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As the typical megacity in the Central Plains, the simulation and prediction of
Zhengzhou’s future land use and ecosystem carbon storage are of great
significance for regional green and coordinated development. Based on land
use data and CMIP6 data, the study simulated land use types from 2030 to
2050 through plus model. Then the InVEST model is used to estimate its
ecosystem carbon storage. The results show that: (1) Arable land is the main
type of land use in Zhengzhou from 2000 to 2020. During the period, the
conversion between land use type is mainly manifested as the conversion of
arable land into construction land. The distribution of the built-up area has
changed from one center with multiple scattered dots to one center with a
radial spider-web-like pattern. (2) In 2050, arable land in the SSP126 scenario is
the only one of the three scenarios to decline, but the area of forest land and so
on in this scenario is the largest of the three. The area changes trend of each land
use type in the two scenarios of SSP245 and SSP585 are relatively consistent. (3)
The areas with high ecosystem carbon storage value are mainly distributed in the
forest area in the west of the study area. The regional ecosystem carbon storage
value of SSP126 scenario in 2050 is the highest, which is 5.7762 × 107t. The
ecosystem carbon storage value of SSP585 scenario decreased the most, with a
total reduction of 0.6667 × 107t. (4) The spatiotemporal variation of ecosystem
carbon storage in Zhengzhou is the result of natural and social factors, among
which the average annual temperature is the strongest explanation. This study
provides a theoretical basis for the scientific formulation of land use planning in
Zhengzhou, as well as the coordinated development of man and nature.
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1 Introduction

Massive emissions of greenhouse gases have caused a series of global impacts such as
rising global temperatures, frequent extreme weather, and food security (Newman and Noy,
2023; Adesete et al., 2023). CO2 is one of the important representatives of greenhouse gases,
and its harm should not be underestimated. How to reduce emissions, increase absorption,
and increase ecosystem carbon storage has become a widespread concern today. Terrestrial
ecosystems are important carbon sinks, absorbing 31% of anthropogenic CO2 emissions
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between 2010 and 2019 and playing a key role in maintaining the
global carbon balance (Li L. et al., 2022; Zheng et al., 2024).
Differences in carbon sequestration capacity by land use type,
which means that changes in land use will result in changes in
regional ecosystem carbon storage (Zhang et al., 2017). Therefore, it
is of great significance to study the response of regional Differences
in carbon sequestration capacity by land use type, which means that
changes in land use will result in changes in regional ecosystem
carbon storage to land use change (Zhao and Miao, 2022).

Traditional ecosystem carbon storage calculation methods,
such as biomass method, storage method and field sampling
method, have great deficiencies in research scale and visual
expression, and these methods are complicated to operate and
have high cost (Qi et al., 2024; Sun F. H. et al., 2023). In recent
years, the rapid development of GIS has provided a new
perspective for the study of ecosystem carbon storage, and
ecosystem carbon storage can be obtained by combining
various ecosystem service models (Sun Y. F. et al., 2023; Sun

X. X. et al., 2023). Among them, the Invest model has the
advantages of simple parameters, less required data and high
accuracy. The ecosystem carbon storage plate contained in the
model has been widely used by scholars (Du et al., 2023; Zheng
and Zheng, 2023). Predicting future ecosystem carbon storage
changes requires a combination of land use simulation models
such as CLUE-S (Zheng and Hu, 2018; Zhang and Lu, 2021),
FLUS (Wu et al., 2022; Liu et al., 2021), CA-Markov (Tariq et al.,
2022), and others. But these models do not yield the determinants
behind land use transition. Liang’s improved PLUS model is able
to explore the driving factors behind land use change while
providing higher simulation accuracy and more realistic
landscape pattern indicators (Liang et al., 2021; Li Q. et al.,
2023). Combining InVEST model and PLUS model to study
regional ecosystem carbon storage is becoming a hot spot at
present, and the domestic research scales involve provinces (Wei
et al., 2023; Huang and Liu, 2024), urban agglomerations (Wen
et al., 2024; Wang R. Y. et al., 2023), cities (Wang Z et al., 2022;
Wang Y. L. et al., 2023), etc. Li et al. predicted the ecosystem
carbon storage under different scenarios in Liaoning Province
and pointed out that the strict implementation of ecological
protection is conducive to the increase of regional ecosystem
carbon storage (Li P. C. et al., 2023). Sun et al. established three
different scenarios to study the ecosystem carbon storage of
southern Jiangsu urban agglomeration in 2050, and concluded
that urban encroachment on cultivated land and forest land is the

TABLE 1 Sources of data.

Data type Data name Data sources

Social factors Night Lights Resource and Environmental Science and Data Center of Chinese Academy of Sciences

Population

GDP

Locational factor Railway OpenStreetMap

High speed

National Highway

Provincial Highway

Town

City

Natural factors Land use data 2000–2020 Resource and Environmental Science and Data Center of Chinese Academy of Sciences

Land use data 2030–2050 Global 0.25° × 0.25°Land-Use Harmonization (LUH2) dataset

Soil Root Oxygen Content Harmonized World Soil Database (HWSD)

Soil types Resource and Environmental Science and Data Center of Chinese Academy of Sciences

NDVI

Annual precipitation National Earth System Science Data Center

Annual mean temperature

DEM Geospatial Data Cloud Platform

Slope Extracted from DEM

Slope orientation

TABLE 2 Neighborhood weights.

Type A F G W C

SSP126 0.3710 0.0121 0.0143 0.0892 0.0897

SSP245 0.3950 0.0017 0.0092 0.0603 0.1010

SSP585 0.4120 0.0015 0.0074 0.0552 0.1640
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main reason for the reduction of ecosystem carbon storage (Sun
F. H. et al., 2023). Zhou et al. studied the ecosystem carbon
storage of Hefei City in three scenarios for the year 2035,
indicating that implementing a policy of ecological protection
and urban development in parallel, adjusting the comprehensive
land use pattern, can help improve the city’s carbon loss (Zhi
et al., 2024). Meanwhile, there are many relevant studies exist
globally. Bwalya Mutal et al. addressed the limitations of previous
models such as FLUS by utilizing the PLUS model for the mutual
attraction and evolution of lands under different policies in
Ndola district (Mutale and Qiang, 2024). Li et al. used the
Plus model to simulate land use in the Rwandan region and
explored the drivers of land use change (Li et al., 2021). Ahmed
Marey et al. simulated land use for different scenarios in
Montreal Island, Canada through the model, providing an
analysis of the differences between the three different
scenarios (Marey et al., 2024).

Traditional Markov chains are based on historical land use data
to forecast future demand for different land use types, which cannot
fully consider the dynamic factors such as policy changes and
economic fluctuations that may occur in the future. And
CMIP6 provides future land use demand data generated on the
basis of different socio-economic shared development paths, and at
the same time, it also indirectly takes into account the impacts of
future policies to comprehensively and scientifically consider the
impacts of climate change, socio-economic development and other
factors on land use. (Hurtt et al., 2020a; Ji et al., 2023). This study
takes Zhengzhou, a mega-city, as the research object, and based on
the land use data provided by CMIP6 in different scenarios, it
analyzes and predicts the current and future spatial and temporal
trends of ecosystem carbon storage in the study area.

In 2020, China proposed for the first time that it would strive to
reach the carbon peak by 2030 and carbon neutrality by 2060. As one
of the pilot cities of the Carbon peak project, Zhengzhou has
significant location advantages and an important strategic
economic position. In the past two decades, it has developed
rapidly, and land use changes have been significant (Liu et al.,
2022). Therefore, this study uses PLUS model and InVEST model to
conduct multi-scenario simulation of land use from 2030 to 2050,
estimate regional ecosystem carbon storage changes, and explore the
response of ecosystem carbon storage to land use change, and use
geographic detector to explore the drivers of spatial and temporal
ecosystem carbon storage divergence. In order to explore the best
national spatial planning for maintaining regional ecosystem carbon
storage and contribute to achieving the regional “dual carbon” goals.

2 Data sources and research methods

2.1 Overview of the research area

Zhengzhou City is located in the middle north of Henan
Province, the boundary between the middle and lower reaches of
the Yellow River, and the total area of the city is 7,567 square
kilometers. The general trend of the terrain is high in the southwest
and low in the northeast (Figure 1), which belongs to the temperate
continental monsoon climate, with an average annual temperature
of 15°C and an average annual precipitation of 577.70 ~ 691.60 mm.
There are 124 rivers of various sizes in the territory, spanning the
two major river basins of the Yellow River and the Huaihe River
(Peng et al., 2019). Zhengzhou is the capital city of Henan Province
and the core development area of the Central Plains urban
agglomeration. At the same time, it is a national central city in
central China and an important hub of transportation in China, as
well as an important node city for ecological protection and high-
quality development in the Yellow River Basin (Cai et al., 2022a).

2.2 Data source

The land use data from 2000 to 2020, night lights, population
density, NDVI and soil type data used in this paper are from the
Resource and Environmental Science and Data Center of Chinese
Academy of Sciences (https://www.resdc.cn/). Railway, highway and
other location data come from the OpenStreetMap (https://
openmaptiles.org/). The DEM data come from the Geospatial Data
Cloud Platform (https://www.gscloud.cn/), and the slope and slope
direction data come from the extraction and analysis of the DEMdata.
Soil root oxygen content data are from Harmonized World Soil
Database (HWSD) (http://webarchive.iiasa.ac.at/Research/LUC/
External-World-soil-database/).2030-2050 cmip6 land use data are
from Global 0.25° × 0.25° Land-Use Harmonization (LUH2) dataset
(https://luh.umd.edu/data.shtml). Precipitation and temperature data
are derived from the National Earth System Science Data Center
(https://www.geodata.cn/data/) (Table 1).

2.3 Research methodology

2.3.1 PLUS model
PLUS model is an improved cellular automaton (CA) model,

which can study the nonlinear relationship behind land use and land

TABLE 3 Transition matrix.

Type A F G W C A F G W C A F G W C

A 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1

F 0 1 0 0 0 0 1 1 0 0 1 1 1 0 1

G 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1

W 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1

C 1 1 1 0 1 1 0 0 0 1 0 0 0 0 1

Note: A is for Arable land, F is for Forest land, G is for Grassland, W is for Water area and C is for Construction land.
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cover change (Li X. et al., 2022). The model integrates a rule mining
framework based on the Land Expansion Analysis Strategy (LEAS)
and a CA model based on multiple types of random seeds (CARS)
(Li et al., 2024). It is able to find out the development probability of
various land classes, and it has a higher simulation accuracy
compared to previous land use prediction models. It has more
advantages in studying land use impact mechanism and
simulating land patch change (Lin and Peng, 2022; Nie et al.,
2023). In the research, firstly, land use expansion is extracted
from the land use data of the two periods, and then the
development probability of each land classes is obtained by LEAS
module. Finally, the future land use is simulated according to the
development probability. In the process, a series of parameters such
as neighborhood weight, transfer matrix and land use demand need
to be artificially input.

Neighborhood weight is an important indicator of how easy it is
to expand between different land use types. The value ranges from
0 to 1, and the larger the weight is, this type of land-use is the easier
to spread around (Table 2). The transfer matrix can effectively
restrain the unreasonable transformation between different classes
and improve the accuracy of the result. 0 indicates that the two land
types cannot be converted, and 1 indicates that the two land types
can be converted (Table 3). The article finalizes the neighborhood
weights and transition matrix by referring to related studies and
adjusting the parameters appropriately according to the historical
expansion status and model accuracy (Luo et al., 2023; Li L. et al.,

2023). The land requirement data used for the study are taken from
CMIP6 data, and the raster numbers are corrected to ensure
consistency.

2.3.2 InVEST model
InVEST model is a model jointly developed by Stanford

University, the World-Wide Fund for Nature and the Nature
Conservancy, including ecosystem carbon storage, soil and
water conservation, habitat quality and other modules (Li Q.
et al., 2023; Jia et al., 2023). The ecosystem carbon storage
section of the InVEST model is used in this study. Ecosystem
carbon storage in terrestrial ecosystems is categorized into four
parts: above-ground vegetation ecosystem carbon storage, below-
ground vegetation ecosystem carbon storage, soil organic
ecosystem carbon storage and dead organic matter ecosystem
carbon storage. The calculation formula is:

Ci � Ci−above + Ci−below + Ci−soil + Ci−dead
Ctotali � ∑

n
i�1Ci × Ai

Where: i is a certain type of land use type.Ci refers to Class i land
use carbon density.Ci−above,Ci−below,Ci−soil, andCi−dead represent the
above-ground vegetation carbon density (t·hm-2), blew-ground
vegetation carbon density (t·hm-2), soil carbon density (t·hm-2),
and dead organic carbon density (t·hm-2) of land use type i,
respectively. Ctotali is the total ecosystem carbon storage (t). Ai is
the area of land use type i (hm2), and n is the amount of land use

FIGURE 1
Location of the study area
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type. The values of Ci−above, Ci−below and Ci−soil are used for reference
to the study of same study area Sun Y. F. et al. (2023). The
aboveground vegetation and soil organic carbon density data are
obtained from the study of Liu et al. (2019), and the “2010 China
Terrestrial EcosystemCarbonDensity Dataset” (Xu et al., 2019). The
carbon density of underground vegetation is estimated using the
“biomass conversion factor method” proposed by Fang and Wang
(2001). Ci−dead value According to Delaney et al., dead organic
matter is equal to one-tenth of the ecosystem carbon storage of
above-ground vegetation (Delaney et al., 1998; Fan et al., 2023)
(Table 4).

2.3.3 Geographic detector
The geographic detector is a model that can explain the spatial

heterogeneity of geographical phenomena and explain their driving
forces. Geographic detectors include single-factor detection and
interaction factor detection, and the Q value [0,1] of the factor is
obtained by running the geographic detector, the larger the Q value,
the stronger the explanatory power (Wang H. et al., 2023). The
formula is:

q � 1 − ∑
L
h�1Nhσ2h
Nσ2

In the formula: h is the stratification of variable Y or factor X,Nh

and N are the number of units in layer h and the whole area,

respectively. σ2h and σ2 are the variances of the Y values of layer h and
the whole area, respectively.

3 Results and analysis

3.1 Evolution of land use pattern from
2000 to 2020

As the capital of Henan Province, Zhengzhou City is the
political, economic and cultural center of the whole province. At
present and or a long period of time in the future, Zhengzhou City
will be the key to accelerate the urbanization, industrialization and
agricultural modernization of the surrounding areas. Understanding
the current situation of land use, rationally adjusting the layout of
land use, and realizing the intensive and efficient use of land are the
inevitable choices to meet the development strategy of Zhengzhou
and promote the economic development of the whole city and even
the whole province.

The types of land use in Zhengzhou are divided into six
categories, with the percentage of land use from largest to
smallest being arable land, construction land, forest land,
grassland, water area, and unused land. In this paper, ArcGIS
is used to extract, cut and classify the data to get the land use
status map of Zhengzhou. The analysis on land use changes in

FIGURE 2
Spatial-temporal evolution of land use from 2000 to 2020.
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2000, 2010 and 2020 gives Figure 2. From the figure, it can be seen
that the construction land with the most obvious changes is
mainly distributed in the lots centered on Zhongyuan District,
Jinshui District, Guancheng Hui Autonomous District. And
during this period, the construction land area has been
continuously expanding, presenting a remarkable change from
a single center with multiple scattered dots in 2000 to a single
center with a radial spider-web-like distribution in
2010 and 2020.

According to the analysis of Table 5, it can be seen that the
proportion of cultivated land in Zhengzhou is the largest, but
with the passage of time, the proportion of cultivated land shows
a trend of decreasing. From 67.44% accounted for in 2000 to
56.98% in 2020, the area decreased by 791.245 km2 in 20 years.
The area of forest land and grassland also showed different
degrees of decline during this period, which decreased by
198.949 km2 and 285.746 km2, respectively. Water area and
construction land showed an upward trend during this period,
in which the construction land area increased by 1165.207 km2,
an increase of 2.38 times. From the land use transfer chord
diagram (Figure 3), it can be seen that the increase of these
two land use categories mainly comes from the transfer of arable
land, which is also closely related to the implementation of the
policy of returning fields to lakes and prioritizing economic
development in Zhengzhou. The area of unutilized land was
zeroed out between 2000 and 2010, which is also related to
the intensive economic development of Zhengzhou, the
increase in land utilization rate and the strengthening of the
degree of utilization.

3.2 Spatial-temporal change characteristics
of land use from 2030 to 2050 based on the
PLUS model

3.2.1 Accuracy verification of PLUS model
Shared socio-economic pathways (SSP-RCP) are set to include

both quantitative elements such as demographic, economic, and
technological levels, as well as qualitative elements such as the
direction, speed, and level of social development in order to
reflect the correlation between radiative forcing and socio-
economic development (Jiang et al., 2020; O’Neill et al., 2014).
The CMIP emphasizes the impact of different development
modalities on future climate change, combining different SSP-
CMP scenarios. Based on the actual situation of the research area
and considering possible future development models, the study
selected three scenarios: SSP126, SSP245, and SSP585. The
SSP126 scenario considers the increase of the global forest
coverage area in the future, and the carbon emission rate is
relatively low, forming the characteristics of low vulnerability and
low challenges, and it belongs to the low forcing scenario. The
SSP245 scenario belongs to the medium forcing situation,
representing a scenario with medium social vulnerability and
medium radiative forcing, that is, the middle path, and the
greenhouse gas emission level is at a medium level. The
SSP585 scenario belongs to the high forcing scenario, in which a
large amount of environmental damage is tolerated for the sake of
development, namely, savage development, and the carbon emission
level is doubled by 2,100 (O’Neill et al., 2014; Hurtt et al., 2020b; Yue
et al., 2023). Overall, the SSP126 scenario assumes a more optimistic
future socio-economic development, emphasizing sustainable
development and green growth. The SSP245 scenario assumes a
relatively stable socio-economic development, neither extremely
optimistic nor extremely pessimistic, and the SSP585 scenario
assumes a more pessimistic future socio-economic development.

Based on the existing research results and the actual situation of
the study area, the research selects 13 driving factors from three
aspects, among which the social factors include GDP and population
density data (Li M et al., 2024; Li Q. et al., 2023). The location factor
selects the data of highways, railroads, towns, and so on, and with the
help of ArcGIS software, the Euclidean distance tool is used to get
the raster map of accessibility analysis of the distance to various
types of roads and towns. The natural factors mainly include soil

TABLE 4 Carbon density values in the study area.

Type C-above C-below C-soil C-dead

Arable land 26.41 0.906 43.94 2.64

Forest land 44.75 8.95 52.71 4.48

Grassland 38.67 164.348 53.7 3.87

Water area 22.32 4.464 44.29 2.23

Construction land 0 0 41.61 0.00

Unused land 0.00 0.00 50.77 0.00

TABLE 5 Area and proportion of different land use types from 2000 to 2020 (km2).

Type 2000 2010 2020

Area Rate Area Rate Area Rate

Arable land 5103.204 67.44% 4671.755 61.74% 4311.959 56.98%

Forest land 744.029 9.83% 547.531 7.24% 545.079 7.20%

Grassland 668.625 8.84% 388.976 5.14% 382.879 5.06%

Water area 204.019 2.70% 287.305 3.80% 317.961 4.20%

Construction land 843.915 11.15% 1671.433 22.09% 2009.122 26.55%

Unused land 3.209 0.04% - - - -
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root oxygen content, soil types and so on. The land use expansion
from 2010 to 2020 was extracted, and the development probability of
each land type was obtained after driving factors were input into the
LEAS module. Then combined with the land demand data provided
by CMIP6 data to simulate the patch distribution in 2020, and finally
compared with the real land use in 2020 to verify the accuracy of the
model (Figure 4). The Kappa coefficient is used to measure the
agreement between the results of the land use classification and the
actual observed data. The FoM coefficient is used to assess the
agreement between the location of land use change predicted by the
model and the actual location of the change. Through verification,
the Kappa coefficient of the model is 0.83, the overall accuracy is

0.90, and the FoM value is 0.11. The Kappa coefficient is greater than
0.81, and the FoM coefficient is between 0.1 and 0.2. The model has
relatively high accuracy and can proceed to the next step of
simulation (Xiao et al., 2024; Liu et al., 2024).

3.2.2 Future land use and cover projections for
Zhengzhou under different scenarios

In this paper, SSP126, SSP245 and SSP585 are selected as the
simulation scenarios, and after correcting the CMIP6 data to ensure
that the total area is consistent and the outliers are eliminated, PLUS
is utilized to predict the land use and cover changes in 2030,
2040 and 2050, respectively. On the whole, under the three
scenarios, the changes of SSP245 and SSP585 are more
consistent, but the amplitude is different. The change of
SSP126 scenario is different from the previous two scenarios.
And the areas of arable land and forest land change in the
opposite direction to the other two scenarios. The grassland
under the three scenarios all shows different degrees of
reduction, mainly occurring in the western region of Zhengzhou.
Among them, under the SSP126 scenario, there is more conversion
of grassland to forestland, while under the SSP245 and
SSP585 scenarios, there is more conversion to arable land. In
addition to the conversion of grassland to cultivated land, in the
SSP245 and SSP585 scenarios, there is also more encroachment of
cultivated land on forestland in the western region (Figure 5).

From the perspective of a single scenario, under the
SSP126 scenario, the arable land in Zhengzhou shows an overall
decreasing trend firstly decreasing and then increasing, with a total
decrease of 60.159 km2 by 2050, which is also the only decreasing
scenario among the three scenarios. The forest land showed an
overall trend of increasing after the first decrease. By 2050, it will
total increase of 75.653 km2, an increase of 13.88% (Figure 6). The
grassland area continues to decline, and by 2050 it will be
110.780 km2, only 28.93% of the 2020 level. The construction
land shows a trend of continuous increase totaling 256.606 km2

by the year 2050. Among the three scenarios, the arable land area in

FIGURE 3
Land use chord map for 2000–2020.

FIGURE 4
Comparison of 2020 reality and simulation results.
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this scenario is the least, and the woodland and construction land
area are the largest. Under the SSP245 scenario, both arable land and
construction land show a continuous increasing trend, but the
increase of arable land is larger than that of construction land,
and the area of both of them reaches 4729.849 km2 and
2059.825 km2 respectively in 2050, which are 417.890 km2 and
50.703 km2 higher than that in 2020, increased 9.69% and 2.52%
respectively. Forest land and grassland under this scenario show a
continuous decreasing trend, but the decrease of grassland is larger
than that of forest land, and the area of both of them will be
389.755 km2 and 69.611 km2 respectively in 2050, with the

decreasing rate reaching 28.50% and 81.82% respectively. Arable
land under the SSP585 scenario shows a trend of increasing and then
decreasing, with an overall increasing trend. From 2020 to 2050, the
area of forested land declined considerably in the first decade, and
then gradually increased in the following 20 years, and reaching
369.767 km2, with a total decrease of 32.16%. The final grassland
area in this scenario is not much different from that in
SSP245 scenario, but before 2040, the grassland area in this
scenario decreases more greatly. The area of construction land is
growing steadily, reaching an area of 2122.443 km2 by 2050,
accounting for 28.05% of the total area.

FIGURE 5
Spatial and temporal evolution of land use types in multiple scenarios from 2030 to 2050.
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3.3 Space-time evolution of ecosystem
carbon storage in Zhengzhou from
2000 to 2050

From the perspective of space, the high-value area of ecosystem
carbon storage in Zhengzhou during 2000–2020 is mainly
distributed in the western and southern areas of Zhengzhou, that
is, the woodland area, while the high-value area in the eastern area is
scattered (Figure 7). Themedium ecosystem carbon storage region is
evenly distributed throughout the whole area, similar to the
distribution of cropland in the region. In the past 20 years, with
the increase of construction land, the low-value area of ecosystem
carbon storage in the study area has gradually increased. The change
is more pronounced in the west during the period, with a large
number of high-value areas shifting to areas with relatively low
ecosystem carbon storage, which coincides with the transfer of
forested land to cropland and construction land over the two
decades. The distribution of regional ecosystem carbon storage in
2030–2050 is similar to that in the historical period, the high value
area decreases and the low value area increases in the SSP245 and
SSP585 scenarios, while the high value area increases in the
SSP126 scenario. At each time node, the SSP585 scenario had the
least high-value area, which corresponded with the least woodland
area in this scenario. This also side by side shows the close
relationship between land use type and ecosystem carbon storage,
there is a strong consistency between the two, and its changes have a
significant effect on the ecosystem carbon storage in the study area
(Sun X. X. et al., 2023).

From the quantitative point of view, the ecosystem carbon
storage in Zhengzhou has decreased by a total of 1.0092 × 107t
between 2000 and 2020, and the ecosystem carbon storage in
2020 is 6.0131 × 107t (Figure 8). Under all three scenarios, the
ecosystem carbon storage in Zhengzhou in 2050 shows different
degrees of decline. Among them, the SSP126 scenario shows the
smallest decline, while the SSP585 scenario shows the largest
decline, which is 5.7762 × 107t and 5.3464 × 107t, respectively,
and decreasing by 0.2369 × 107t and 0.6667 × 107t each from
2020. Looking at the ecosystem carbon storage values, it can be
seen that although the SSP126 scenario has the most construction
land, it still results in the scenario having the largest ecosystem
carbon storage of the three due to the largest increase in its
woodland area.

Taking 2020 as the base period and comparing the ecosystem
carbon storage at different time nodes from 2030 to 2050 in each
scenario relatively, the ecosystem carbon storage increases and
decrease map of the research area is obtained. According to
Figure 9, it can be seen that the areas of ecosystem carbon
storage increase in all three scenarios are around the forest land,
and the region of ecosystem carbon storage increase in the
SSP126 scenario is the largest among the three. The areas with
reduced ecosystem carbon storage are mainly distributed in the
western central region of the research area. Due to topographical
reasons, this region has a relatively lower level of development
compared to the central area of Zhengzhou, and there is more
encroachment on it in future development. It is mainly manifested
as the erosion of arable land by construction land, and the
conversion of forest land to arable land. The areas of decreasing
ecosystem carbon storage in the SSP245 and SSP585 scenarios are
more concentrated compared to the SSP126 scenario. The areas of
increasing and decreasing ecosystem carbon storage in the
SSP126 scenario are relatively evenly distributed throughout
the study area.

3.4 Driving factors of spatiotemporal
differentiation of ecosystem carbon storage

In order to explore the driving factors of ecosystem carbon
storage changes in the region, based on the relevant studies and the
actual situation in the study area. The study selected seven
influence factors from both natural and social aspects, which
are natural factor DEM (X3), annual average temperature (X4),
annual precipitation (X5), and NDVI (X6), social factors GDP
(X1), population density (X2), night lighting (X7) (Zhang et al.,
2024). The ArcGIS software is used to create a fishing net, which is
used to extract the influencing factor data, and discretize the data
to meet the operational needs of the Geographic detector (Li P. C.
et al., 2023). The results of the single-factor analysis of the
geographic detector are shown below (Table 6), and the
p-values of the seven driving factors are all less than 0.001,
which passes the test of significance and is able to accurately
explain the changes in ecosystem carbon storage in Zhengzhou
City. The degree of influence of the factors on ecosystem carbon
storage in the study area in descending order is annual mean

FIGURE 6
Change trend and change proportion of different types of land use from 2020 to 2050.
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temperature (X4), DEM (X3), NDVI (X6), night light (X7), GDP
(X1), population density (X2), annual precipitation (X5). Among
them, the explanatory power of annual average temperature (X4),
DEM (X3) and NDVI (X6) are all greater than 0.2, which is the
main reason for the change of ecosystem carbon storage in the
study area. Night light (X7), GDP (X1), and population density
(X2) have relatively low explanatory power and are minor
influencing factors. It can be seen that natural factors play a
dominant role in explaining the spatial and temporal
distribution of ecosystem carbon storage.

Through the analysis of the interactive detection results, we can
see that all the interactive factor detection results are double-factor
enhancement or nonlinear enhancement, indicating that the

distribution of carbon storage is affected by many factors (Figure
10). The interactions between dem (X3) and mean annual
temperature (X4) and factors were all greater than 0.29. And the
interactive explanatory power between DEM (X3) and annual
precipitation (X5) is the largest, which is 0.35736, followed by
dem (X3) and NDVI (X6), which is 0.34876. Changes in
ecosystem carbon storage are the result of both natural and
anthropogenic effects, and the interaction between various factors
should be fully considered in the design and planning, taking into
account both natural and anthropogenic factors in a comprehensive
manner. Different targeted development plans should be formulated
for regions with different natural conditions to ensure sustained and
coordinated regional development.

FIGURE 7
Ecosystem carbon storage distribution in Zhengzhou under multiple scenarios from 2000 to 2050.
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FIGURE 8
Ecosystem carbon storage in Zhengzhou under multiple scenarios from 2000 to 2050 (107t).

FIGURE 9
Changes in ecosystem carbon storage in Zhengzhou in the future compared with 2020 under different scenarios.
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FIGURE 10
Interactive detection.

FIGURE 11
Main drivers of land-use change.
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4 Discussion

4.1 Response of ecosystem carbon storage
to land use and comparison of research
differences

Bymining the drivers of land use change, it was found that DEM
and slope contributed the most to land use change, especially to the
distribution of woodland and grassland. Higher elevations and
slopes have a relatively lower intensity of human activity, and the
lower the level of disturbance to woodlands and grasslands, the more
favorable it is for its growth and expansion. In addition, GDP is also
a major driver of changes in cropland, forest land and construction
land, with the smallest area required to produce a unit of GDP being
construction land, presenting the phenomenon of high GDP
requiring a high level of building area, which leads to the
emergence of the erosion of arable land and other areas by
construction land. Population density is also a major potential
driver of change in woodland, watersheds, and construction land,
with higher population densities increasing demand for housing,
workplaces, etc., which in turn leads to an expansion of construction
land and a squeeze on woodland and other areas (Figure 11). From
the perspective of land use change, from 2000 to 2020, the arable
land area of Zhengzhou decreases from 5103.204 km2 to
4311.959 km2, the construction land area increases from
843.915 km2 to 2009.122 km2, and the construction land is
constantly expanding outward with the built-up area as the
center. Ecosystem carbon storage showed a continuous
downward trend from 7.0223 × 107t to 6.0131 × 107t during the
two decades, and the conversion of arable land with strong carbon
sequestration capacity to construction land with weak carbon
sequestration capacity was the main reason. The future increase
of construction land area in Zhengzhou is limited and the increase
rate tends to slow down, especially in the center of Zhengzhou (Cai
et al., 2022b). Future urban additions are more likely to occur in the
western part of Zhengzhou, derived from encroachment on arable,
grassland, among others.

Comparing the ecosystem carbon storage values of Zhengzhou
under the three scenarios, it can be seen that in the future, if
Zhengzhou city wants to minimize the loss of ecosystem carbon
storage while ensuring economic development. It should be based on
the SSP126 scenario, the sustainable utilization of natural resources
should be strengthened, an ecological restoration planning system
should be gradually constructed, and a carbon-sequestration and
sink-enhancement mechanism led by the government, with the
participation of many parties and local linkages should be
established, so as to mitigate and adapt to climate change. Pay
attention to the protection of ecological land, wide entry and strict
exit. Intensive and economical use of land, delineation of the red line
of ecological protection and strict management of urban

development boundaries, reduction of the negative impact of
man-made activities on regional ecology, implementation of the
regulation of mountainous, forested and grassland areas, and giving
full play to the agglomeration effect and territorial advantages.
Strictly follow the territorial spatial planning scheme, unified
implementation of territorial space use control, at the same time
should also pay attention to low-carbon oriented land use pattern
optimization, strengthen ecological protection, and restoration to
actively play the carbon sink function of ecological land (Cao and
Zhang, 2025).

The land use simulation and carbon stock prediction in the
study area are in agreement with the trend of Li et al. study from the
perspective of Henan Province as a whole (Li et al., 2024). The
evolution of land-use patterns all show the expansion of
construction land and the decrease of ecological land. The
regional carbon stocks are all highest in the SSP126 scenario,
followed by the SSP245 scenario. Furthermore, the trend of
change obtained in the study is also similar to that in the study
of Shaanxi Province, which is adjacent to the study area by Cheng
et al. (2024). The change trend of ecosystem carbon storage in the
future obtained by the study is the same as that of Sun F. H. et al.
(2023), but the value of ecosystem carbon storage has some
differences. This is mainly due to differences in the methods
used to determine future land-use requirements. Sun et al. set
two scenarios of natural development and ecological protection,
while this paper uses three different scenarios provided by CMIP6 to
make predictions. In addition, it is known through the previous
studies that the dead organic matter of vegetation in an area is equal
to 1/10th of the aboveground carbon pool in that area (Delaney et al.,
1998; Fan et al., 2023). The article integrates and complements the
carbon density data, and thereby determines the carbon density data
for the study area, based on the previous study (Sun Y. F. et al.,
2023). These two reasons lead to discrepancy in the ecosystem
carbon storage values obtained by the two studies.

4.2 Analysis of influencing factors of
ecosystem carbon storage in Zhengzhou

The results of the geographic detector show that the average
annual temperature, DEM and NDVI have significant effects on the
spatial differentiation of ecosystem carbon storage in the study area,
and the driving factors such as population density, GDP and NPP
have certain effects on the spatial differentiation of ecosystem
carbon storage. Suitable temperature is suitable for plant growth,
and certain topographic relief can reduce the interference of human
activities, and then form a high vegetation cover area. NDVI reflects
the extent of vegetation cover. Areas with high vegetation cover
(such as woodland, grassland) have better carbon sequestration
capacity than other land types (such as construction land). The

TABLE 6 Single-factor detection.

X1 X2 X3 X4 X5 X6 X7

Q 0.144847 0.143972 0.232254 0.243612 0.086889 0.231077 0.190292

P 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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interaction analysis shows that natural factors and human factors
interact together to enhance the influence on the spatial distribution
of ecosystem carbon storage, which indicates that the spatial
differentiation of ecosystem carbon storage is the product of the
interaction of natural environment and human activities. Different
factors have different directions of action, and the future
development of Zhengzhou city will be governed differently
based on the characteristics of the factors, taking into account
the actual situation. While comprehensively considering the
natural conditions and socio-economic development of the
region in order to ensure that the selected model fits the
characteristics of the region, it is highly vigilant in preventing
unreasonable human interventions from synergizing with other
factors and exerting excessive pressure on the regional
ecosystems, so as to achieve sustainable land use and ecological
conservation (Zhang et al., 2024).

Although the PLUS model used in the article is higher in
simulation accuracy than previous models such as Flus model,
there exist a number of parameters that need to be determined
in conjunction with historical data and expert opinion. In addition,
the carbon pool used in the study is supplemented and improved on
the basis of previous studies, and there is no field sampling, which
may have some differences between the carbon density and the
actual study area. Therefore, in the subsequent study, we can try to
use fuzzy logic or Bayesian method for reference to quantify the
uncertainty of the model (Mutale and Qiang, 2024).

5 Conclusion

Based on the land use data of the third period from 2000 to 2020,
the change trend is extracted, and combined with the CMIP6 data,
the land demand and ecosystem carbon storage of Zhengzhou in
2030–2050 are predicted, and the following results are obtained.

(1) Arable land is the main type of land in Zhengzhou from
2000 to 2020. In the past 20 years, the conversion of land use
has mainly manifested as the conversion of Arable land into
construction land, and the area reached 1165.298 km2. The
area of construction land has increased rapidly, and the
distribution of the built-up area has changed from a single
center with multiple scattered dots to a single center with a
radial spider-web-like distribution.

(2) Under the three scenarios in 2050, the SSP126 scenario has
the smallest cultivated land area, which is also the only one of
the three scenarios with a decline. But the area of woodland,
grassland and construction land under this scenario is the
largest among the three. The area changes of each land use
type under the two scenarios of SSP245 and SSP585 are
relatively consistent, but the increase of arable land area is
smaller and the increase of construction land is larger in
the latter.

(3) The area with high ecosystem carbon storage value is mainly
distributed in the west of the study area, that is, the forest area
in the west of Zhengzhou. The regional ecosystem carbon
storage value of SSP126 scenario in 2050 is the highest, at
5.7762 × 107t. Both forested and construction land areas have

shown an increase over the 30-year period, ensuring
development while minimizing the loss of ecosystem
carbon storage. The ecosystem carbon storage value of
SSP585 scenario decreased the most, and the final
ecosystem carbon storage value is 5.3464 × 107t.

(4) The spatio-temporal differentiation of ecosystem carbon
storage in Zhengzhou City is the result of multiple factors
of nature and society. Elevation, mean annual temperature
and NDVI are the main influencing factors, among which the
mean annual temperature has the strongest explanatory
power of 0.243612.
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