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The research value of Landscape Character Assessment (LCA) lies in gaining a
deeper understanding of the inherent attributes and interrelationships of various
landscapes, thereby providing scientific basis for landscape planning, design,
conservation, and sustainable utilization. The traditional LCA methods often
overlook the inherent connections between various landscape attributes and
geographical spatial relationships among data points, which restricts their
application in sustainable multi-scale landscape element assessments.
Accordingly, this paper proposes a new paradigm for LCA, SwinClustering,
built upon the cutting-edge Swin Transformer architecture. This approach
employs a visual segmentation method to achieve multi-scale clustering,
utilizing nine key attributes of landscape elements: altitude, aspect, geology,
landcover, landform, relief, slope, soil, and vegetation. By extracting semantic
features through the GIS-aware Swin Transformer backbone network and
leveraging the Feature Pyramid Decoder for segmentation clustering,
SwinClustering offers a comprehensive analysis of landscape characteristics.
Furthermore, we design a specific training strategy that enables coarseness
and fineness control of the clustering results. SwinClustering is tested across
three distinct scales: the national scale of China, the municipal scale of Beijing
Municipality and the district scale of Wuyishan National Park. These experiments
yield promising results, validating the method’s effectiveness across diverse
geographic scales. Crucially, the proposed SwinClustering paradigm
establishes a unified clustering framework to deeply learn the intrinsic
connection between various landscape attributes and the spatial relationship
between different geographic locations. Furthermore, its strong generalization
capabilities enable its seamless application to LCA tasks at arbitrary scales,
marking a sustainable development in the field of LCA.
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1 Introduction

Landscape is often regarded as a comprehensive, relative, and
constantly evolving concept (Antrop , 2000). It arises from the
intricate interaction between mankind and nature (Déjeant-Pons,
2006), encompassing a vast array of diverse and distinctive
characters. LCA stands at the forefront of environmental
research, offering profound insights into the inherent qualities
and intricate relationships among diverse landscapes (Fairclough
et al., 2018). Through the LCA process, categorizing landscapes into
distinct types and spatial units can offer a clearer understanding of
their richness and uniqueness (Antrop and Van Eetvelde, 2017;
Simensen et al., 2018), serving as a crucial tool for decision-making
in landscape planning, design, conservation, and sustainable
utilization (Huang et al., 2023). As the world faces increasing
pressure to balance human development with ecological
preservation, a deeper understanding of landscape characteristics
becomes paramount (Yang et al., 2020).

According to the European Landscape Convention (ELC),
landscape character is defined as “a unique, identifiable, and
consistent pattern of elements within a landscape that
distinguishes it from other landscapes, not necessarily in terms of
being better or worse” (Swanwick, 2002; Butler, 2016). LCA serves as
a tool that combines natural and cultural landscapes with human
perception, outlining the spatial framework for implementing the
ELC (Chuman and Romportl, 2010). This assessment involves two
core processes: firstly, the character description process,
encompassing the identification, classification, and mapping of
landscape characteristics (Pan et al., 2022); secondly, the
judgment process, which informs decision-making for landscape
planning and management (Gkoltsiou and Paraskevopoulou, 2021).
Despite the LCA method being a key focus for academic researchers
(Tveit et al., 2006; Koç and Yılmaz, 2020; Brown and Brabyn, 2012a;
Brabyn, 2009), the challenge remains in generating a unified
representation of landscape characteristics based on the existing
multi-attribute elements of the landscape. This is an urgent issue
that requires prompt attention.

Faced with multi-attribute landscape elements, LCA technology
often uses some machine learning based methods to obtain a unified
representation of landscape characters. Brabyn (2009) propose a
classification method for visual landscape characters in
New Zealand, which is based on Geographic Information
Systems (GIS) and takes into account elements such as terrain,
vegetation, water bodies, and infrastructure. Brown and Brabyn
(2012b) further utilize the Public Participation Geographic
Information System (PPGIS) strategy to study the process of
human landscape perception and valuation, analyzing the
relationship between landscape value and physical landscape
characters in New Zealand. Brown’s work relies heavily on expert
judgment, lacks objectivity, and thus it is difficult to develop a
unified framework for LCA. Jellema et al. (2009) utilizes landscape
patterns stored in GIS to assess landscape characters through a
region-growing algorithm. Compared with subjective expert
judgment, the classification results of Jellema’s method are more
objective. Furthermore, Li and Zhang (2017) identify two levels of
landscape character types in the Wuling Mountain area of China
using factors such as altitude, relief, land use, and ethnic population
density, with the help of GIS and affinity propagation algorithm.

Work in Yang et al. (2020) proposes a multi-scale approach to
hierarchically identify landscape character types through Principal
Component Analysis (PCA) at different scales and two-stage cluster
analysis. Pan et al. (2022) successfully integrate cultural and
landscape structural factors with spatial propagation techniques
to accurately identify landscape characters through a
comprehensive process encompassing spatial structural attribute
determination, K-means clustering (Arthur and Vassilvitskii,
2007), and image segmentation. Lu et al. (2022) establish a
comprehensive technical system for assessing urban landscape
characters at the block scale, leveraging urban big data and
machine learning technology to ensure its applicability
and accuracy.

As computer vision technology advances, deep learning
techniques are playing a crucial role in landscape character
assessment. Zu et al. (2024) utilize deep MaxEnt and FCN
models to analyze geographical data and online geo-tagged
images of religious landscapes in Aba Prefecture. Mason et al.
(2023) employ a convolutional neural network and gradient
boosting model to detect buildings with high accuracy across
diverse landscapes, demonstrating potential for deep learning
techniques to urban planning, resource management, and disaster
response applications. Furthermore, Hughes-Allen et al. (2023) use
Mask Region-Based Convolutional Neural Networks (R-CNN)
instance segmentation to analyze lake formation and
development in Central Yakutia over multiple decades indicating
climate change and human impact on the region’s landscape and
hydrology. Alternatively, Wei et al. (2022) implement a
ResNet50 model to enhance human perception of urban
landscape. In Jamali and Mahdianpari (2022), combine VGG-16,
3D CNN, and Swin transformer in a multi-model network for
coastal wetland classification, demonstrating the effectiveness of
integrating CNNs and transformers in remote sensing based LCA.

However, none of these LCA methods have taken into account
the inherent relationships between different attributes, such as the
impact of altitude on landcover changes and the influence of soil on
vegetation distribution. As shown in Figure 1, most traditional
clustering methods define the Landscape Character Types (LCTs)
based on one-dimensional point sample data, followed by reshaping
into two-dimensional visual LCT images. Such strategies have not
considered the spatial relationships of landscape characters, with
each data point being calculated independently. Consequently, this
leads to a phenomenon where the clustering results contain a large
number of noise points, rendering them unusable for landscape
character assessment without denoising processing. As a result, in
most cases, researchers resort to a series of manually intervened
morphological operations, such as filtering, edge extraction, erosion,
dilation, and more, making the assessment of landscape characters
highly unstable. These issues limit the application of traditional LCA
methods to multi-scale landscape element assessments, thereby
hampering a comprehensive understanding of landscape
characteristics.

To tackle this challenge, this paper introduces SwinClustering, a
novel paradigm for LCA based on the advanced Swin Transformer
architecture, which leverages its powerful capabilities in visual
recognition and feature extraction. By employing a visual
segmentation method, SwinClustering achieves multi-scale
clustering, effectively capturing the diverse characteristics of
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landscapes across various attributes. Crucially, SwinClustering
utilizes nine key attributes of landscape character
maps—Altitude, Aspect, Geology, Landcover, Landform, Relief,
Slope, Soil, and Vegetation—to comprehensively analyze
landscape characteristics. In order to reflect the geographic
location correlation between different landscape samples,
SwinClustering incorporates the physical altitude, latitude and
longitude information from GIS into the learning process of the
model as well. Through the GIS-aware Swin Transformer backbone
network, semantic features are extracted, capturing the inherent
relationships and spatial patterns within and among different
landscape elements. Additionally, the Feature Pyramid Decoder is
leveraged for segmentation clustering, enabling a coarse-grained and
fine-grained analysis of LCTs. To validate the effectiveness of
SwinClustering, this paper selects three distinct scales for training
and validation: the national scale of China, representing a
comprehensive and diverse macro-level perspective across a vast
territory; the municipal scale of Beijing Municipality, representing a
larger urban landscape, and the district scale of Wuyishan National
Park in Fujian Province, representing a more natural and
ecologically diverse landscape. The promising results obtained
from these experiments highlight the versatility and adaptability
of the proposed LCA method across diverse geographic scales.

Importantly, the SwinClustering paradigm represents a unified
clustering framework that deeply learns the intrinsic connections
between different landscape attributes and the spatial relationships
between various geographic locations. It can adopt any semi-
supervised label generation module as the guidance to achieve
high quality clustering. Furthermore, its strong generalization
capabilities enable seamless application to LCA tasks at arbitrary
scales, marking a significant advancement in the field of LCA. By

leveraging the power of deep learning and visual segmentation, This
unified approach paves a new way forward for a more
comprehensive and accurate assessment of landscape characters.

2 Materials and methods

2.1 Study areas

This study aims to explore the variations of landscape characters
at three different scales, i.e., national scale, municipal scale and
district scale. At the national scale, China is selected to provide a
comprehensive perspective across diverse landscapes; at the
municipal scale, Beijing Municipality serves as the research area,
representing a complex urban environment; and at the district scale,
Wuyishan National Park in Fujian Province becomes the focal area
of the investigation, highlighting a natural and ecologically rich
setting. The study areas are shown in Figure 2.

At the national scale, the study area encompasses the entire
landmass of China, with a total area of approximately 9.6 million
km2. This vast expanse integrates a complex array of climatic
environments, as well as diverse natural, geographical, and
human resources, offering a rich landscape for analysis. China’s
topography is distinguished by a general east-high, west-low
gradient, forming a three-tiered elevation system that gradually
steps down from the western plateau to the eastern plains.
Approximately 69.2% of China’s land area consists of mountains,
plateaus, and hills, while basins and plains account for the remaining
30.8%. The country’s mountainous terrain is predominantly
oriented along east-west and northeast-southwest axes, shaping
the landscape and influencing regional climatic patterns. This

FIGURE 1
Illustration on the clustering process of the proposed method versus the traditional method. (A) Traditional LCA Clustering Pipeline. (B) The
proposed LCA Clustering Pipeline.
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varied topography, along with the geographical and cultural
diversity, makes China an ideal region for studying landscape
character and its underlying drivers.

Situated in the northern reaches of China’s North Plain, Beijing
Municipality spans a geographical range from 115°25′E to 117°30′E
and 39°26′N to 41°03′N, encompassing approximately
16,410.54 km2. Its terrain exhibits a distinct gradient, with the
northwest exhibiting higher elevations and the southeast gently
sloping towards the Bohai Sea. On its western, northern, and
eastern borders, Beijing is flanked by the Taihang and Yanshan
Mountains, where famous landmarks like the Badaling and
Mutianyu sections of the Great Wall stand a midst lush
vegetation and wildlife. Conversely, the southeastern region
comprises a vast, gently sloping plain, studded with farmland,
offering a stark contrast to the mountainous terrain.

On the other hand, Wuyishan National Park is situated in
Nanping City, Fujian Province, China, with geographical
coordinates ranging from 117°24′E to 117°59′E and 27°31′N to
27°55′N, covering an area of approximately 1,001.29 km2.
Located in the northern section of the Wuyishan Mountain
Range, the park encompasses multiple nature reserves, scenic

areas, and other vital ecological regions. The natural landscape of
Wuyishan National Park is magnificent and diverse, boasting
various vegetation types such as evergreen broad-leaved forests
and mixed coniferous and broad-leaved forests, as well as
abundant fauna and flora resources.

2.2 The SwinClustering framework

The overall framework of the proposed method is depicted in
Figure 3, which mainly consists of four parts: data concatenation,
GIS-aware Swin Transformer backbone, feature pyramid decoder,
and a fusion decision-making module. Initially, we first concatenate
the landscape character elements of nine attributes together through
a concat operation. The concatenated features and GIS information
are then fed into the GIS-aware Swin Transformer backbone,
yielding multi-level feature representations. These multi-level
features undergo further processing via the feature pyramid
decoder, emerging as data vectors with uniform scale and
channel count. Ultimately, a decision-making fuse layer outputs
clustering results derived from segmentation. In the forthcoming

FIGURE 2
The study areas at different scales.
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FIGURE 3
The overall framework of SwinClustering.

TABLE 1 Data details and data sources.

name Resolution Time Data source

Altitude 12.5 m 2023 NASA EARTHDATA (https://search.asf.alaska.edu/#/)

Aspect 12.5 m 2023 Calculate by the altitude data

Relief 12.5 m 2023

Slope 12.5 m 2023

Geology Vector 1:250,000 2017 Geoscientific Data & Discovery Publishing System (http://dcc.ngac.org.cn/cn/geologicalData/details/doi/10.23650/data.H.2017.
NGA121474.K1.1.1)

Soil Vector 1:400,000 2000 National Earth System Science Data Center (https://www.geodata.cn)

Landform Vector 1:100,000 2019 National Earth System Science Data Center (https://www.geodata.cn)

Vegetation Vector 1:100,000 2001 National Cryosphere Desert Data Center (http://www.ncdc.ac.cn)

Landcover 30 m 2022 Earth System Science Data (https://zenodo.org/records/8176941)
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FIGURE 4
Altitude-aware information integration process.

FIGURE 5
Illustration of the FPN based segmentation clustering process.

Frontiers in Environmental Science frontiersin.org06

Huang et al. 10.3389/fenvs.2025.1509113

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1509113


sections, we delve into the specifics of SwinClustering’s
core modules.

2.2.1 Data preparation
We utilize nine types of landscape attributes as input data for

the network, which are Altitude, Aspect, Geology, Landcover,
Landform, Relief, Slope, Soil, and Vegetation. The elements in
each attribute represent a landscape representation of the area,
and the visual pseudo-colour display of these landscape elements
is shown in the left bottom of Figure 3. The data details and data
sources of these landscape attributes in this paper are shown in
Table 1. Altitude data originate from NASA EARTHDATA,
whereas slope, aspect, and relief data are derived from altitude
calculations. Geology bedrock data are sourced from the
Geoscientific Data & Discovery Publishing System (Ye et al.,
2017). Soil (Gao and Li, 2000) and landform (Zhou and Cheng,
2019) datasets are retrieved from the National Earth System
Science Data Center. Vegetation data are collected from the
National Cryosphere Desert Data Center (Editorial Committee
of Chinese Vegetation MapC. A. o. S., 2023), and landcover data
are acquired from Earth System Science Data (Yang and Xin,
2023). Notably, all data pertaining to Beijing and Wuyishan
National Park share the same sources.

In the pre-processing stage, we first scale these nine landscape
attribute feature maps to the same size, i.e., the China region is scaled
to a resolution of 5186 × 5255, the Beijing region is scaled to a
resolution of 3552 × 3660, and the Wuyishan region is scaled to a
resolution of 2381 × 1400. Because the landscape attribute data from
different sources have deviations in their corresponding boundaries,
we then perform boundary alignment, where we set the region where
all nine attributes have valid landscape elements as the boundary
selection condition for the input data boundary alignment. Finally,

we combine the nine attribute channel together and normalize the
landscape data to ensure that each attribute feature acts uniformly in
the clustering decision process. The pseudo-coloured feature maps
of the nine attributes after preprocessing are shown in the left
bottom of Figure 3.

2.2.2 GIS-aware Swin Transformer backbone
Currently, the most popular semantic learning models in

vision are divided into those based on CNN (Li et al., 2021)
and those based on Transformers (Vaswani et al., 2017). CNN
networks have significant advantages in extracting local semantic
features at the block level, while Transformer networks are
specialized in capturing global semantic information. While
Swin Transformer (Liu et al., 2021b) combines the advantages
of both. The main innovation of the Swin Transformer lies in its
adoption of a technique called “Shifted Windows,” which fully
utilizes global and local information through non-overlapping
local windows and overlapping cross windows, thereby
enhancing the model’s expressive power and adaptability. Given
the outstanding performance of the Swin Transformer in the vision
field, this paper proposes to adopt the Swin Transformer
architecture as the semantic feature extractor.

2.2.2.1 Self-attention
The standard Transformer architecture is primarily based on the

attention mechanism, which leverages an attention function to map
queries and a set of key-value pairs to an output. Inputs to this
mechanism include queries (Q), keys (K), and values (V), with the
keys and values being processed together for efficient computation.
The similarity between queries and keys is determined through a
process known as Self-Attention (SA), which is computed using
Equation 1.

FIGURE 6
Visualization of loss, mIoU, aAcc, mAcc and segmentation clustering results during the training process.
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SA Q,K,V( ) � Softmax
QKT��
dk

√ + B( )V, (1)

where dk is the key dimension, and B represents the relative
position bias.

The self-attention mechanism can be extended to a multiple-
head version, enabling the model to jointly learn various semantic
information from different representation subspaces at different
positions. This Multiple-head Self-Attention (MSA) mechanism can
be implemented through concatenation and linear projection, which
is computed using Equation 2.

MSA Q,K,V( ) � Concat J1, . . . , Jh( )PO, (2)
where Ji � SA(QPQ

i , KPK
i , VP

V
i ), and PQ

i ∈ Rdm×dk , PK
i ∈ Rdm×dk ,

PV
i ∈ Rdm×dv , PO ∈ Rhdv×dm are projection parameter matrices.

2.2.2.2 GIS information Integration
During the LCA process, we consider the impact of two GIS

factors on landscape clustering: i) Altitude significantly affects the
landscape elements. The model should assign different weights
based on altitude, and thus the Swin Transformer backbone
should have altitude awareness. ii) The geographical longitude

and latitude of feature samples also heavily influence landscape
characters. Unlike traditional classification tasks, each sample in
LCA is not independent but has geospatial correlation. Thus, the
Swin Transformer backbone should also have geographical
location awareness.

To achieve altitude awareness, we input the altitude as a priori
weight map into the model. Assuming the altitude priori weight map
is denoted asω ∈ RN,H,W, whereN is the batch size,H andW are the
image size. We first reshape the weight map ω into one-channel
vector ω′ ∈ RN,H×W,1 to meet the requirements of one-dimensional
Transformer computation. Then, we downsample ω′ to a size of
(N,Hi × Wi, 1) via Swin transformer feature extractor, hereHi and
Wi, i ∈ {1, 2, 3, 4} denote the Transformer feature size for each layer.
Finally we dot-multiply the weights with the transformer input
featureK andV of each layer respectively to obtain altitude-encoded
features. The altitude-aware information integration process is
shown in Figure 4.

To achieve geographical location awareness, we incorporate the
world coordinates of each sample into the network input. When
calculating similarity, the Swin Transformer adopts a relative
position encoding bias to reflect the positional relationships
between different patches. Each sample is independent and

FIGURE 7
(A) Category 7. (B) Category 10. (C) Category 12. (D) Category 15. (E) Category 17. (F) Category 20. Fine-grained and coarse-grained comparisons at
3000 iterations.
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shares the same relative position encoding weights. However, in the
LCA clustering process, there are also geographical positional
relationships between samples in addition to the relative
positional bias between patches. Therefore, we incorporate
absolute geographical position bias into the network’s learning
process. To this end, we divide B in Equation 1 into two parts:
Br and Ba, representing the relative position encoding between
patches and the absolute position encoding of samples,
respectively. Finally, the two tensors Br and Ba are built on all
pairs of tokens. The final attention is thus as shown in Equation 3.

SA Q,Kω, Vω( ) � Softmax
QKT

ω��
dk

√ + Br + Ba( )Vω, (3)

where Kω and Vω denote the keys and values after latitude coding,
respectively.

2.2.3 Feature pyramid network based
segmentation clustering
2.2.3.1 Feature pyramid network

Utilizing the backbone network of GIS-aware Swin
Transformer, we can establish a four-layer feature pyramid, with

the feature dimensions being {96, 192, 384, 768}, respectively. To
overcome the issue raised by Zhou et al. (2014) that the empirical
perception of global semantic features is insufficient in deep network
features, we employ a Pyramid Pooling Module (PPM) as a
bottleneck module to bridge the decoder module of the multi-
layer pyramid (Xiao et al., 2018). The PPM module, which is
borrowed from PSPNet (Zhao et al., 2017), takes the features of
the last layer of GIS-aware Swin Transformer (768 × H/32 × W/32)
as input to capture global prior representational information.
Additionally, a 3 × 3 convolution layer is employed within the
PPM module, which unifies the output feature vector dimension
to 512, serving as the fundamental feature for the feature
upsampled pyramid.

2.2.3.2 FPN based decoder for segmentation
To achieve the fusion of multi-channel features, we first apply

a 1 × 1 convolution to the GIS-aware Swin Transformer features
of each stage (excluding the bottom bottleneck stage), converting
their feature channel dimension to 512. Subsequently, starting
from the output of the PPM module, we perform a linear
interpolation upsampling operation to expand the feature size

FIGURE 8
(A) Category 7. (B) Category 10. (C) Category 12. (D) Category 15. (E) Category 17. (F) Category 20. SwinClustering output for different number of
clusters: the number of clusters are (7, 10, 12, 15, 17, 20).
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and additively merge them with the features of the previous stage.
Then, a 3 × 3 convolution is applied to the merged feature vectors
of each stage, followed by another linear interpolation operation
to ensure that all features are resized to match the size of the top-
level features. Finally, segmentation and clustering are achieved
for each location through concatenation operations and a fully
connected layer. The detailed segmentation process is shown
in Figure 5.

2.2.4 Semi-supervised label generation
In our landscape character clustering task, we do not possess

manually annotated uniform labels. Instead, we employ a semi-
supervised label generation module to generate pseudo-label data,
which serves as guidance for the network training. Our semi-
supervised label generation method adopts PCA downscaling and
K-means clustering as the key techniques, and thus we name it PCA-
K-means.

The K-means-based method has two major limitations: i) it
needs to calculate the distance matrix between every two samples,
so it cannot handle large-scale sample clustering tasks (e.g., the
size of the distance matrix for the original resolution of the
Beijing region is: (3552 × 3660, 3552 × 3660), which is so huge
that it can hardly be calculated); ii) Each sample point is
independent of each other and there is a lot of noise in the
clustering results.

Since K-means based methods cannot handle large-scale sample
clustering, we first reduce the size of the image to 1/6 of its original size
for label generation. Then our PCA-K-means implements PCA analysis

to compress the number of feature channels from nine dimensions to
five dimensions, and performs K-means clustering on the compressed
image data. Finally, these clustering labels are scaled up to the original
image size using nearest neighbour interpolation. PCA-K-means can
generate clustering results with less noise by PCA dimensionality
reduction. Consequently, by altering the number of categories in the
pseudo-label data, we can control the final output category number of
the model, and the demonstrating experiments will be presented in
Section 3.4. In addition, we can also use other clustering methods such
as GMM (Stauffer and Grimson, 1999), OMSC (Chen et al., 2022) to
guide the generation of pseudo labels and we will verify this
in Section 3.5.

2.2.5 Coarse-grained and fine-grained
training strategy

In order to meet the needs of landscape management, it is
necessary to divide the landscape attributes to varying degrees of
coarseness and fineness. The clustering results of LCA analysis with
multiple attributes are often complex and discontinuous. This makes
the subsequent landscape zoning difficult and cumbersome. To solve
this problem, this paper proposes a coarse-grained and fine-grained
training strategy, which can achieve the control of clustering
fineness without relying on any human involvement or the
burden of additional computation.

Transformer has the ability of global perception, and if given a
training sample with diverse landscape character types, it will take
full account of the global diversity and thus output the complex
labels. On the contrary, if the training sample character types are

FIGURE 9
(A) Category 7. (B) Category 10. (C) Category 12. (D) Category 15. (E) Category 17. (F) Category 20. Curves of loss, mIoU, aAcc and mAcc with for
different number of clusters: the number of clusters are (7, 10, 12, 15, 17, 20).
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simple, the trained model will also try to give less complex outputs
even when faced with the complex testing samples of diverse
character types. Thus we can regulate the degree of coarseness
and fineness of the clustering output based on this property of
Transformer. Suppose the size of the landscape feature map we need
to cluster is (N, 9, H,W), where N denotes the number of samples,
(H,W) denotes the image resolution, and 9 denotes the attribute
channel. The original feature map is often very large and have
complex landscape character types, it can be divided into smaller
patches where there will be fewer landscape character types in each
patch, and thus the complexity will be reduced. In order to make the
clustering/segmentation more coarse, we divide the image resolution
by (n, n), so we can get the new training landscape feature map of
size (N × n × n, 9, H/n,W/n), whereN × n × n denotes the number
of samples, (H/n,W/n) denotes the image resolution. By controlling
the value of n, we can control the coarseness and fineness of
the output.

2.2.6 Loss function
In this paper, we adopt the most typical Cross Entropy Loss as

the loss function of the network, and its calculation formula is
showing in Equation 4.

L � 1
N

∑
i

Li � − 1
N

∑
i

∑M
c�1

yic log pic( ) (4)

where M represents the number of categories. yic is a binary
function for labels, which takes the value of 1 if the true category
of sample i is equal to c, and 0 otherwise. pic denotes the
predicted probability that the observed sample i belongs to
category c.

For each sample, the model first converts the raw output into a
probability distribution through the FPN decoder. Then, it calculates
the negative logarithm of the probability corresponding to the true
label and accumulates the losses across all categories. As a result,

FIGURE 10
(A) GMM Guidance Labels. (B) OMSC Guidance Labels. (C) OPMC Guidance Labels. (D) EEO Guidance Labels. (E) GMM Guided SwinClustering. (F)
OMSCGuided SwinClustering. (G)OPMCGuided SwinClustering. (H) EEOGuided SwinClustering. (I)GMMGuided Loss Variations. (J)OMSCGuided Loss
Variations. (K) OPMC Guided Loss Variations. (L) EEO Guided Loss Variations. Comparison of clustering performance of SwinClustering method with
different label guidance.
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when the model’s predicted probability is higher, the loss is smaller;
conversely, if the predicted probability is lower, the loss is larger.

3 Results and discussions

3.1 Experimental settings

The experiments are conducted on an Ubuntu 22.04.4 LTS
server equipped with an Intel(R) Xeon(R) CPU E5-2687W v3 @
3.10 GHz and an NVIDIA TITAN RTX 24G GPU. The main
programming language used for the experiment is Python 3.8.1,
with CUDA version 11.1 and torch version 1.8.1. Data analyses are
done in Matlab 2022a. The sliding window size of the Swin
transformer backbone network is set to 7.0, and the number of
Swin transformer blocks in the four stages are 2, 2, 6 and 2,
respectively. The AdamW (Loshchilov and Hutter, 2017)
optimizer is used for training, with a total of 15,000 iterations.

The learning rate, weight decay, and beta values (β1 and β2) are set to
0.00006, 0.01, and (0.9, 0.999), respectively.

3.2 Training overview

To accelerate the convergence speed of training, we initialize the
backbone weights using pre-trained weights from ImageNet-1K (Liu
et al., 2021b). The multi-attribute landscape data from the Beijing
region are employed for training with a total of 3500 iterations, and
validation evaluations are conducted every 500 iterations. Due to the
absence of manually annotated data, we also set the K-means guided
pseudo-label data as the reference groundtruth and apply the
following three metrics for validation:

3.2.1 Mean intersection over union
mIoU refers to the average value of IOU for all categories. For

landscape element segmentation, we compare the predicted label of

FIGURE 11
Comparison of the clustering performance of multiple algorithms across seven metrics: ACC, NMI, Purity, F-score, Precision, Recall and ARI.
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each pixel with the true label and then calculate the IOU between
them. Thereby, mIoU evaluates the segmentation accuracy of the
model across different categories.

3.2.2 Average accuracy
aAcc refers to the average pixel classification accuracy of the

model. aAcc can be used to evaluate the overall accuracy in pixel

classification, but it cannot reflect the performance differences
between different categories.

3.2.3 Mean accuracy
mAcc calculates the accuracy of each individual category first

and subsequently takes the average of them. mAcc assesses the
performance differences between different categories and it can

FIGURE 12
(A) GMM. (B) K-means. (C) SOFM. (D) OMSC. (E) OPMC. (F) SFMC. (G) EEO. (H) SLIC. (I) SwinClustering. The visual qualitative assessment results
for China.
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reflect the overall performance of the model across multiple
categories.

The training loss and the values of these three validation metrics
are shown in the Figure 6. It can be observed that the model
converges well at approximately 3,000 iterations. The
visualization of segmentation clustering during training process is
also shown in Figure 6. The number of iterations for the visual
clustering results are (500, 1000, 1500, 2000, 2500, 3000), and it can
be seen that as the number of iterations increases the clustering
results become more refined.

3.3 Coarse-grained and fine-grained
comparisons

In clustering analysis, granularity of data pertains to the level of
aggregation and intricacy among data elements. Coarse-grained
clustering involves grouping landscape elements into larger, more
comprehensive clusters, exhibiting distinct differences between
clusters. Conversely, fine-grained clustering segregates landscape
elements into smaller, more specific clusters, where samples within
each cluster exhibit greater similarity and subtler differences
between clusters.

Most clustering techniques lack the ability to effectively regulate
the degree of coarseness and fineness in clustering outcomes.
However, the proposed method introduces a specialized training
strategy that allows for precise control over the coarseness and
fineness of the outputs. Precisely, we manipulate the fineness of
clustering by partitioning the input samples. In this experiments, we
partition the input samples into patches of varying sizes, i.e., 1 × 1,
2 × 2, 3 × 3, 4 × 4, 5 × 5, and 6 × 6, to obtain corresponding
clustering maps. The visualized clustering results at
3000 iterations are as illustrated in Figure 7. It becomes evident
that as the number of partitions increases, more landscape character
elements are present in each individual sample, leading to coarser
clustering results.

3.4 Analysis with different number
of clusters

In this section, we present the effect of the model on the
processing of different number of clusters. The Beijing regional
landscape character data are selected as the samples for training and
testing. The coarseness-fineness controlling factor is set to 1 × 1, and
the testing models are training with 3000 iterations, and the number
of clusters is set to (7, 10, 12, 15, 17, 20).

The visualisation of the clustering results with PCA-K-means
guidance for different number of clusters is shown in Figure 8. From
the figure, we see that these boundaries become smooth and there is
less noise in the clustering results via training with SwinClustering.
In addition, we can conclude that the more the number of clusters
the more complex the landscape elements. Furthermore, we find that
the main landscape character regions will not change with the
number of clusters, for example, the shallow mountainous areas
in the left top and the urban areas in the right bottom are not
significantly changed. The variations of the training loss with
different number of clusters are shown in Figure 9. We reach a

conclusion from these loss curves: as the number of clusters
increases, the more complex the landscape elements are, but the
training convergence of SwinClustering does not slow down
accordingly. Consequently, although increasing the number of
clusters can severely increase the computational burden in the
conventional clustering algorithms, our SwinClustering method is
not affected by the increase in the number of clusters at all, and the
speed of training convergence is not correlated with the number
of clusters.

3.5 Analysis of clustering effects guided by
different labels

In this part, we present the effect of different guided labels on the
clustering results of SwinClustering. SwinClustering is a flexible
segmentation clustering framework that allows the clustering
generation to be guided by arbitrary other labels. This
experiment removes the SwinClustering pseudo-labelled
generation model directly, and then loads the clustering results of
the four algorithms to guide the training of the model, which are
GMM (Stauffer and Grimson, 1999), OMSC (Chen et al., 2022),
OPMC (Liu et al., 2021a), and EEO (Wang et al., 2023). The number
of clusters is set to 17, fine-grained and coarse-grained control
parameter is set to 1 × 1, and all parameters of the training are kept
unchanged. Note that none of the labels generated in this section
have been processed by PCA.

Figure 10 shows the clustering effect of SwinClustering guided
by different labels. The top row of Figures 10A–D represent the
clustering results generated by different clustering methods; the
middle row of Figures 10E–H represent the clustering outputs of the
SwinClustering at 3000 iterations; and the bottom row of Figures
10I–L represent the changes in the loss function curves during the
training process. From these figures we can conclude that i) the
clustering results can be de-noised well by SwinClustering, ii)
SwinClustering can remove the discontinuity or jaggedness of
cluster-cluster boundaries well, and iii) using other types of
guiding labels does not affect the convergence speed of
SwinClustering.

3.6 Quantitative evaluation

The clustering performance is often quantitatively evaluated by
using the following eight evaluation metrics: ACC, NMI, Purity,
Precision, Recall, F-score, ARI, and Entropy. In this experiment, we
adopt the semi-supervised PCA-K-means label generation model
output as the reference ground truth, and the number of clusters for
all algorithms is set to 17. Since pseudo-label data generated by PCA-
K-means is not the true labels, and there is no fixed uniform
criterion for LCA, so the quantitative assessment methods do not
distinguish better or worse. The evaluation results only measure the
similarity between the clustering results and the reference pseudo-
label data, which do not serve as an evaluation criterion for good or
bad clustering LCA. Figure 11 demonstrates a comparative analysis
of clustering results across the mentioned seven metrics.
Additionally, we introduce an area metric S to evaluate the
overall performance of clustering algorithms. This area metric S
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represents the total area enclosed by the spider chart, where a larger
value indicates the clustering results are more similar to the
reference labels. In comparison with seven representative
algorithms, namely, GMM (Stauffer and Grimson, 1999),
K-means (Arthur and Vassilvitskii, 2007), SOFM Kohonen
(1990), OMSC (Chen et al., 2022), OPMC (Liu et al., 2021a),
SFMC (Li et al., 2022), SLIC (Achanta et al., 2012) and EEO

(Wang et al., 2023), the proposed SwinClustering achieves the
highest scores in all metrics, i.e., ACC (0.863), NMI (0.753),
Purity (0.863), F-score (0.835), Precision (0.832), Recall (0.839),
and ARI (0.672). SwinClustering also secures the first place in the
overall area metric with a score of S � 1.873. Although SLIC is also a
clustering method based on geographic information, it achieves the
lowest score of S � 0.126 in this quantitative evaluation. These

FIGURE 13
(A) GMM. (B) K-means. (C) SOFM. (D)OMSC. (E)OPMC. (F) SFMC. (G) EEO. (H) SLIC. (I) SwinClustering. The visual qualitative assessment results for
the Beijing Municipality.

Frontiers in Environmental Science frontiersin.org15

Huang et al. 10.3389/fenvs.2025.1509113

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1509113


results show that SwinClustering achieves a high fit by training with
reference labels, demonstrating the capability of SwinClustering for
clustering landscape elements and validating the potential of
applying visual segmentation to LCA.

3.7 Multi-scale qualitative analysis

We conduct experiments on qualitative LCA clustering analysis at
three different scales: the national scale of China, the municipal scale of
Beijing Municipality, and the district scale of Wuyishan National Park.
The national scale encompasses the entirety of China, showcasing the
rich and diverse landscape characteristics across various geographic
regions. To better reflect this diversity, the number of clusters for the

national scale is set to 80. The Beijing region, covering an area of
16,410.54 square kilometers, includes multiple landscape elements such
as mountains, lakes, and urban architecture, representing a complex
urban environment. The Wuyishan region, with a size of
1,001.29 square kilometers, primarily features vegetation, mountains,
and water bodies, highlighting a natural and ecologically rich setting.
For both the municipal and district scales, the number of clusters is set
to 17. In our landscape character clustering assessment experiments, we
adopt a visual qualitative comparison method to perform cluster
analysis on a series of complex and variable landscape characters.
For methods that cannot handle large-scale samples, we apply a
reduction-computing-enlargement processing strategy.

The visual assessment results for the national scale (China) are
presented in Figure 12. At this scale, the clustering results reflect the rich

FIGURE 14
(A) GMM. (B) K-means. (C) SOFM. (D)OMSC. (E)OPMC. (F) SFMC. (G) EEO. (H) SLIC. (I) SwinClustering. The visual qualitative assessment results for
the Wuyishan National Park.
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diversity of landscape features across the vast geographic territory of
China, including urban areas, farmland, forests, mountains, deserts, and
water bodies. Visual comparisons with GMM (Stauffer and Grimson,
1999), K-means (Arthur and Vassilvitskii, 2007), SOFM (Kohonen,
1990), OMSC (Chen et al., 2022), OPMC (Liu et al., 2021a), SFMC (Li
et al., 2022), EEO (Wang et al., 2023), SLIC (Achanta et al., 2012), and
SwinClustering are presented in Figures 12A–I. It can be observed that
while most algorithms can differentiate major geographic features such
as deserts in the northwest, forests in the southwest, and urban areas in
the east, many suffer from excessive noise and fragmented clusters,
especially GMM, K-means, and EEO. OMSC and SLIC fail to fully
capture the diversity of landscape features, producing overly simplified
results. In contrast, the proposed SwinClustering algorithm effectively
distinguishes a wide variety of landscape types, providing smooth
boundaries, well-defined clusters, and a more nuanced
representation of diverse geographic regions.

At the municipal scale, the visual assessment results for the Beijing
region are presented in Figure 13.We can figure out that the southeastern
part of the Beijing region primarily consists of urban architectural
landscape elements, while the western and northern parts are
dominated by mountainous landscape elements. Visual comparisons
with GMM (Stauffer and Grimson, 1999), K-means (Arthur and
Vassilvitskii, 2007), SOFM (Kohonen, 1990), OMSC (Chen et al.,
2022), OPMC (Liu et al., 2021), SFMC (Li et al., 2022), EEO (Wang
et al., 2023), SLIC (Achanta et al., 2012), and SwinClustering are
presented in Figures 13A–I. All methods except SLIC are able to
roughly segment urban and mountainous landscape elements.
However, GMM, K-means and EEO tend to divide the landscape
elements into finer fragments with excessive noise points. OMSC
provides a rougher segmentation, resulting in the loss of many details.
SOFM and OPMC distribute the landscape characters more evenly with
fewer noise points, but their boundaries are not smooth, often appearing
jagged. SFMC clustering results are not diverse enough and are also
fraught with a lot of clutters. In contrast, our proposed method,
SwinClustering, provides a more reasonable division of landscape
elements with smooth boundaries and distinct blocks. It effectively
represents urban architecture, vegetation, mountains, rivers, and other
landscape elements, demonstrating the advanced performance of the
proposed method.

Finally, at the regional scale, the Wuyishan National Park in Fujian
Province is selected for visual assessment. The landscape of the
Wuyishan region is primarily characterized by its mountainous
terrain, dense forests, and lush vegetation. The visual comparisons of
the nine algorithms are presented in Figures 14A–I. It can be observed
that GMM, OMSC, OPMC, and SwinClustering are able to clearly
showcase the ridge lines in the northwest region ofWuyishan. K-means,
OPMC, and SwinClustering also distinguish the different trees in the
southeast region. Additionally, the proposed SwinClustering method
exhibits a better overall partitioning effect, with reasonable region sizes
and less noises. This fully demonstrates the application potential of
visual segmentation techniques in landscape character clustering.

4 Conclusion

This study highlights the importance of LCA for gaining deeper
insights into multiple landscape attributes and geographic locations.
The traditional LCA clustering methods have difficulty in obtaining

intricate connections between different landscape attributes and in
obtaining spatial relationships within the context of the scene. To
achieve sustainable LCA development, we introduce
SwinClustering, a novel paradigm leveraging the Swin
Transformer architecture for multi-scale clustering. By validating
its effectiveness across diverse scales, we successfully demonstrate
the versatility and potential of SwinClustering on three distinct
scales: the national scale of China, the municipal scale of Beijing, and
the regional scale of Wuyishan National Park, each representing
unique and diverse landscape scenarios. This study not only
enhances the understanding of landscape character but also paves
the way for more informed and sustainable landscape management
practices via the artificial intelligence techniques.
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