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Introduction: In order to improve ecological and environmental governance
capacities, this study explores the creation and efficacy of a horizontal carbon
ecological compensation, aiming to enhance ecological and environmental
governance capabilities. The research addresses the critical need for
innovative solutions to balance carbon emissions and ecological preservation
in river basins, with the YRB serving as a primary case study.

Methods: Net carbon emissions were computed for each YRB province using
data from 2013 to 2022, 13 differentiating between carbon surplus and deficit
locations. An evolutionary game model that examined dynamic interactions
under incentive and punishment mechanisms was built using these
computations as the foundation. Important elements affecting the ecological
compensatory process for horizontal carbon were found. The viability of the
system was demonstrated by the use of machine learning techniques to forecast
net carbon 17 emissions under a voluntary trade scenario.

Results: The findings show that the YRB’s carbon emission management and
conservation may be greatly enhanced by market-based incentives and
appropriate advice. The evolutionary game model revealed that integrating
incentive and penalty mechanisms effectively promotes cooperation among
provinces, leading to enhanced carbon management. Machine learning
predictions further validated the potential of voluntary carbon trading to
reduce net emissions, highlighting the practicality of the proposed
compensation mechanism.

Discussion: The results offer a theoretical framework for the YRB’s
implementation of horizontal carbon ecological compensation. The proposed
mechanism, founded on the trade of carbon emissions and backed by
confirmation from machine learning, offers a novel approach to ecological
protection. This model not only addresses the unique challenges of the YRB
but moreover acts as a model for ecological management in other river basins.,
contributing to broader efforts in sustainable environmental management.
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Highlights

1. Enphasizing the necessity of establishing a horizontal carbon
ecological compensation mechanism in the Yellow River Basin.

2. Establishing the horizontal carbon ecological compensation
mechanism in the Yellow River Basin.

3. The introduction of machine learning verifies the effectiveness
of the horizontal carbon ecological compensation mechanism
in the Yellow River Basin.

1 Introduction

The severity of the global climate change problem is growing
severe. An essential tool for combating climate change and
coordinating regional development and ecological protection,
carbon ecological compensation has received extensive attention
(Mishra et al., 2024). Ecological compensation is a strategic
approach that promotes sustainable ecosystem utilization while
balancing stakeholder interests through economic incentives (Gao
et al., 2019). It works well to lessen regional disparities in ecological
and social development and to increase interest in preserving the
natural environment (Wu et al., 2024). Currently, research on
ecological compensation primarily explores questions like
identifying the responsible compensators (Yan and Cao, 2024),
who will be compensated (Zhen et al., 2024), how to compensate
(Plantinga et al., 2024), and how much to compensate (Chi et al.,
2024), seeking to address the disparity between economic gains and
the environment. At present, the research on ecological
compensation focuses on answering questions such as who
compensates (Wang and Mao, 2024). Carbon ecological
compensation combines the characteristics of carbon emission
reduction and the carbon absorption function of the ecosystem
(Tang et al., 2024). The concept of carbon ecological compensation
originates from the theory of ecological compensation. Carbon
ecological compensation is a new field in the area of ecological
compensation and has attracted extensive attention from scholars
(Dumortier and Elobeid, 2021; Yang D. et al., 2024). At present, the
academic community has not yet formed a unified definition of
carbon ecological compensation. According to the concept of
ecological compensation, carbon ecological compensation is an
arrangement within a market or provisioned via a policy that is
designed to compensate carbon sink providers within the ecosystem
and encourage them to protect this function and further increase
carbon absorption. At the same time, carbon ecological
compensation aims to constrain carbon emitters or require them
to pay fees, allowing for the dual goals of carbon emission reduction
and ecological protection to be achieved. Scholars have emphasized
that carbon ecological compensation is a monetized manifestation of
the value of ecosystem carbon sink services (Wang B. et al., 2024).
Through economic incentives, land users (Yang Y. et al., 2024) or
ecosystem managers (Chu et al., 2024) are prompted to take
measures conducive to carbon fixation and storage to increase
carbon absorption. Forest ecosystems absorb carbon dioxide
through photosynthesis and fix it in vegetation and soil. Carbon
ecological compensation provides compensation for the costs and
service value provided by forest owners or managers for maintaining
the forest’s carbon sink functions (Pan et al., 2024). Other scholars

have suggested that carbon ecological compensation should also
cover the control and regulation of carbon emissions (Li and Xing,
2024). This includes establishing a carbon emission trading market
(Bai and Ru, 2024), allowing carbon-emitting enterprises to offset
their excess emissions by purchasing carbon quotas or carbon
credits (Feng et al., 2024) and transferring funds to carbon sink
projects or toward the research and development of emission
reduction technologies (Aryal et al., 2024) to optimize the
allocation of carbon resources on a society-wide scale (Di et al.,
2024). A comprehensive understanding of the mechanism through
which carbon ecological compensation balances carbon budgets and
promotes the benign operation of the carbon cycle is necessary.

After clarifying the definition and mechanism of carbon
ecological compensation, next, we will conduct an in-depth
analysis of why carbon ecological compensation is necessary
from three aspects: addressing climate change, coordinating
regional development, and balancing ecological and economic
interests. Global climate change primarily results from excessive
greenhouse gas emissions, with carbon dioxide being the most
significant contributor. Carbon ecological compensation mitigates
global warming by promoting carbon absorption and limiting
emissions through economic incentives (Han et al., 2024). The
research has shown that ecosystems such as forests (Li P. et al.,
2024), wetlands (Xing et al., 2024) and grasslands (Loges et al., 2024)
have high carbon sequestration potential. A reasonable carbon
ecological compensation mechanism can fully mobilize the
enthusiasm of all parties and reduce carbon emissions (Xiufan
and Fan, 2024).

At the regional level, differences in economic development
levels, industrial structures, and resource endowments among
different regions lead to an unbalanced distribution of carbon
emissions and absorption (Liu et al., 2024). In general,
economically developed regions are often areas with concentrated
carbon emissions, manifested as carbon deficits (Tao et al., 2024). In
contrast, less developed regions, which are rich in ecological
resources, have more carbon sink resources and can generate
more carbon absorption, manifested as carbon surpluses (Zeng
et al., 2024). Carbon ecological compensation enables
economically developed regions to support ecological protection
and the construction of carbon sink areas through compensation
methods such as funds (Li X. et al., 2024) and technology (Wang and
Wang, 2023). The Yellow River Basin’s upper and middle regions in
China are rich in ecological resources like forests and grasslands but
face economic underdevelopment. In contrast, the lower and middle
reaches have a more developed economy, resulting in high industrial
activity, energy consumption, and carbon emissions (Xu et al.,
2024). Implementing carbon ecological compensation can help
close the regional development gap and encourage the
coordinated development of the Yellow River (Wang T. et al., 2024).

Carbon ecological compensation can provide economic impetus
for ecosystem protection (Deng etal., 2024). When the carbon
absorption capacity can be reasonably compensated, carbon
absorbers will be more willing to prevent excessive growth and
devastation while preserving and enhancing the natural
environment (Deng et al., 2024). Taking wetland ecosystems as
an example, wetlands have highly efficient carbon sink functions
(Zhang et al., 2024). However, owing to the lack of an effective
economic incentive mechanism, wetlands have long faced threats
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such as reclamation and pollution (Mei et al., 2024). Implementing
carbon ecological compensation can encourage wetland protection
and restoration actions and achieve the sustainable use of
ecosystems.

Establishing a carbon ecological compensation strategy is
necessary. The next step is to focus on how to specifically
implement a carbon ecological compensation mechanism, which
involves four crucial aspects. First, the compensation subjects and
objects must be defined. Clearly defining the responsible subjects
and the beneficiary objects is the foundation and requirement for
building an ecological carbon compensation system. Second,
compensation standards should be formulated. This requires
comprehensively considering a variety of complex factors to
ensure that the compensation amount not only reasonably
reflects the actual value of lowering carbon emissions and
ecological protection but also considers the actual situations of
different regions and subjects. Third, compensation models
should be selected. In a method for carbon ecological
compensation, The real circumstances and development
requirements of different locations must be combined and most
suitable methods must be choosen to promote the effective
allocation of elements such as funds and technologies. Fourth,
the compensation methods should be determined. It is essential
to select methods that are scientific, feasible, and precise to ensure
that the work of the carbon ecological compensation mechanism can
be carried out in an orderly and efficient manner.

The key to carbon ecological compensation mechanism lies in
reasonably determining the compensation standards. In traditional
ecological compensation mechanism, the responsible subjects
causing the ecological damage include enterprises that discharge
pollutants in violation of regulations and developers who overexploit
natural resources. The beneficiary groups include the downstream
water-using enterprises that rely on high-quality ecological
resources and the nearby residents who benefit from a good
ecological environment (Gao et al., 2021). Carbon ecological
compensation mechanisms face numerous difficulties in this
context. From the perspective of attributing carbon emission
responsibility, the various areas’ industrial structures are
complex, and accurately determining the carbon emission
characteristics of emerging industries is difficult. During the
process of industrial transformation, the definitions of historical
carbon emission responsibilities and current emission reduction
obligations are ambiguous, resulting in difficulties in tracing
responsibilities. Because to the impact of elements like shifting
land use and variations in the climate, the carbon absorption
functions of the carbon-absorbing beneficiary areas are unstable,
making it difficult to accurately define the beneficiary range. As a
result, there is great uncertainty in the identification of the
compensation subjects and objects. When cross-regional carbon
projects are implemented, disputes often arise due to the unclear
division of responsibilities and rights, which hinders the effective
initiation of carbon ecological compensation mechanisms.

Research on carbon ecological compensation has a particular
methodological foundation thanks to the ecological compensation
accounting techniques now in use, but limitations exist when these
methods are applied to carbon ecological compensation scenarios.
In order to establish the bottom limit of compensation, the
opportunity cost technique attempts to quantify the alternative

economic development potential (Du et al., 2023). Regarding the
ecological preservation of carbon, it is difficult to accurately quantify
intangible costs such as potential market expansion opportunities
forgone when enterprises transform to low-carbon production
models. The ecosystem service value method conducts monetized
valuations from the perspective of various service functions of the
ecosystem and serves as a reference for the compensation scale (Du
et al., 2023). However, for the carbon ecosystem, owing to the high
complexity of the carbon cycle and the strong correlation of different
ecological processes, the selection of parameters is relatively
subjective, leading to notable variations in the assessments of
carbon sinks across various geographical areas. The contingent
valuation method uses the public’s subjective valuation of
ecological services and their willingness to pay through
questionnaires, integrating social preferences into compensation
pricing (Peng et al., 2022). However, in carbon ecological
compensation mechanisms, owing to the public’s limited
knowledge of carbon-related issues and their changeable
perspectives in light of the unpredictability of future climate
change, the representativeness of the samples is insufficient, and
the reliability of the results is poor. The ecological footprint method
reflects the compensation demand on the basis of the occupation of
natural resources by humans and the ecological carrying status
(Yang et al., 2022). Owing to the special flow patterns and
spatiotemporal dynamic characteristics of carbon dioxide in
ecosystems, this method cannot precisely meet the needs of
carbon ecological compensation mechanisms.

One of the fundamental components of carbon ecological
compensation systems is the compensation standard. Its
formulation requires the comprehensive consideration of various
factors. The accounting model developed by combining factors such
as gross domestic product, watershed area and population aims to
accurately Determine the subjects and objects of compensation and
the criteria that relate to them and correlate them with the
macroscopic characteristics of the region (Gao et al., 2021).
When this method is applied to carbon ecological compensation
mechanisms, due to the scattered carbon data statistics and the lack
of unified standards, significant variations exist in the accounting
standards for carbon emissions and absorption among regions, so it
cannot be precisely adapted to the actual needs of carbon
compensation mechanisms. When the analysis methods for the
ecological service transfer mechanism in the Minjiang River
Basin (Lin et al., 2021) are used to analyse the carbon benefit
transfer process, owing to the rapid exchange of carbon among
multiple media and the frequent interference of human carbon
emission activities, the data of key nodes are prone to errors, making
it challenging to guarantee the accuracy of carbon ecological
compensation systems. The compensation accounting index
system in the middle and lower reaches of the Yellow River
Basin (Hu et al., 2022) has not fully considered the dynamic
changes in carbon elements and cannot flexibly adjust to meet
the real-time needs of carbon compensation payments. When
evaluating the value of ecosystem services in the Yellow River
Basin (Liu et al., 2023) are used to evaluate the worth of
ecosystem services related to carbon, they lack an effective
response mechanism to external shocks such as fluctuations in
carbon market prices and innovation in emission reduction
technologies and thus lack stability. The equivalent factor method
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assessment framework (Yuan et al., 2024) does not completely
utilize carbon ecological compensation methods’ potential for
varied funding of diversified fundraising and distribution
optimization at the local level, which restricts the utilization
efficiency of the funds and the compensation effects.

Carbon ecological compensation methods are diverse. Common
compensation methods include monetary compensation and policy
compensation (Gong et al., 2024). Monetary compensation methods
enable carbon absorption providers to obtain economic benefits by
paying them cash or other forms of monetary compensation, which
can be used to support the continuous operation of carbon sink
projects and ecological protection activities (Yan and Cao, 2024).
Policy compensation methods mainly reduce the operating costs of
carbon absorption projects and improves their economic benefits
and competitiveness by formulating preferential policies (Gong
et al., 2024). In China, ecological compensation funds primarily
depend on central government financial support, leading to a limited
and singular funding source. China’s carbon ecological
compensation model remains in the early exploratory phase.
Financing from the central government provides support, but the
enthusiasm of local capital markets to participate is not high.

A survey of the body of research indicates that the following
problems exist in the theoretical assumptions and practical
applications of carbon ecological compensation mechanisms.
First, the division of responsibilities is ambiguous. In carbon
ecological compensation mechanisms, there is a lack of clear
detailed rules for defining the responsibilities between the subject
and the object. In complex situations such as cross-regional
industrial transfer and energy allocation, Clarifying the
attribution of carbon absorption rights and interests as well as
the traceability of carbon emission obligations is challenging,
which hinders the operation of the compensation mechanism.
Second, there is a lack of unified measurement standards. There
is currently no universally recognized and effective method for
accounting for carbon emissions. Owing to the diverse data
sources and varying levels of precision adopted in the existing
studies and the poor fit between model assumptions and complex
real-world carbon cycle scenarios, the results obtained by different
research teams vary greatly, making it difficult to form authoritative
conclusions and provide reliable bases for policy formulation. Third,
there is a lack of means to quantify ecological capital. Owing to the
unique physical and chemical properties and complex flow
characteristics of carbon resources, it is difficult to monetize
them. The carbon finance market has developed slowly, and
relevant derivatives are scarce, resulting in the absence of a
strong basis for norms of compensation. The implementation of
the market mechanism in carbon ecological compensation
mechanisms faces obstacles, and long-term planning is often
difficult because of short-term fluctuations in carbon market
prices and the complex interactions among stakeholders, which
affects the stability and sustainability of carbon ecological
compensation mechanisms. Many scholars have achieved
remarkable results in terms of the construction of a theoretical
framework for carbon ecological compensation (Sun et al., 2024),
value assessment (Niu H. et al., 2024) and defining the necessity
(Zhu et al., 2023); however, there are still obvious deficiencies in the
exploration of the implementation path for carbon ecological
compensation mechanisms. Most of the current studies focus on

conceptual definitions and theoretical analyses at the macro level.
The main perspectives used to describe carbon ecological
compensation mechanisms are the control of carbon emissions
and the commercialization of the ecosystem’s carbon sink service
value. The significance of carbon ecological compensating
mechanisms in terms of requirement in responding to climate
change, coordinating regional development and promoting
ecological protection has also been fully demonstrated. However,
with respect to the specific implementation of carbon ecological
compensation mechanisms, the existing studies have failed to
provide clear, comprehensive and highly operable
implementation paths.

To verify the effectiveness of ecological compensation
mechanisms, The majority of current research has been on
assessing the efficacy of the policies that have been put into
place. By collecting various types of data after implementation
and applying traditional statistical analysis methods and
empirical research models, such as cost‒benefit analysis and the
DID method, how policies affect goals such as ecological protection
and regional coordinated development can be measured. The binary
unordered logit regression model has been used in previous studies
to investigate the regional advantages of the Yellow River Basin’s
horizontal ecological (Zhu et al., 2023). Heterogeneity analysis
assessed The upstream horizontal ecological compensation
mechanism’s profitability in (Liu et al., 2022). The Xin’an River
ecological compensation policy’s 238 environmental consequences
were assessed using the DID technique. (Jing and Zhang, 2018) and
how it affects the Shiyang River Basin’s economic growth (Shang
et al., 2022). Additionally, the data envelopment analysis (DEA)
model measured the efficiency of a government-led watershed
ecological initiative (Chen et al., 2018). Postevaluation methods
can provide a basis for the improvement and perfection of
implemented policies. However, for policies that have not yet
been implemented, the ability of these methods to predict the
effectiveness of a policy is obviously limited. At present, China
has not yet established a carbon ecological compensation
mechanism. Machine learning technology provides a new
perspective for verifying the effectiveness of carbon ecological
compensation policies. Compared with traditional methods,
machine learning has several key advantages in terms of its
ability to identify complex, nonpredefined structures in the data
(Mullainathan and Spiess, 2017). Although traditional social science
research is usually rooted in theory-driven deductive reasoning, this
approach sometimes limits the ability to discover hidden patterns
(Kreif and DiazOrdaz, 2019). Machine learning is adept at fitting
complex and flexible models to data, effectively avoiding overfitting,
and simultaneously revealing complex relationships that might
remain ambiguous when traditional methods are used. This
ability to uncover hidden insights explains why machine learning
has been widely employed in data generation (Haenlein and Kaplan,
2019), predictive analyses (Shamshoddin et al., 2020) and causal
identification (Bajari et al., 2015). By leveraging the predictive power
of machine learning, researchers can estimate causal effects more
accurately and explore counterfactual scenarios to conduct policy
evaluations in advance (Hindman, 2015; Abrell et al., 2019; Cicala,
2022). When designing carbon ecological compensation policies,
machine learning can predict the impacts of a policy on increases in
carbon absorption and reductions in carbon emissions when taking
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into account modifications to elements like the requirements for
compensation combinations of compensation methods, and
definitions of the target audience. Machine learning can also
promote research on carbon ecological compensation policies,
shifting the research from simple postevent analyses to
comprehensive research paradigms that combines prevent
predictions and postevent evaluations.

The government, businesses, communities, and other organizations
have paid close attention to the ecological preservation of the Yellow
River (Jin, 2019). A thorough framework and institutional mechanism
for ecological compensation in the Yellow River Basin (YRB) have been
gradually built by China. The Implementation Plan for the Pilot
Program to Support and Guide the Establishment of a Horizontal
Ecological Compensation Mechanism across the Entire Yellow River
Basin was released in April 2020 by the National Forestry and Grassland
Administration, the Ministry of Finance, the Ministry of Ecology and
Environment, and the Ministry of Water Resources. The Outline of the
Yellow River Basin Ecological Protection and High-quality
Development Plan was released in October 2021 by the State
Council and the Central Committee of the Communist Party of
China. A significant legislative milestone was reached in October
2022 with the promulgation of the People’s Republic of China’s
Yellow River Protection Law. This law demonstrates the ambition of
the Chinese central government to strengthen comprehensive
governance and coordination in establishing an ecological protection
compensation across administrative regions. Additionally, the plan
encourages government entities in the upper and lower reaches, as
well as along the main and tributary rivers, to actively engage in and
support the compensation mechanism. It also promotes implementing
horizontal ecological protection compensation through cooperation,
negotiation, or market-based approaches. The significance of a
horizontal ecological compensation method within the Yellow River
Basin’s (YRB) ecological framework is emphasized by this law. On June
1, 2024, the Regulations on Ecological Protection Compensation went
into force. They provided comprehensive details about what ecological
protection compensation is, its working principles and mechanisms, as
well as information about market-oriented compensation, fiscal vertical
compensation, interregional horizontal compensation, and bolstering
guarantee, supervision, and management mechanisms. It highlights the
need of fully using the market mechanism and pushes social forces and
local governments to implement ecological compensation in line with
market regulations. The various YellowRiver Basin regions range greatly
in terms of their degrees of economic growth and carbon emission status
(Niu J. et al., 2024). The majority of the higher reaches are crucial
ecological barrier zones, highlighting crucial 293 duties such soil and
water conservation. Their industrial development is restricted, and their
economies are relatively underdeveloped (Wang Z. et al., 2024). The
downstream areas are densely populated and have many industries,
resulting in a large total amount of carbon emissions (Dong, 2024). In
the Yellow River Basin, the horizontal carbon ecological compensation
mechanism can act as a bridge between coordinated economic growth
and ecological preservation. Economic incentives have been utilized to
promote carbon absorption and emission reductions in order to alleviate
the ecological issues brought on by climate change in the Yellow River
Basin. These actions are intended to promote ecological preservation
and high-quality development, guarantee equitable resource
distribution, and balance the rights of development between
upstream and downstream areas as well as both riverbanks.

In order to determine the net carbon emissions of nine provinces
in the Yellow River Basin, this study begins with the goal of lowering
carbon emissions and views carbon emission rights as a limited
resource. A cost-benefit game model is developed to examine the
carbon ecological compensation concerns of carbon-deficit and
carbon-surplus provinces in the Yellow River Basin by combining
prospect theory and the game technique from the standpoint of net
carbon emissions. In order to arrive at the best solution, it seeks to
inspire people to work together to conserve the carbon ecological
environment. The horizontal carbon ecological compensation
mechanism’s implementation path in the Yellow River Basin is
the subject of additional empirical research, and voluntary
transactions are encouraged as a means of achieving the
mechanism. The following issues are intended to be resolved by
this study: (1) Establish the compensation criteria as well as the
issues and goals of the Yellow River Basin’s carbon ecological
compensation system. Taking the years from 2013 to 2022 as an
example, the subjects and objects are distinguished according to
their net carbon emissions, and the carbon prices corresponding to
each year are used as the corresponding compensation standards. (2)
A horizontal carbon ecological compensation mechanism is
constructed. This mechanism involves several key entities,
namely, supply entities, demand entities, regulatory entities,
technical support systems, and trading platform entities. These
organizations work together to encourage provinces to trade their
voluntary carbon emission rights, which makes it possible to put the
interprovincial horizontal carbon ecological compensation system
into place. (3) Finally, the mechanism’s efficacy is confirmed. The
net carbon emissions of each province under the trade
circumstances are predicted using machine learning, which also
simulates the voluntary trading of carbon emission rights. Figure 1
depicts the research methodology used in this study.

In this study, the complementary approaches of evolutionary
game theory and machine learning offer a thorough examination of
the ecological compensation mechanism for horizontal carbon in
the Yellow River Basin.

Evolutionary game theory offers the context and direction for
machine learning. Based on the bounded rationality of local
governments in the provinces of the Yellow River Basin, evolutionary
game theory constructs a strategic interaction model between carbon
surplus and carbon deficit provinces. By analyzing the strategy choices of
provinces under different cost-benefit scenarios, key factors influencing
the carbon ecological compensation mechanism are identified, such as
carbon ecological protection costs, benefits, and the central government’s
rewards and punishments. These factors form the core variables that the
machine learning model needs to consider, clarifying the research
context and direction for machine learning. The analytical findings of
evolutionary game theory may be utilized to concentrate on the aspects
that significantly influence provinces’ strategy choices when choosing the
input variables for themachine learningmodel. This will bring themodel
closer to the real decision-making process.

Machine learning provides quantitative support and validation
for evolutionary game theory. Machine learning may reveal the
intricate non-linear links between carbon emissions and a wide
range of influencing factors by learning and analyzing vast volumes
of historical data. Machine learning can forecast the net carbon
emissions of the Yellow River Basin provinces under various
scenarios and strategies by using these linkages. This provides
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concrete quantitative data support for the analysis of strategy
choices in evolutionary game theory. Through the predictions of
machine learning, the effects of different strategy combinations in
evolutionary game theory can be validated, making the theoretical
analysis more convincing.

Machine learning compensates for the lack of quantification in
evolutionary game theory: Although evolutionary game theory can
analyze the strategic interactions and decision-making logic of
provinces under the carbon ecological compensation mechanism
from a theoretical perspective, it is difficult to precisely quantify the

FIGURE 1
Flow chart of the research presented in this paper.
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actual impact of different strategies on carbon emissions.
Evolutionary game theory may suggest that carbon deficit
provinces, under high compensation pressure, may choose
emission reduction strategies, but it cannot predict the exact
amount of reduction. Machine learning excels at handling
complex data and making precise numerical predictions,
addressing this gap and providing more specific quantitative
support for policy formulation.

Evolutionary game theory overcomes the issue of the lack of
decision-making logic explanation in machine learning. While
machine learning can accurately predict carbon emissions, it
cannot deeply explain the decision-making logic behind the
predictions and the strategic interaction mechanisms between
provinces. For example, machine learning can predict that
changes in carbon trading prices will lead to changes in carbon
emissions but cannot explain how this change occurs in the strategic
game between provinces. Evolutionary game theory, on the other
hand, can explain the reasons for strategy choices and the dynamic
process of change from the perspective of the participants’ decision-
making behavior.

Combining the two methods allows us to comprehend the
overall policy logic and development trends, as well as the
strategic interactions and decision-making behavior of the parties
involved in the carbon ecological compensation mechanism from
the standpoint of evolutionary game theory. We can also take
advantage of machine learning’s capacity to process and analyze
vast amounts of data in order to accurately predict carbon emissions
under various strategies and evaluate the real effects of policies. The
working principles of the horizontal carbon ecological
compensation mechanism in the Yellow River Basin may be
more thoroughly and thoroughly revealed by this multi-
perspective study approach, offering more trustworthy backing
for the development and improvement of policies

2 Data and methods

2.1 Study area

The Yellow River rises in the Bayankara Mountains of Qinghai
Province, China, and runs through nine provinces before emptying
into the Bohai Sea. These provinces are Qinghai, Sichuan, Gansu,
Ningxia, Inner Mongolia, Shanxi, Shaanxi, Henan, and Shandong. It
encompasses a basin area of 795,000 km2 and is 5,464 kilometers long
overall. (Figure 2). Ensuring the reasonable and sustainable utilization
of these lands is crucial for continued regional development.

CO2 emission sources in the Yellow River Basin (YRB) can be
classified into 3 main groups. The first group is industrial activities.
Heavy industries such as cement production and steel
manufacturing significantly impact regional CO2 emissions
because of their high emission characteristics during the
industrial production process due to the combustion of fossil
fuel. The secondly group is agricultural practices, which
contribute to the emissions of greenhouse gases, including both
CO and CO2. Activities such as fertilizer application, tillage, and rice
cultivation emit these gases through microbial processes. The third
group is municipal solid waste (MSW) treatment. Landfilling and
incineration add to CO2 emissions. Organic waste decomposition in

landfills generates methane, whereas incineration releases CO2 and
other harmful gases. Additionally, livestock farming, particularly
with ruminant animals such as cows and goats, is a significant source
of CO2 emissions in the YRB.

CO2 absorption in the Yellow River Basin (YRB) occurs
primarily in natural ecosystems and urban green spaces. Forests
and grasslands serve as major terrestrial carbon sinks, actively
converting atmospheric CO2 into organic matter through
photosynthesis and storing it in vegetation and soil. Forest
ecosystems, in particular, possess significant carbon storage
capacity, with tree canopies and roots contributing to biomass
accumulation. The decomposition of fallen leaves and litter
further promotes long-term carbon fixation in the soil. Wetlands
and reservoirs in the YRB also play crucial roles in the carbon cycle.
These water bodies effectively store carbon through the
photosynthesis of aquatic plants and the decomposition of dead
plant tissues. The anaerobic environment of wetlands slows the
decomposition rate of organic matter, facilitating long-term stable
carbon storage. Compared with natural ecosystems, urban green
spaces, including city parks, street greenbelts, community gardens,
and roof gardens, contribute to CO2 absorption in cities, albeit on a
smaller scale. Soil, one of the largest active carbon pools on Earth,
has significant carbon storage potential that can be enhanced
through sustainable land management practices such as no-
tillage, organic agriculture, rotation and intercropping systems,
and the application of organic fertilizers.

To address the multiple challenges facing the YRB, including
water resource management, ecological protection, and land use,
concerted efforts from the government and all stakeholders are
essential. The formulation of scientific, thoughtful, and practical
policies and measures is crucial to promoting sustainable
development in the basin, ensuring economic prosperity,
ecological balance, and social progress.

2.2 Data resources

Taking 2013–2022 as an example, the data for the nine
provinces in the Yellow River Basin were collected from the
IPCC2006 report [Publications - IPCC-TFI (iges.or.jp)], China
Statistical Yearbook (stats.gov.cn), China Environmental
Statistical Yearbook (nbsti.net), China Energy Statistical
Yearbook (ctbu.edu.cn), and China Rural Statistical Yearbook
(ctbu.edu.cn). The missing data were treated by interpolation,
and these data were checked, examined and finally developed
into a socioeconomic database for further analyses.

To maintain data integrity and ensure analytical accuracy, we
employed multiple interpolation methods to handle anomalies in
the data, including missing values and negative numbers. In this
study, five distinct interpolation methods were utilized: linear
interpolation, nearest-neighbor interpolation, median
interpolation, polynomial interpolation, and spline interpolation.
Comparing the efficacy of different approaches and choosing the
best strategy based on the study’s data characteristics was the aim.

Linear interpolation is a straightforward and commonly used
method that assumes a linear relationship between adjacent data
points. This method constructs a linear function based on known
data points and calculates the interpolated value for anomalies by
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leveraging the linear relationship between neighboring normal data
points. Nearest-neighbor interpolation replaces anomalies with the
closest non-anomalous value. In the implementation, we iterated
through all anomalies, identified the nearest normal data point, and
assigned its value to the anomaly’s position. Median interpolation
involves calculating the median of non-anomalous values within a
defined window around the anomaly and using this median as the
interpolated value. Specifically, for each anomaly, a window of a
certain range before and after the anomaly was determined, non-
anomalous values within the window were extracted, and their
median was computed and used to replace the anomaly.
Polynomial interpolation approximates the data’s trend by fitting
a polynomial function. We used the “polyfit” function from the
“numpy” library to fit a cubic polynomial, obtained the polynomial
coefficients, and then created the polynomial function using the
“poly1d” function. This function was subsequently applied to
interpolate the anomalies. Spline interpolation employs cubic
spline functions, which ensure smoothness while effectively
capturing local features of the data. We utilized the
“CubicSpline” function from the “scipy” library, with boundary
conditions set to “natural,” to perform spline interpolation.

We evaluated each strategy using MSE and MAE in order to
determine the best interpolation technique. The average squared
discrepancy between expected and actual values is measured by
MSE. while MAE represents the average absolute difference. Lower
error values indicate better interpolation performance. By
comparing the evaluation metrics of different interpolation
methods, we considered factors such as error magnitude, data
characteristics, and research requirements. Ultimately, we chose
different interpolation methods for different datasets, aiming to
minimize error values. This approach ensures data accuracy while
better reflecting the inherent patterns in the data, providing a solid
basis for further research and model development.

2.3 Materials and methods

Innovative strategies are desperately needed to support both the
YRB’s ecological conservation and high-quality interregional
growth. Existing ecological compensation mechanisms often
inadequately address the regional disparities in carbon emissions
and absorption capacities. This study proposes a horizontal carbon

FIGURE 2
General situation of study area. (A) National area map; (B) DEM map; (C) land use type.
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ecological compensation mechanism aimed at promoting regional
collaborative governance in the YRB by internalizing the
externalities of ecological services. The constructed horizontal
carbon ecological compensation mechanism in the YRB aims to
strengthen basin governance. To improve basin governance, the
YRB has implemented a horizontal carbon ecological compensation
scheme. It treats carbon emission rights as a limited resource while
recognizing the CO2 absorption capacity of provinces along the
Yellow River Basin as a source of revenue. By internalizing the
externalities of ecological basin services, this mechanism utilizes
interprovincial transfer payments to promote high-quality regional
development. It promotes voluntary trade for horizontal carbon
ecological compensation amongst YRB provinces. The supply
subject is one of the main parties taking part in the YRB’s
horizontal carbon ecological compensation system. This
mechanism facilitates voluntary carbon emission rights trading
among provinces in the YRB. Machine learning is applied to
simulate these transactions and predict net carbon emissions
across provinces, evaluating the horizontal carbon ecological
compensating mechanism’s efficacy.

2.3.1 Calculating the net carbon emissions
Before a carbon ecological compensation mechanism can be put

into place, its purpose and subject must be made clear. The principle
of “who provides, who benefits” has been recognized in defining
ecological compensation objects. Based on their net carbon
emissions, each province is classified as either a carbon 475
surplus or a carbon deficit province once the topic and goal of
carbon 474 ecological compensation mechanisms are established.
The following is the 476 calculating model for net carbon emissions:

Ci � CSi − CAi (1)
The meaning of each parameter is shown in Table 1.
When Ci > 0, the carbon emissions of province i are greater than

its carbon absorption. The province is a carbon deficit province,
which is the subject of the carbon compensation mechanism. The
specific accounting methods for total carbon emissions and total
carbon absorption are shown in Table 2.

2.3.2 Constructing the horizontal ecological
compensation mechanism in the YRB
2.3.2.1 Evolutionary game analysis

Each local government is treated as a bounded rational actor,
incorporating insights from prospect theory. The parameters
pertaining to the game’s participants are established. On the basis
of the calculations mentioned earlier, provinces are classified into
carbon deficit provinces and carbon surplus provinces. Using a cost‒
benefit evolutionary game model, governments in deficit and surplus
scenarios engage in strategic interactions, and the outcomes of these
strategies are analysed in Appendix A.

After the reward and punishment mechanism are introduced, a
new game model is constructed to examine the evolutionary stability
of carbon surplus provinces, carbon deficit provinces, and the
associated entities. The analysis process is detailed in Appendix B.

2.3.2.2 Quantitative influencing factors
The cost of carbon ecological protection in carbon surplus

provinces is denoted as C. The revenue increase from carbon

ecological protection is represented by R1. C includes
entrustment costs (Cen), forest management costs (Cman) and
opportunity costs (Cop) Equation 2. R1 includes revenue from
timber (Rti) and income from carbon emission rights (Rci)
Equation 3. The specific calculation formulas and the meaning of
each parameter are shown in Table 3.

C � Cen + Cman + Cop (2)
R1 � Rti + Rci (3)

2.3.3 Validation of the effectiveness of the
horizontal carbon ecological compensation
mechanism in the YRB
2.3.3.1 Comparing different machine learning models
2.3.3.1.1 K-Nearest neighbour. A new test feature vector in the
KNN method is categorized according to the class of its k nearest
neighbors. To calculate closeness, the technique usually uses the
Euclidean distance measure. (Hmeidi et al., 2008). In the KNN
algorithm, a new test feature vector is classified based on the class of
its k nearest neighbors. The algorithm typically employs the
Euclidean distance metric to determine proximity. (Pan et al.,
2004). The Euclidean distance index d (x,y) is calculated as follows:

d x, y( ) � ∑N
i�1

������
x2
i − y2

i

√

where N is the number of features such that
x � x1, x2, x3, . . . , xN{ } andy � y1, y2, y3, . . . , yN{ }. By calculating
the distances, the K nearest neighbour samples of the new object are
found. Then, an indictor variable I(yi � j) is introduced, which is a
crucial concept. I(yi � j) is a binary indicator variable. If yi � j then
I(yi � j) � 1; if yi ≠ j , then I(yi � j) � 0. Here yi is the response
value (class label) of the i − th nearest neighbors sample, and j is the class
we are examining. Using this indicator variable, the conditional
probability Pr(Y � j|X � x0) can be calculated, with the formula
Pr(Y � j|X � x0) � 1

K∑i∈N0
I(yi � j), where N0 epresents the set of

K nearest neighbor samples of the new object x0. The effectiveness of the
KNN algorithm hinges on the validity of this assumption (Porwal
et al., 2004).

The data pertaining to the Yellow River Basin’s carbon
ecological compensation mechanism is analyzed in this study
using the KNN method. For example, it may be used to predict
the category or a certain trend of carbon surplus or deficit provinces
under different conditions. By finding historical data samples that
are similar to the current situation (i.e., the nearest neighbors) and
basing on the characteristics of these samples to infer future
situations, It supports the research of the carbon ecological
compensation mechanism in the Yellow River Basin with data
and serves as a foundation for decision-making. The advantages

TABLE 1 Parameters in the discriminant model and their implications.

Parameters Meaning of parameters

Ci The level of carbon surplus in i province

CSi The total carbon emissions of i province in a year

CAi The total carbon absorbtions of i province in a year
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TABLE 2 The accounting methods of carbon absorption and emissions.

Categories Calculation formula Index interpretation

Carbon
emission

Energy consumption
CEenergy � ∑3

i�1
Qi × Ci

Qi is the consumption of the i − th energy. Ci is the emission coefficient of the i − th energy. Carbon
emissions are calculated based on the terminal consumption of raw coal, crude oil and natural gas
(Liu et al., 2011). The carbon emission coefficients of the three energy sources
are 0.54kgC/kg, 0.85kgC/kg,2.42kgCO2/kg

Industrial production
CEenergy � ∑4

i�1
Qi × Ci

Qi is the production volume of the i − th industrial product. Ci is the emission coefficient of the ith
industrial product. Carbon emission is calculated based on cement, raw steel, crude iron and flat
glass. The carbon emission coefficients of the four industrial products are 0.538kgCO2/kg,
1.06kgCO2/kg, 1.35kgCO2/kg, 0.2kgCO2/kg (Yang and Liu, 2013)

Agricultural
production CEagri � ∑n

i�1
S
plant

× P + Sirri × Q + E × R + Ufert × T
Carbon emissions were calculated on the basis of planting, irrigation, total power of agricultural
machinery and fertilization. Splant is the irrigation area. Sirri is the fertilization area. E is the total
power of agricultural machinery. Ufert is the amount of fertilizer used.
P � 16.47kgC/hm2 , Q � 266.48kgC/hm2 ,, R � 0.18kgC/kw, T � 0.8956kgC/kg (Liu et al., 2021)

Animal husbandry
CEanimal � ∑8

i�1
Qanimal × (Ci1 + Ci2) × 11

4

Qi is the number of the i animal, Ci1, Ci2 are the methane emission coefficients of intestinal
fermentation and feces of the ith animal. Carbon emission is calculated based on cattle, horse,
donkey, mule, camel, pig, goat and sheep (Hu and wang, 2010)

Waste CEwaste � [Qfill × 0.167 × (1 − 71.5%) + (CODlife + CODindustry)] × 11
4 + Qbuen × 0.4 × 0.95 × 44

12) Carbon emissions generated by waste are divided into solid landfill waste, solid incineration waste
and waste water treatment carbon emissions. Qfill is the amount of solid waste landfill. Qburn is the
amount of solid waste incineration. CODlife is the total amount of domestic sewage. CODindustry is
the total amount of industrial wastewater. The emission of methane in landfill waste is 0.167. the
water content of landfill waste is 71.5%. The conversion coefficient of methane and carbon dioxide
is 11

4 . The carbon content factor of incineration waste is 0.4. The complete combustion rate of
incineration waste is 0.95. The conversion coefficient of carbon and carbon dioxide is 44

12 (Zhao and
Qin, 2007).

Carbon
absorption

Crop
CAcrop � ∑17

i�1
Qi × Ci × (1 − Pi) × 1

Hi
(Yang XInjiletu, 2013)

Qi is the economic yield of the ith crop. Ci is the carbon absorption rate of the ith crop. Pi is the
water content of the ith crop. Hi is the economic coefficient of the ith crop (Zhang et al., 2022)

Vegetation
CAvge � TCF +∑5

i�1
Si × Pi

TCF � SF × CF(1 + α + β)CF � V · δ · ρ · γ

TCF is carbon absorption of the forest. CF is forest carbon density. V is forest storage per unit area.
α is understory vegetation carbon conversion coefficient. β is forest carbon conversion coefficient. δ
is volume density. γ is carbon content (Wang et al., 2017) α � 0.195, β � 1.244, δ � 1.9, γ � 0.5。Si
is the area of the ith planting cover. Pi is the carbon absorption rate of the ith planting cover
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of the KNN algorithm lie in its simplicity and intuitiveness, being
easy to understand and implement, and being capable of handling
multi - classification problems, as well as having a certain
adaptability to complex data distributions. However, it also has
some limitations. For example, the computational complexity is
relatively high, especially when dealing with large - scale data sets, as
it needs to determine the separation between every training sample
and every test sample. it is sensitive to feature scaling. If the scales of
features vary greatly, it may lead to deviations in distance calculation
and thus affect the classification results; and it is easily affected by
noisy data and outliers, because a few abnormal samples may change
the distribution of the nearest neighbors and thus affect the
classification decision.

2.3.3.1.2 Decision tree. Because it is nonparametric and
provides a great deal of flexibility, the decision tree approach is
one of the most often used machine learning techniques. All
potential predictor values are separated into discrete,
nonoverlapping sections known as the predictor space via a
classification and regression tree (CART). This process, known as
recursive partitioning, automatically identifies main effects,
including nonlinear correlations and interactions. The tree
structure grows on the basis of these nonoverlapping regions,
with the terminal regions referred to as leaf nodes, representing
distinguishable subgroups. For classification tasks, predictions
assign observations to the most prevalent class within the leaf
node (James et al., 2013). For continuous outcomes, the
prediction in a decision tree is the average response value of the
observations within a specific node. The growth of a tree involves
splitting it according to specific criteria. In contrast, conditional
inference trees grow on the basis of the strength of univariate
associations (Strobl et al., 2007). Individual decision trees are
highly interpretable and adept at identifying nonlinear
correlations and interactions between variables. They typically
split once on a single feature, which simplifies the decision logic
of the tree and enhances interpretability.

2.3.3.1.3 Random forest. Random forest (RF), a machine
learning algorithm, was initially proposed by Breiman in 2001
(Breiman, 2001). By employing bootstrap aggregation, commonly
referred to as bagging, RF significantly minimizes errors in both
classification and regression analyses. This method demonstrates
strong resilience and maintains high accuracy even when the target
data contains noise or inconsistencies (Kontschieder et al., 2015). Its
ability to handle complex datasets while preserving reliability has
made it a widely adopted tool in various predictive modeling
applications. The essence of RF lies in minimizing prediction

errors while considering the correlation between the decision
trees within the forest and their predictions (Chan and Paelinckx,
2008). This method has been successful in solving both regression
and classification problems. RF and other machine learning
algorithms have been applied to predict urban runoff quality on
the basis of variables representing rainfall events. Researchers have
also analysed the relative importance of these rainfall variables to
assess their impact on urban stormwater quality (Jeung et al., 2019).
In CO2 emission prediction, researchers have developed a random
forest model that incorporates a comprehensive array of urban
governance factors to predict CO2 emissions. They have also
conducted detailed analyses on how these governance factors
relate to CO2 emissions (Zhang et al., 2023). In numerous
studies, simple regression models are commonly used for
predicting target variables because of their structural simplicity
(Jiang etal., 2020). However, these models have inherent
limitations, including susceptibility to underfitting, sensitivity to
outliers, and lower accuracy in handling nonlinear data (Qiao et al.,
2020). The RF algorithm, on the other hand, surpasses simple
regression models by leveraging techniques such as random
sampling of training data subsets and random algorithms for tree
construction (Panov and Džeroski, 2007). This approach enhances
prediction performance by mitigating overfitting and improving
robustness against noise in the data. In RF, the final estimated value
is the average of all results from each tree, where each tree
contributes to the estimation with a specific weight. However,
owing to the “black box” nature of this approach, individual
examinations of each tree cannot be conducted (Prasad et al.,
2006). RF models offer significant advantages in handling
multivariate data. They enhance the prediction accuracy and
improve the generalizability by constructing a series of decision
trees and combining their prediction results. This characteristic
makes RF more robust and reliable in providing forecasting
outcomes, especially when dealing with complex environmental
and economic data. RF models can assess the impact of each
feature on the prediction results. By calculating feature
importance and visualizing it, we can determine which features
are most crucial for predicting demand and supply quantities. This
helps us to understand the inherent relationships in the data, guiding
further data exploration and feature engineering.

2.3.3.1.4 Gradient boosting decision tree. An ensemble
learning technique called Gradient Boosting Decision Tree
(GBDT) creates decision trees in a step-by-step manner while
reducing the loss function to get close to the actual value. It
combines many decision trees and GBDT is widely used for
various tasks, including regression (Ding et al., 2018) and logistic

TABLE 3 Cost-benefit accounting methods.

Formula Index interpretation

Cen � S × (M1 +M2) S is the newly added afforestation area in the current year. M1 ,M2 are afforestation subsidy and forest standing tending subsidy
respectively

Cop � S × M3 S is the newly added afforestation area in the current year. M3 is the income that can be generated by the planting of cash crops

Rti � Q1 × P1 Q1 is the wood production of the year. P1 is the price of each year

Rci � Q2 × P2 Q2 is the amount of carbon absorbed in the year. P2 is the price of carbon dioxide
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regression (Lombardo et al., 2015). It represents a specific
implementation of boosting machines (Sutton, 2005). GBDT is
renowned as one of the most powerful algorithms in machine
learning and has achieved remarkable success rates across diverse
fields, such as healthcare (Ding et al., 2018; Morid et al., 2017),
education (Hew et al., 2020), energy (Lu et al., 2020), and economics
(Carmona et al., 2019). GBDT is often considered a “black-box”model,
implying that its algorithms and predictions are not easily interpretable
by humans through simple examination of its parameters and features.

2.3.3.2 Predicting net carbon emissions in the context of
voluntary trading
2.3.3.2.1 Datasets. On the basis of the analysis results in Section
2.3.2, six key variables were used to evaluate the carbon ecological
compensation mechanism in the YRB. These variables include the net
CO2 emissions of the carbon surplus and deficit provinces, the costs
associated with carbon ecological protection, the related revenues, the
CO2 trading volume and the CO2 price. During the simulated voluntary
trading process, the net carbon emissions of the carbon surplus
provinces and the carbon deficit provinces served as the supply and
demand, respectively. The collected data underwent rigorous cleaning

procedures, which involved identifying and addressing outliers
(Figure 3), filling in missing values, correcting errors and
inconsistencies in the data records, and ensuring the overall accuracy
and consistency of the datasets (Figure 4). Data cleaning is crucial for
maintaining the reliability of subsequent analyses and the validity of
model predictions, thereby ensuring the quality of the data analysis and
the credibility of the research outcomes.

This study used the Anaconda 3 distribution of Python as the
development environment for constructing the machine learning
models. Throughout this process, we depended primarily on the
widely utilized libraries scikit-learn and Pandas for the data mining
and machine learning tasks, given their rich functionalities and
tools. We employed the “describe ()” function in Pandas to perform
an initial statistical analysis of the dataset. This function efficiently
computes descriptive statistics, including the mean, standard
deviation, minimum, maximum, and quantiles. The dataset was
then split into a training set (80%) and a testing set (20%) using the
‘train_test_split()’ function. This approach ensured an accurate
model evaluation while maintaining data integrity. During the
model construction phase, we selected “RandomForestRegressor
()” from the scikit-learn library as our regression analysis tool. In

FIGURE 3
Eigenvalue function fitting.
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the implementation, we configured several key parameters of the
“RandomForestRegressor ()” model. We set “n_estimators = 100,”
indicating that the model would consist of 100 decision trees. We
also specified “random_state = 42” to ensure the reproducibility of
the model training process. Additionally, we set “min_samples_
split = 2” and “min_samples_leaf = 1” to manage the decision tree’s
complexity and used the “max_features” parameter to optimize the
feature selection. By invoking the “fit ()” method, the RF model
learns and captures the underlying patterns in the training data. We
subsequently utilized the “predict ()” function to make predictions
on the testing set, thereby evaluating the model’s performance on
unseen data (Figure 5).

2.3.3.2.2 Robustness test. A robustness test was carried out
utilizing the technique of injecting noise in order to evaluate the
resilience of the four distinct machine learning models. This
involved generating repeated predictions by introducing noise to
the model and then calculating the mean and standard deviation of
the prediction results. This process helps evaluate the model’s ability
to withstand variations in input. For the prediction models of net
CO2 emissions (supply) in surplus provinces and net CO2 emissions
(demand) in CO2 deficit provinces, a noise level of 0.1 was chosen.
With a mean of 0 and a standard deviation of 0.1, this noise was
distributed normally. The test was conducted with 100 iterations of
10-year data. The means and standard deviations of the prediction

results were used as indicators for assessing robustness. The mean
reflects the average prediction performance of the model after
introducing noise, whereas the standard deviation indicates the
degree of variation in the model’s prediction results. A smaller
standard deviation typically suggests better robustness of the model
to fluctuations caused by noise.

2.3.4 Sensitivity analysis
To investigate the impact of various feature variables on prediction

outcomes through sensitivity analysis, the process begins with data
preparation and model training. The code constructs or loads a dataset
spanning 10 years, encompassing seven variables: demand elasticity,
supply elasticity, price, marginal revenue, trade volume, demand
quantity, and supply quantity. These data are organized into a
DataFrame format. The feature variables X and target variables Y are
separated. The first 9 years of data are used as the training set, while the
10th year’s data serve as the test set. The feature data are scaled using
MinMaxScaler, and then a Random Forest Regression model is
employed to train separately for demand quantity and supply
quantity, resulting in the trained models.

Next, a sensitivity analysis function is defined. This function accepts
the trained model, input feature data, base feature data, the index of the
feature to be altered, the range of parameter values, and the number of
iterations as parameters. Within the function, for each value in the
parameter range, the feature value at the specified index in the base

FIGURE 4
Machine learning feature data cleaning.
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feature data is modified to generate new feature data. The trained model
is then used to predict the new feature data multiple times (n_iterations
times), and each prediction result is recorded. The average and standard
deviation of these results are calculated, and the parameter value, average
prediction, and standard deviation are saved as a set of results. Finally,
the function returns the analysis results for all parameter values.

Subsequently, sensitivity analysis is conducted for demand
quantity. The list of feature variable names is iterated over, and for
each feature, a range of 10 uniformly distributed parameter values is
generated based on the minimum and maximum values of the scaled
training data. The sensitivity_analysis function is called, passing in the
demand prediction model model_demand and related parameters, to
obtain the sensitivity analysis results for the feature’s impact on demand
prediction. The average prediction and standard deviation for each
parameter value are printed, visually demonstrating the influence of
feature changes on demand prediction.

Finally, sensitivity analysis is performed for supply quantity.
This process is similar to that for demand quantity, except that the
model is replaced with the supply prediction model model_supply.
Each feature is iterated over, parameter value ranges are generated,
the sensitivity analysis function is called, and the results are printed,
thereby illustrating the impact of each feature on supply prediction.

3 Results

3.1 Calculation results for net
carbon emissions

The carbon emissions, carbon absorption, and net carbon
emissions of nine provinces in various years were derived by
adding matching data into the model. Table 4 displays the
particular outcomes.

3.2 Quantifying the influencing factors of
horizontal carbon ecological compensation
in the YRB

For provinces with a carbon surplus, “protection” is chosen as a
strategy when the benefits of ecological protection outweigh the
associated costs. However, in practice, the benefits often do not
outweigh the costs incurred. To prevent carbon surplus and deficit
provinces from falling into a “prisoner’s dilemma” scenario where
neither protection nor compensation is chosen, the central
government acts as an impartial third party. It implements
reward and punishment policies to supervise and incentivize
appropriate actions. The parameters of the central government’s
reward and punishment mechanism depend on the costs and
benefits of carbon surplus provinces engaging in ecological
protection, as well as the compensation required by carbon
deficit provinces. The costs and benefits involved in calculating
compensation and the participation of carbon surplus provinces in
ecological protection are detailed in Table 5. The scope of rewards
and punishments for the supervision mechanism established by the
central government is shown in Table 6.

3.3 Net carbon emission projections

The output results of the supply forecasting model and the
demand forecasting model are shown in Table 7 (Figure 6).

4 Model comparison

Table 8 displays the output data from both the supply and
demand forecasting models.

FIGURE 5
Machine learning validation technology.
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TABLE 4 Calculation results of net carbon emissions in the 9 provinces across the YRB from 2013 to 2022.

Carbon emission
(104tCO2)

Carbon absorption
(104tCO2)

Net carbon emission
(104tCO2)

2013

Qinghai 6,086.736 18,908.87 −12,822.1

Sichuan 50,160.76 54,908.95 −4,748.19

Gansu 19,841.22 21,058.81 −1,217.59

Ningxia 13,842.55 3,807.538 10,035.01

Inner Mongolia 8,444.44 18,613.36 −10,168.92

Shaanxi 31,841.83 31,725.66 116.1704

Shanxi 97,590.35 14,796.93 82,793.43

Henan 69,549.06 21,692.82 47,856.24

Shandong 10,9751.5 19,263.34 90,488.2

2014

Qinghai 6,138.313 18,900.53 −12,762.2

Sichuan 49,778.85 54,946.06 −5167.2

Gansu 20,737.03 21,103.56 −366.525

Ningxia 14,486.62 3,819.68 10,666.94

Inner Mongolia 8,104.20 18,695.69 −10,591.49

Shaanxi 33,278.87 31,582.86 16,96.013

Shanxi 94,456.02 14,802.51 79,653.51

Henan 64,137.22 21,899.16 42,238.05

Shandong 11,2766.8 19,369.32 93,397.46

2015

Qinghai 6,532.3 18,904.31 −12,372

Sichuan 47,457.74 55,245.79 −7,788.05

Gansu 20,045.46 21,171.3 −1,125.84

Ningxia 15,151.91 3,809.135 11,342.77

Inner Mongolia 8,335.79 18,744.44 −10,408.65

Shaanxi 34,131.22 31,871.59 2,259.632

Shanxi 89,818.52 14,752 75,066.51

Henan 70,965.82 22,216.2 48,749.62

Shandong 113,933.1 19,655.95 94,277.12

2016

Qinghai 7,943.679 18,897.42 −10,953.7

Sichuan 46,803.42 55,498.08 −8,694.66

Gansu 18,996.05 21,197.39 −2,201.34

Ningxia 15,470.65 3,797.879 11,672.77

Inner Mongolia 8,816.37 18,736.23 −9,919.86

Shaanxi 34,130.45 31,986.4 2,144.048

Shanxi 96,117.25 14,910.01 81,207.24

(Continued on following page)
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TABLE 4 (Continued) Calculation results of net carbon emissions in the 9 provinces across the YRB from 2013 to 2022.

Carbon emission
(104tCO2)

Carbon absorption
(104tCO2)

Net carbon emission
(104tCO2)

Henan 70,731.57 22,143.63 48,587.94

Shandong 118,558.6 19,226.39 99,332.26

2017

Qinghai 7,501.623 18,889.45 −11,387.8

Sichuan 42,808.33 55,833.71 −13,025.4

Gansu 18,414.82 20,375.61 −1,960.78

Ningxia 18,120.36 3,511.118 14,609.24

Inner Mongolia 8,067.69 19,645.85 −11,578.16

Shaanxi 36,043.18 31,047.87 4,995.309

Shanxi 96,117.25 14,910.01 81,207.24

Henan 68,222.79 23,026.49 45,196.29

Shandong 113,666.2 19,848.99 93,817.17

2018

Qinghai 7,001.741 18,897 −11,895.3

Sichuan 43,727.62 59,892.44 −16,164.8

Gansu 19,024.92 20,488.89 −1,463.96

Ningxia 19,728.14 3,608.886 16,119.25

Inner Mongolia 9,243.67 20,677.19 −11,433.52

Shaanxi 36,197.63 35,229.33 968.2955

Shanxi 102,447.8 14,967.91 87,479.86

Henan 66,507.49 23,197.95 43,309.55

Shandong 117,396.6 19,744.49 97,652.12

2019

Qinghai 6,733.397 20,761.88 −14,028.5

Sichuan 45,579.35 63,798.05 −18,218.7

Gansu 18,985.5 24,129.52 −5,144.03

Ningxia 21,199.91 4,113.9 17,086.01

Inner Mongolia 10,066.57 20,479.76 −10,413.19

Shaanxi 37,493.26 35,431.66 2,061.595

Shanxi 108,582.9 18,038.49 90,544.37

Henan 64,806.32 25,740.08 39,066.24

Shandong 115,241.2 24,110.93 91,130.22

2020

Qinghai 6,299.467 20,478.56 −14,179.1

Sichuan 45,394.93 64,150.12 −18,755.2

Gansu 20,151.86 24,272.32 −4,120.46

Ningxia 22,807.17 4,145.164 18,662.01

Inner Mongolia 10,485.88 20,537.23 −10,051.35

(Continued on following page)
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The results indicate that the RF model consistently delivers stable
and reliable forecasts across multiple datasets. In supply forecasting,
the average predictions range from 6.18 to 7.28, predominantly
clustering at approximately 6.6–6.7, demonstrating minimal
fluctuations. For demand forecasts, the RF model also yields stable
average predictions ranging from 6.61 to 6.83. This finding indicates
robust predictive performance with noise incorporation.With respect
to variability, the RF model typically exhibits standard deviations
ranging between 5 and 16 for supply forecasts, which is notably lower
than those of the other models, such as KNN and GBDT. For demand
forecasting, the RF model consistently shows lower standard
deviations across all datasets, especially compared with the DT and
GBDTmodels, which tend to exhibit greater volatility. In contrast, the
KNNmodel occasionally had zero standard deviations in some of the
datasets, suggesting potential issues with overfitting or inadequate
performance. The DT model displays significant standard deviation
fluctuations, particularly in supply forecasting, where instability is

evident inmore than 40 cases. TheGBDTmodel occasionally achieves
superior average predictions but tends to exhibit higher standard
deviations, indicating increased variability. Considering both the
average predictive stability and standard deviation, the RF model
consistently outperforms the other models when subjected to noise,
demonstrating strong predictive capability and stability across various
noise levels.

4.1 Sensitive analysis

The sensitivity analysis was conducted on six key
features—demand elasticity, supply elasticity, carbon price, trade
volume, and demand quantity—to evaluate their impact on supply
quantity. The results are visualized in Figure 7 that illustrates the
average predicted supply quantity and the standard deviation of
predictions corresponding to different scaled values of demand

TABLE 4 (Continued) Calculation results of net carbon emissions in the 9 provinces across the YRB from 2013 to 2022.

Carbon emission
(104tCO2)

Carbon absorption
(104tCO2)

Net carbon emission
(104tCO2)

Shaanxi 37,985.19 34,238.9 3,746.286

Shanxi 112,547.8 18,180.63 94,367.15

Henan 66,490.64 26,105.38 40,385.26

Shandong 123,809.2 24,521.9 99,287.32

2021

Qinghai 6,963.707 20,755.53 −13,791.8

Sichuan 46,556.47 64,525.07 −17,968.6

Gansu 21,089.59 23,344.8 −2,255.22

Ningxia 23,197.69 4,168.403 19,029.29

Inner Mongolia 9,990.15 20,541.37 −10,551.21

Shaanxi 39,613.85 36,281.49 3,332.361

Shanxi 116,073.2 18,204.65 97,868.52

Henan 65,712.55 25,195.13 40,517.42

Shandong 126,715.7 24,306.79 102,408.9

2022

Qinghai 7,531.016 20,748.02 −13,217

Sichuan 44,596.23 64,630.8 −20,034.6

Gansu 21,422.32 23,444.91 −2,022.59

Ningxia 24,107.66 4,171.147 19,936.51

Inner Mongolia 8,879.46 17,352.77 −8,473.31

Shaanxi 41,935.58 35,421.54 6,514.039

Shanxi 116,028.5 18,263.8 97,764.72

Henan 66,794.72 25,616.2 41,178.53

Shandong 127,503.8 24,311.91 103,191.9
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elasticity. For supply elasticity, as the scaled value increases from
0.0000 to 0.3333, the average predicted supply quantity remains
constant at 6.7863 × 1011, indicating no significant impact of supply
elasticity changes on supply quantity predictions within this range.
However, when the scaled supply elasticity reaches 0.4444, the
average predicted value drops to 6.7285 × 1011 and remains
stable in the range of 0.4444–0.6667. It then continues to decline,
reaching 6.3952 × 1011 at 0.8889 and further dropping to
6.3569 × 1011 at 1.0000. Overall, there is a trend of decreasing
average predicted supply quantity with increasing supply
elasticity. Supply elasticity measures the responsiveness of supply
quantity to changes in factors like price. The decline in average
predicted values with higher supply elasticity suggests that as supply
becomes more sensitive to price changes, the market supply quantity
decreases. This could be because, under high supply elasticity,
producers are more likely to adjust production in response to
market uncertainties, potentially reducing supply.

Regarding carbon price, as the scaled price increases from
0.0000, the average predicted supply quantity initially rises and
then stabilizes with slight fluctuations. From 0.0000 to 0.3333, the
average predicted value increases from 6.4351 × 1011 to
6.6863 × 1011, indicating a significant stimulative effect of price
increases on supply quantity within this range. Between 0.3333 and
0.4444, the average predicted value remains unchanged, suggesting
that at this price level, the net carbon emissions of carbon-surplus
provinces have reached a certain scale, and further price increases do
not immediately lead to additional supply. As the price continues to
rise, the average predicted value shows minor increases and
fluctuations, reaching 6.7108 × 1011 at a scaled price of 1.0000.

The sensitivity analysis for marginal revenue shows the average
predicted supply quantity and its standard deviation corresponding
to different scaled marginal revenue values. As the scaled marginal
revenue increases from 0.0000, the average predicted supply
quantity generally declines, starting from 6.6222 × 1011 and
gradually decreasing to 6.5750 × 1011. The average predicted

TABLE 5 2013-2022 carbon surplus provinces ecological protection costs
and revenue.

Total cost Total revenue

2013

Qinghai 55.31 4.92

Sichuan 213.66 21.13

Gansu 110.87 0.623

Inner Mongolia 299.76 27.16

2014

Qinghai 55.10 5.323

Sichuan 260.38 18.65

Gansu 127.38 0.42

Inner Mongolia 265.45 28.58

2015

Qinghai 59.82 5.149

Sichuan 316.79 18.55

Gansu 162.30 0.59

Inner Mongolia 316.72 24.41

2016

Qinghai 75.91 4.65

Sichuan 404.53 20.35

Gansu 177.51 0.10

Inner Mongolia 311.19 19.40

2017

Qinghai 94.05 4.85

Sichuan 445.60 22.47

Gansu 190.55 0.94

Inner Mongolia 329.05 21.92

2018

Qinghai 99.91 5.14

Sichuan 399.64 23.49

Gansu 245.63 0.83

Inner Mongolia 326.83 21.70

2019

Qinghai 121.15 7.30

Sichuan 332.18 27.54

Gansu 242.72 3.00

Inner Mongolia 380.75 24.81

2020

Qinghai 142.39 8.15

Sichuan 349.92 43.90

(Continued in next column)

TABLE 5 (Continued) 2013-2022 carbon surplus provinces ecological
protection costs and revenue.

Total cost Total revenue

Gansu 246.20 3.62

Inner Mongolia 362.79 33.77

2021

Qinghai 102.56 8.21

Sichuan 359.08 56.08

Gansu 191.76 2.29

Inner Mongolia 248.37 39.41

2022

Qinghai 122.24 12.24

Sichuan 295.28 59.53

Gansu 243.42 2.35

Inner Mongolia 253.97 43.78
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value remains stable in the ranges of 0.3333–0.4444 and 0.7778 to
1.0000. The decrease in average predicted values with increasing
marginal revenue suggests that, under the given market conditions,
carbon-surplus provinces may adjust their environmental measures
as marginal revenue rises.

For trade volume, as the scaled value increases from 0, the
average predicted demand quantity shows an overall upward trend.
Similarly, for demand quantity, as the scaled value increases from
0.0000, the average predicted supply quantity initially rises and then
stabilizes. At lower scaled demand values (0.0000–0.3333), the
average predicted value increases rapidly from 6.3874 × 1011 to
6.6622 × 1011, indicating a strong pull effect of demand increases
on supply quantity. Beyond 0.3333, the average predicted value
continues to rise but at a diminishing rate. In the range of
0.7778–0.8889, the average predicted value remains constant at
6.7509 × 1011, and it slightly decreases to 6.7470 × 1011 at 1.0000.
This implies that once demand reaches a certain level, further
increases in supply quantity face.

Another sensitivity analysis was conducted on the six
characteristic values. The results of the sensitivity analysis of
demand elasticity, supply elasticity, carbon price, trading volume,
and supply quantity with respect to demand quantity are as follows.
The Figure 8 shows the average predicted value of the supply
quantity and the standard deviation of the predicted value
corresponding to different scaled demand elasticity values.

For the sensitivity analysis of demand elasticity, when the scaling
value of demand elasticity starts to increase from 0, the average
predicted demand quantity generally shows a trend of first
decreasing and then increasing. When the scaling value ranges
from 0 to approximately 0.4444, the average predicted demand
quantity gradually decreases, from 6.5201197 × 1011 to 6.3259989 ×

1011. In this range, the increase in demand elasticity makes the
market demand more sensitive to factors such as price. Carbon -
deficit provinces may significantly adjust their purchase volume due
to small price changes, resulting in a decrease in the predicted value
of the overall demand quantity. When the scaling value of demand
elasticity exceeds 0.4444, the average predicted demand quantity
begins to rise again, indicating that at a higher level of demand
elasticity, some special situations occur in the market, so that even
though demand is sensitive to price, the overall demand quantity still
increases. Demand elasticity reflects the sensitivity of the demand
quantity to changes in factors such as price. In the stage of low
demand elasticity, carbon - deficit provinces are not very sensitive to
price changes, and the government can increase the income of
carbon - surplus provinces by appropriately adjusting the price. In
the stage of high demand elasticity, small price changes may lead to
large fluctuations in the demand quantity, so the government needs
to be more cautious in formulating price strategies.

When the scaling value of supply elasticity is between 0 and
0.3333, the average predicted demand quantity remains unchanged.
Starting from 0.4444, the average predicted demand quantity
generally shows a downward trend, gradually decreasing from
6.4002166 × 1011 to 6.3259989 × 1011. This indicates that when
the supply elasticity exceeds a certain threshold, the supply becomes
more sensitive to factors such as price, which may lead to instability
in the commodity supply in the market, thus affecting the demand
expectations of carbon - deficit provinces and causing the predicted
demand quantity to decline.

As the price scaling value gradually increases from 0, the average
predicted demand quantity generally shows an upward trend. When
the price scaling value is relatively low (around 0–0.2222), the
change in the average predicted demand quantity is relatively

TABLE 6 The threshold of monitoring mechanism in the YRB from 2013 to 2022.

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

C(108) 679.60 708.32 855.63 969.14 1,059.24 1,072.01 1,076.80 1,101.31 901.77 914.90

R1(108) 53.83 52.97 48.70 45.40 50.19 51.16 62.66 89.44 105.99 117.89

a 0.99 0.92 0.98 1.66 0.96 1.04 1.88 1.09 1.01 1.13

W + S> − v(aR1) + C 626.22 659.43 807.74 893.64 1,011.24 1,018.98 958.73 1003.56 795.12 782.04

W + S>Q + E 86.01 91.44 91.94 98.64 101.68 105.92 124.90 143.06 156.59 242.77

W + F≥ − v(aR1) + C 626.22 659.43 807.74 893.64 1,011.24 1,018.98 958.73 1003.56 795.12 782.04

TABLE 7 Comparison of machine learning predictions.

Net carbon emissions of carbon surplus
provinces (108tCO2)

Net carbon emissions of carbon deficit
provinces (108tCO2)

KNN 7.14 −6.98

DT 7.40 −7.39

FR 6.78 −6.71

GBDT 7.37 7.35

Actual
value

6.26 −7.41
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gentle. When the price scaling value exceeds 0.2222, the increase in
the average predicted demand quantity becomes more significant,
reaching 6.6575625 × 1011 when the price scaling value is 0.9999. It is
possible that carbon - deficit provinces regard the price increase as a

signal of increased commodity scarcity, thus increasing their
willingness to purchase.

When the marginal revenue scaling value increases from 0, the
average predicted demand quantity generally shows a downward

FIGURE 6
Calculation results of net carbon emissions in the 9 provinces across the YRB from 2013 to 2022.
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trend. When the marginal revenue scaling value is 0, the average
predicted demand quantity is relatively high in some cases. As the
marginal revenue scaling value increases to 0.1111, the average
predicted demand quantity drops to 6.3401310 × 1011, and then
continues to decline and remains basically stable in the range of
0.3333–1.0. The extra money made by each extra unit of output is
represented by the marginal revenue. When there is little marginal
income, carbon - surplus provinces may adopt a low - price
strategy to expand sales volume, thus stimulating market
demand and making the predicted demand quantity relatively
high. As the marginal revenue increases, carbon - surplus
provinces may raise prices to obtain higher profits, which will
suppress the purchasing willingness of carbon - deficit provinces
and lead to a decrease in the demand quantity. When the marginal
revenue reaches a certain level, the price and output strategies are
relatively stable, so the predicted value of the demand quantity also
tends to be stable.

5 Discussion

5.1 Time of carbon emissions in the YRB

Carbon emissions in the Yellow River Basin gradually increased
from 2013 to 2022 (Figure 9), which is consistent with the findings of
Zhao (Zhao et al., 2022). Concurrently, the increase in carbon
absorption has helped mitigate net carbon emissions. Factors such
as economic and industrial development, the energy structure, policy
interventions, technological advancements and natural conditions
have collectively influenced the overall carbon emissions and
absorption dynamics in the YRB. In the upstream areas, carbon
absorption significantly outweighs emissions, resulting in negative

net carbon emissions. However, the middle reaches experienced
notable increases in carbon emissions, leading to a continued
increase in net carbon emissions. Conversely, the downstream
region achieved substantial reductions in carbon emissions through
industrial adjustments and technological advancements, which is
consistent with previous research by Meng (Meng et al., 2023).

5.2 Constructing the horizontal carbon
ecological compensation mechanism in
the YRB

According to recent research, effective oversight by the
central government is essential for establishing ecological
compensation systems in river basins (Wang Q. et al., 2022).
However, the absence of sufficient checks and incentives from
local governments poses a significant challenge to developing
such mechanisms across various river basins in China (Jing and
Zhang, 2021). As discussed in Section 3.2, the current conditions
do not support the evolution of society’s desired optimal strategy
into a stable approach within the game system, highlighting the
critical need for implementing a reward and punishment
mechanism. Further exploration in Section 3.2 revealed that
the parameter range for introducing this mechanism by the
central government hinges on the costs and benefits
associated with carbon surplus provinces engaging in carbon
ecological protection, as well as the compensation provided to
carbon deficit provinces.

Currently, the research on ecological compensation
predominantly focuses on theoretical policies, compensation
methods, and the necessity of compensation (Jing et al., 2021).
Specific discussions on the operational mechanisms of ecological

TABLE 8 The output results of the mean and standard deviation of the demand forecasting model and the supply forecasting model after adding noise.

Supplyment Mean value(1011kgCO2) KNN 5.80 5.80 6.22 6.17 7.16 7.11 7.32 7.18 7.16 6.93

DT 5.74 5.75 5.97 5.78 6.81 7.16 7.54 7.34 7.26 6.31

FR 6.18 6.21 6.26 6.35 6.82 6.94 7.07 7.27 7.28 6.72

GBDT 6.01 6.03 6.14 6.18 6.68 6.88 7.38 7.31 7.28 6.31

Standard deviation(109) KNN 7.52 5.98 0.00 13.89 24.47 12.10 7.61 8.99 6.75 0.00

DT 15.49 15.38 28.38 17.43 41.68 25.76 8.22 15.66 17.46 37.43

FR 5.36 6.70 7.27 14.46 14.76 12.41 16.57 7.76 5.01 10.62

GBDT 40.48 36.99 31.38 37.54 38.47 37.32 19.43 20.25 17.97 26.27

Demand Mean value(1011kgCO2) KNN 5.80 5.81 6.22 6.17 6.92 7.13 7.31 7.18 7.17 6.92

DT 5.72 5.78 6.01 5.81 6.72 7.09 7.53 7.30 7.24 6.36

FR 6.61 6.61 6.66 6.62 6.72 6.75 6.77 6.81 6.83 6.71

GBDT 5.94 6.06 6.24 6.19 6.68 6.90 7.36 7.32 7.28 6.31

Standard deviation(109) KNN 7.52 10.15 0.00 12.82 24.69 7.44 7.89 8.45 7.80 6.07

DT 15.52 14.35 26.95 18.85 48.52 31.59 9.90 14.58 17.27 39.27

FR 1.93 3.27 4.38 3.61 4.42 5.03 2.87 3.09 3.18 4.64

GBDT 38.17 37.55 33.45 35.16 37.36 36.21 24.84 18.67 21.01 26.3
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compensation are limited. Building upon previous research, this
study explores the development of a horizontal carbon ecological
compensation mechanism in the YRB.

The horizontal carbon ecological compensationmechanism in the
YRB promotes carbon emission reduction through market-based
approaches, primarily voluntary trading. At its core, the scheme
facilitates the emission rights of CO2 trading, enabling carbon-
deficit provinces to collaborate with carbon-surplus provinces. This
partnership involves investing in emission reduction projects funded
by compensation mechanisms aimed at achieving a balance in carbon
emissions. The YRBCarbon Reduction PromotionCenter, established
by the Ministry of Ecology and Environment, oversees the

establishment of registration and trading institutions and related
systems to ensure the standardization and transparency of trading
(Figure 10). The national carbon emission trading market operates
under established laws and regulations, compensation scope, trading
management system, monitoring, reporting, and verification (MRV)
system, and regulatory mechanism. Implementation of the MRV
system guarantees the authenticity of the emissions data and the
trading accuracy, whereas regulatory mechanisms include
supervision, management, and legal responsibilities to uphold
market integrity and health. The total amount of carbon emission
trading in the YRB is determined on the basis of the net carbon
emissions of the provinces with a carbon surplus and is managed

FIGURE 7
The average predicted value of supply quantity corresponding to the elasticity value and the standard deviation of the predicted value.
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through the national carbon emission trading system, which supports
various trading methods. The participants include the suppliers,
demanders, regulators, technical support system operators and
trading platform operators. The carbon surplus provinces serve as
the suppliers, whereas the carbon deficit provinces act as the
demanders. The central government functions as the regulatory
body, ensuring fairness in the privatization process of public
property rights. Technical support systems and trading platforms
record transactions and provide settlement services. The carbon
trading process involves identifying supply and demand parties,
forming a “carbon ledger,” and trading emission reduction credits
on the basis of projects, products, or public low-carbon behaviour.
Project development must adhere to the nationally standardized
voluntary greenhouse gas emission reduction methodology and

undergo rigorous procedures, including filing, evaluation,
monitoring, verification and certification. Low-carbon products are
required to undergo carbon footprint calculations and public
disclosure, whereas public low-carbon behaviour is quantified
through an app and recorded in a personal “carbon ledger.”
Third-party certification verifies emission reductions to ensure
methodological applicability and calculation accuracy. The main
functions of the trading platform include account opening review,
consultation, market promotion, and other services to supervise
trading behaviour and prevent risks. The central government has
established a reward and punishment mechanism to promote the
adoption of optimal strategies, along with a regulatory
information sharing and law enforcement cooperation
mechanism with relevant departments. The settlement bank

FIGURE 8
The average predicted value of demand quantity corresponding to the elasticity value and the standard deviation of the predicted value.
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provides services such as fund settlements, financial products,
carbon trading settlements, financial advice and support within
the system to ensure smooth and secure fund flow. It also offers
financial solutions for projects and assists in planning capital
operations and management strategies. Through these measures,
the horizontal carbon ecological compensation mechanism in
the YRB aims to effectively control carbon emissions, promote
rational resource allocation, and achieve sustainable
development of the ecological environment.

This study mainly focuses on the carbon ecological
compensation mechanism Different carbon sink generation
pathways have varying effects on other ecosystem functions such
as water quality and biodiversity.

Forests are important carbon sinks, and their carbon storage can
be increased through afforestation and forest management.
However, although monoculture plantations can rapidly increase
carbon sinks, they may reduce biodiversity as they suppress the
growth of understory vegetation, thus reducing food sources and
habitats for insects and birds. In contrast, broad - leaved mixed
forests can provide complex habitat structures, promoting the
development of biodiversity. In terms of water quality, healthy
forests can reduce soil erosion, purify rainwater, and lower the
pollutant content in water bodies. Nevertheless, large - scale
deforestation or unreasonable afforestation can damage the soil
structure, exacerbate soil erosion, and affect water quality.

Wetlands are also significant carbon sinks, with their unique
environments capable of storing large amounts of organic carbon.
Wetlands serve as habitats for numerous rare animals and plants.

Protecting and restoring wetlands can increase biodiversity. For
example, coastal wetlands are crucial for the survival and migration
of migratory birds. Moreover, wetlands have a powerful water
purification function. Wetland plants can absorb and transform
nutrients in water bodies, and the soil and microorganisms can
decompose and remove pollutants. Constructed wetlands are widely
used in sewage treatment.

In farmland, reasonable management measures such as no -
tillage, straw returning, and the application of organic fertilizers can
increase soil carbon storage. Increasing farmland carbon sinks can
improve soil structure, enhance fertility, and water and fertilizer
retention capacity. Straw returning can increase soil organic matter,
improve aeration and water permeability. Reasonable management
can also provide a suitable environment for farmland organisms,
increasing biodiversity. For instance, reserving natural habitats
around farmland can provide food and habitats for insects, birds,
and small mammals.

The ocean is the largest carbon reservoir on Earth, and its carbon
sinks are mainly achieved through the photosynthesis of
phytoplankton and the calcification of marine organisms. The
increase in ocean carbon sinks helps to regulate the global
climate and slow down the rise of atmospheric carbon dioxide
concentration. Marine biodiversity is closely related to the carbon
sink process. Phytoplankton are the basis of the marine food chain.
Protecting the marine environment and promoting the increase of
carbon sinks are beneficial for maintaining biodiversity. However,
overfishing and pollution can disrupt the ecological balance,
affecting carbon sink functions and biodiversity.

FIGURE 9
Net carbon emissions of provinces in the YRB (2013–2022).
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Grasslands can increase carbon sinks through reasonable grazing
management, protection, and restoration. The roots of grassland
vegetation can fix the soil and prevent erosion. Reasonable grazing
can promote vegetation growth and enhance the soil’s anti - erosion
ability. Grasslands provide habitats for many animals and plants, and

reasonable management helps to maintain biodiversity. Overgrazing
can lead to grassland degradation and a decline in biodiversity.

Although desert ecosystems have sparse vegetation, they also have
certain carbon sink functions, which are realized through the
photosynthesis of desert plants and soil carbon fixation. The

FIGURE 10
Conceptual framework for constructing the horizontal carbon ecological compensation mechanism in the YRB.

FIGURE 11
Comparison between the predicted net carbon emissions and the actual situation under the background of voluntary trading of carbon
emission rights.
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growth of desert plants can improve soil quality, fix sand, and reduce
wind - sand erosion. They also provide habitats for unique biological
communities. However, human activities such as over - reclamation
and over - exploitation of water resources can damage desert
ecosystems, affecting carbon sink functions and biodiversity.

In conclusion, when implementing the carbon ecological
compensation mechanism, the impacts of different carbon sink
pathways on other ecosystem functions should be fully considered.
Comprehensive management measures should be taken to achieve a
win - win situation of increasing carbon sinks and protecting other
ecosystem services, promoting the sustainable development of
ecosystems and the improvement of human wellbeing.

5.3 Validation of the effectiveness of the
horizontal carbon ecological compensation
mechanism in the YRB

According to the stochastic forest model, the net CO2 emissions
(supply) of the surplus provinces and (demand) of the deficit
provinces in 2022 under the context of voluntary trading
are −6.78 × 10̂11 kgCO2 and 6.71 × 10̂11 kgCO2, respectively. The
net carbon emissions of the surplus and deficit provinces in
2022 are −6.26 × 10̂11 kgCO2 and 741 × 10̂11 kgCO2, respectively
(Figure 11). The net carbon emissions in the carbon surplus provinces
increased by 8.31%. The net carbon emissions of the carbon deficit
provinces decreased by 9.45%. The effectiveness of the carbon
emission rights resource trading model in realizing the horizontal
carbon ecological compensationmechanism in the Yellow River Basin
was verified. This result is consistent with those of previous studies.
Wang noted that reasonable planning of the carbon emission trading
market can effectively reduce carbon emissions (Wang R. et al., 2022).
However, this conclusion contrasts with Lin’s conclusion that the
effectiveness of carbon emission trading in limiting emissions in
China is not through a market mechanism but rather through
government intervention, which leads to significant carbon
emission reduction (Lin and Huang, 2022). We believe that this
discrepancy may stem from market participants’ initial lack of
experience and understanding of the carbon trading market, which
may affect their participation and trading behaviour. However, over
time, as the market matures, the carbon emission rights resource
trading market mechanism is expected to show greater effectiveness.

5.4 The limitations of this paper and future
work are as follows

First, the practicality of the evolutionary game model
constructed in this study could be affected by the interaction of
different variables. The analysis conducted here examines the
influence of individual variables such as the carbon ecological
environmental governance costs, governance benefits, central
government compensation and penalties, and oversight costs in
the carbon deficit provinces. It does not account for potential cross-
effects among these variables. Future research could build a more
complex model to analyse the different scenarios comprehensively.

Additionally, this study used a random forest model to forecast
the decrease in CO2 emissions in each YRB province once the

carbon ecological compensation mechanism was implemented
through a voluntary trading system without a control group.
This demonstrates how well the YRB’s horizontal carbon
ecological compensation system works. In order to increase
prediction accuracy and model resilience, future studies should
look at ensemble approaches by combining machine learning
techniques like random forests, support vector machines, and
neural networks

In summary, this study establishes a solid foundation for future
research endeavours. Future studies could develop more intricate
models, encompass a broader array of variables, and establish a
stronger bridge between theoretical constructs and practical
applications.

6 Conclusion

In this study, the net carbon emissions of 9 provinces in the YRB
from 2013 to 2022 were calculated, and the provinces with a carbon
surplus and carbon deficit were divided according to the
calculations. Carbon emission rights were regarded as a scarce
resource, the carbon surplus provinces and carbon deficit
provinces were regarded as the game players, and the relevant
parameters were set in combination with prospect theory to build
an evolutionary game model. Through the analysis of the dynamic
evolutionary game model of introducing the incentive and
punishment mechanism, the threshold value of the central
government for implementing the incentive and punishment
mechanism was determined, and the influencing factors of the
horizontal carbon ecological compensation mechanism in the
YRB were obtained. This paper further explained the operation
of the horizontal carbon ecological compensation mechanism in the
YRB and proposed encouraging the realization of the horizontal
carbon ecological compensation mechanism via voluntary trading.
In addition, machine learning was used to predict the net carbon
emissions against the background of voluntary trading of carbon
emission rights to verify the effectiveness of the horizontal carbon
ecological compensation mechanism in the YRB and emphasized
the necessity of establishing a horizontal carbon ecological
compensation mechanism in the YRB.

6.1 Impact of the horizontal ecological
compensation mechanism on CO2 emission
reduction in the Yellow River Basin

This study used a machine learning model for predictive analysis
to assess the effectiveness of the horizontal ecological compensation
mechanism in the YRB. The horizontal CO2 ecological compensation
mechanism in the YRB seems to affect CO2 deficit provinces more
than carbon surplus provinces, when both absolute and relative values
are taken into account. This observation suggests that the mechanism
has a stronger promoting effect on reducing CO2 emissions in deficit
provinces. The enhanced promotion effect in carbon deficit provinces
can be attributed to several factors. First, these provinces face greater
economic pressure, as they need to paymore compensation to balance
their CO2 emissions and sinks. This economic burdenmotivates them
to adopt more aggressive measures to reduce CO2 emissions, such as
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investing in renewable energy technology, improving energy
efficiency, and adopting CO2 capture and storage technology.
Second, to reduce CO2 deficits effectively, CO2 deficit provinces
may implement stricter environmental protection policies. These
policies strive for long-term economic and social change toward
green and low-carbon development in addition to short-term
objectives. Additionally, carbon deficit provinces often rely more
on fossil fuels, indicating greater potential and demand for
adjusting their energy structure and developing clean energy. The
endogenous motivation stimulated by the compensation mechanism
may accelerate the transition from traditional to clean energy. On the
other hand, although carbon surplus provinces perform relatively well
in terms of CO2 emissions, the difference between the predicted and
actual net CO2 emissions was small, with a limited increase in the
actual and predicted values. These provinces have been effective in
maintaining their current CO2 sink levels but still need to increase
their emission reduction potential. While helping carbon deficit
provinces reduce their CO2 emissions, the YRB’s horizontal carbon
ecological compensation mechanism encourages carbon surplus
provinces to increase their efforts to reduce CO2 emissions. This
approach enhances environmental quality, encourages the
development of clean technologies, and helps reduce regional
CO2 emissions

6.2 Strengthening the horizontal carbon
ecological compensation mechanism in the
YRB: legal, technological, and policy
recommendations

Guarantee measures for the horizontal carbon ecological
compensation mechanism in the YRB should be further explored
to strengthen the implementation effect of the mechanism and
ensure its long-term sustainability, robustness, and adaptability.

(1) Under the guidance of higher-level regulations such as
the Yellow River Protection Law of the People’s Republic of
China and the Regulations Governing Ecological Protection
Compensation, legislation should be enacted for the
horizontal carbon ecological compensation mechanism in
the YRB. This legislation should include the establishment
of trading rules for the voluntary CO2 emission trading
mechanism, as well as the delineation of the rights and
obligations of the participants within this mechanism. To
reach the objective of carbon neutrality, institutional
assurances and legal support can be given by creating a
trading system that promotes the preservation of the
natural environment and the reduction of CO2 emissions.
This institutional framework encourages the reduction of
CO2 emissions and the restoration of carbon ecosystems
by allowing all parties to actively participate in CO2

emission trading in accordance with the rules. This
strategy promotes the socioeconomic and ecological
environments’ sustainable growth.

(2) Based on prediction models and real observation data,
machine learning models may be applied to improve the
YRB’s horizontal carbon ecological compensation
mechanism’s data-driven decision-making skills. This

includes evaluating policy effectiveness, conducting
simulations for different policy scenarios, and providing a
decision-making basis. The machine learning analysis results
can be applied to adjust policies in real time, ensuring
flexibility and adaptation to environmental changes and
new data. Long-term environmental protection and
emission reduction targets can be developed and machine
learning model predictions should be incorporated into
planning. Regular environmental impact assessments
should be conducted to evaluate the actual impact of the
compensation mechanism on environmental quality and to
respond effectively to market and environmental changes.

(3) Blockchain technology should be utilized to establish a market
monitoring system, ensuring data accuracy and transparency.
Transaction traceability and tamper-proof nature should be
improved, ensuring compliance with transaction rules and
environmental protection standards. Illegal behaviours such
as market manipulation, fraud, and insider trading should be
detected and addressed promptly. Long-term stable funding
sources should be secured to support the continuous operation
of the compensation mechanism. The supervision of the CO2

trading market should be strengthened to promote its healthy
development and ensure the achievement of emission
reduction goals and environmental protection.

(4) The innovation and knowledge transfer of CO2

reduction technologies between provinces with a carbon
surplus and deficit should be encouraged and supported.
This initiative will promote the dissemination and
application of CO2 reduction technologies across provinces,
aiding in the reduction of carbon emissions and fostering
balanced CO2 trading. Technological innovation and
knowledge transfer will enable deficit provinces to
effectively reduce CO2 emissions, reducing the costs of
CO2 trading and promoting the sustainable development
of the voluntary CO2 trading market.
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