological conditions, population density, and
land-use patterns, thereby further exacerbating or alleviating their
effects on ecosystems.

5.3 Strategies for improving county-level
EEQ under the dual-carbon goals

In the context of global climate change, achieving carbon peak
and carbon neutrality has become a global consensus and a key
development goal for all nations (Chen et al., 2022a; Tang X. et al.,
2024). As the foundation of Earth’s life support system, the
ecological environment directly influences the global carbon cycle
and climate stability, making it essential for realizing dual-carbon
goals (Humphrey et al., 2021). The quality of the ecological
environment is closely tied to carbon absorption and storage
capacities: a healthy ecosystem enhances natural carbon sinks,
facilitating carbon sequestration and storage (Heinrich et al.,
2021). Conversely, ecological degradation can intensify carbon
emissions, creating a negative feedback loop (Noë et al., 2021).
The diversity and complexity of Shaanxi’s ecological environment
require differentiated and targeted optimization strategies to
advance the dual-carbon agenda.

Based on this study’s findings, counties in Shaanxi Province
were classified into three categories: counties in southern and
central-northern Shaanxi with good or excellent EEQ (Type I),

FIGURE 7
Relationships between (A) precipitation, (B) temperature, (C) slope, and (D) land-use carbon emissions and RSEI.
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counties in the central region with moderate ecological quality (Type
II), and counties in northern Shaanxi with moderate to poor EEQ
(Type III). Figure 8 presents strategies for improving EEQ in these
counties under the dual-carbon goals. Type I counties, with
favorable natural conditions and high ecological quality, should
focus on enhancing carbon sequestration through ecosystem
management, developing low-carbon eco-tourism and carbon-
efficient agriculture, and promoting smart ecological management
through intelligent technologies and environmental education. Type
II counties, located primarily in the highly urbanized and
industrialized Guanzhong Plain, should prioritize building low-
carbon cities by enhancing urban greening, developing
sustainable infrastructure, promoting green industries through
renewable energy and efficient technologies, and optimizing land
use to control urban sprawl and restore ecological functions. Type
III counties, located in the ecologically fragile and erosion-prone
Loess Plateau, should concentrate on ecological restoration through
afforestation and water resource management, developing carbon
trading and investing in carbon sink products, and establishing
ecological compensation mechanisms to support
conservation efforts.

6 Conclusion

This study systematically analyzed the spatiotemporal evolution
of county-level EEQ in Shaanxi Province and its driving factors,
while exploring optimization strategies for different types of
counties under the dual-carbon goals. The results indicate that:
1) From 2000 to 2020, ecological quality in Shaanxi Province
improved steadily, with an overall upward trend despite
fluctuations, though some counties experienced slight degradation
between 2010 and 2020. 2) Significant spatiotemporal heterogeneity

was observed at the county level, following a “low-high-low-high”
distribution pat-tern from north to south. 3) In the coming years,
EEQ is expected to continue improving, though highly urbanized
areas may face risks of degradation. 4) The spatial variation in EEQ
is primarily driven by climatic factors, with additional contributions
from the synergistic effects of multiple factors. Customized carbon
sink enhancement strategies are recommended for counties based
on their ecological conditions. Counties in the southern and central-
northern regions should strengthen carbon sink functions and
promote the green economy, while counties in the Guanzhong
Plain should focus on developing low-carbon cities and green
industrial systems. In the northern Loess Plateau, efforts should
prioritize ecological restoration and carbon sink development. These
findings support the region’s low-carbon transition and sustainable
development, while offering scientific and practical insights for
ecological protection, emissions reduction, and carbon sink
enhancement in other regions globally.
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