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Habitat quality (HQ) is a critical factor for regional ecosystem health and
sustainable development, as well as an important basis for formulating
ecological protection and land-use planning. The Qin-Mang River Basin, as an
integral part of the biodiversity conservation area in the Yellow River Basin, plays a
significant role in maintaining the balance and stability of the regional ecosystem.
This study is based on land use/land cover changes (LUCC) data from 1992, 2002,
2012, and 2022. It employs a land use transfer matrix to analyze the dynamic
trends and patterns of LUCC. HQ changes are evaluated using the InVEST model,
and the GeoDetector model is used to identify the key driving factors and their
interactions. Additionally, spatial autocorrelation analysis is applied to explore the
spatial clustering characteristics of HQ. The results indicate that between
1992 and 2022, the cumulative area of land transfer in the study area
exceeded 600 km2, primarily characterized by the conversion of cultivated
land to built-up areas. The HQ index decreased from 0.3409 in 1992 to
0.2896 in 2022, with a significant increase in spatial heterogeneity. Altitude,
vegetation coverage, temperature, precipitation, and slope are the main driving
factors influencing HQ, with natural factors dominating, but human activities
gradually playing an increasingly significant role. Furthermore, HQ exhibits
significant spatial clustering characteristics, with hotspot and coldspot areas
providing scientific evidence for ecological protection and restoration
measures. To improve HQ, it is recommended to strictly enforce ecological
protection red lines, control the expansion of built-up areas, improve ecological
compensation mechanisms, and promote ecological restoration measures such
as returning farmland to forest and grassland.
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1 Introduction

Habitat quality (HQ) is a critical indicator of ecosystem services, reflecting an
ecosystem’s ability to provide favorable conditions for the survival and growth of
species over time and space. It captures the overall health and suitability of the
environment in supporting biodiversity (Costanza et al., 1997). It holds significant
importance in biodiversity conservation, balancing the supply and demand of
ecosystem services, and constructing ecological security patterns (Mace et al., 2012;
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Hillard et al., 2017). HQ assessment not only reveals ecological
environmental changes and their driving factors but also provides
scientific evidence for ecological restoration and biodiversity
conservation, thereby promoting the stability and health of
ecosystems. With the increasing severity of global
environmental issues, ecological environmental protection has
become a shared challenge worldwide. LUCC, particularly
urbanization and agricultural expansion, has had a profound
impact on ecosystem functions and wildlife habitats, severely
threatening ecological security (Watson et al., 2019; Ellis et al.,
2019). In this context, HQ, as a key indicator of ecosystem health
and stability, is directly linked to the maintenance of ecosystem
service functions and the protection of biodiversity (Nelson
et al., 2009).

In China, changes in HQ are particularly significant, especially
in the Yellow River Basin, which is a crucial ecological and economic
region. The HQ in this region directly affects the national ecological
security and sustainable development (Xu et al., 2024). As land use/
land cover changes (LUCC), particularly urbanization and
agricultural expansion, the ecosystems of the Yellow River Basin
face unprecedented pressures, making the study of HQ changes in
this region urgent (Yang et al., 2022). The Qin-Mang River Basin,
located at the core of the Yellow River Basin, plays a critical role in
China’s ecological security strategy. This basin is rich in vegetation
resources, home to 1,609 species of higher plants, many of which are
nationally protected species. The Qin-Mang River Basin is not only a
biodiversity conservation area but also plays a key role in the
economic development of Central China, contributing to food
production, energy supply, food processing, and the development
of new industries. According to the “Ecological Protection and
Restoration Plan for Mountains, Rivers, Forests, Farmlands,
Lakes, Grasslands, and Deserts in Henan Province,” the Qin-
Mang River Basin has been identified as a key area for ecological
restoration. Implementing measures such as forest protection, soil
and water conservation, and wetland restoration is crucial for
maintaining the ecological functions of the basin and ensuring
the region’s sustainable development.

Currently, significant progress has been made in HQ assessment
methods, which can be broadly classified into two categories: the
landscape pattern-based indicator system and the ecological
assessment model-based approach. Although landscape pattern-
based methods are easy to implement, they are limited by data
scarcity when applied to large-scale regions (Oliveira et al., 2022;
Alaniz et al., 2021). In contrast, ecological assessment models, such
as the HIS model (Liu et al., 2006), SoLVES model (Zhao et al.,
2018), and InVEST model, have been widely used for large-scale
ecological assessments. Among these, the InVEST model has
become one of the core tools in global ecosystem research due to
its ability to quickly assess LUCC and their impacts on biodiversity
(Yang et al., 2021; Sharp et al., 2018). Despite the achievements of
existing models, there is still room for improvement in identifying
driving factors and exploring spatial heterogeneity (Qing et al., 2021;
Gong et al., 2019; Zhang et al., 2020).

In recent years, GeoDetector, as an emerging statistical analysis
method, has been widely applied in ecological research, particularly
for identifying ecosystem service driving factors and their spatial
differentiation mechanisms (Wang and Xu, 2017). This method
effectively overcomes the limitations of traditional methods,

revealing the interactions between driving factors and providing
scientific support for ecological protection (Fu et al., 2013).
Additionally, spatial autocorrelation analysis (SAA), combining
powerful statistical tools such as global Moran’s I, local Moran’s
I, and Getis-Ord Gi*, has played an important role in revealing the
spatial distribution characteristics of HQ and exploring the spatial
clustering and dispersion patterns of ecological changes (Huang
et al., 2022; Sallustio et al., 2017).

This study focuses on the Qin-Mang River Basin, a key area for
ecological protection in the Yellow River Basin, with the aim of
revealing the impacts of land use transformation on HQ and its
driving mechanisms. By integrating the InVEST model,
GeoDetector model, and SAA, a multi-model framework for
assessment was constructed. The spatiotemporal changes in HQ
were quantitatively evaluated, and the roles of driving factors and
their spatial differentiation characteristics were systematically
explored. This research not only fills the gap in HQ studies in
the region but also uses the GeoDetector model to quantitatively
reveal the interactions among driving factors, offering new methods
and perspectives for advancing research on the complexity of
ecosystem services.

The results indicate that HQ changes in the Qin-Mang River
Basin are influenced by multiple factors, including land use
transformation and its driving forces. Based on the scientific
evaluation results, this study proposes targeted ecological
restoration and protection strategies, providing scientific
evidence for regional ecological environmental management
and offering theoretical support and practical guidance for
ecological protection and sustainable development in similar
regions worldwide. In summary, this study systematically
assesses the spatiotemporal changes in HQ and their driving
mechanisms in the Qin-Mang River Basin, highlighting the
ecological, economic, and social value of the region, and
providing important references for the formulation of precise
ecological protection and restoration policies, as well as
promoting the health and sustainable development of regional
ecosystems.

2 Data and methods

2.1 Study area

The Qin-Mang River Basin is located in the northwest of Henan
Province, in the southwestern part of the ecological protection and
restoration area of the Mountains, Rivers, Forests, Farmlands, Lakes,
Grasslands, and Deserts in the South Taihang region. Its
geographical coordinates range from 112°20′to 113°39′E longitude
and 34°49′to 35°21′N latitude. The Qin-Mang River Basin is a
biodiversity conservation area along the Yellow River wetlands,
covering a total area of approximately 3,062.4 km2. The basin lies
within the South Taihang region, which is a key node in the
construction of China’s ecological security strategy. It forms the
watershed between the North China Plain and the Loess Plateau and
serves as a transition zone between the second and third geomorphic
steps of China, playing a critical role as an ecological barrier in the
central region. The geographical location of the Qin-Mang River
Basin is shown in Figure 1.
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2.2 Data sources and preprocessing

This study’s analysis primarily relies on land use/land cover
change (LUCC) data, digital elevation model (DEM) data,
administrative boundaries, as well as socio-economic and natural
environmental datasets. The DEM data were sourced from the
Geospatial Data Cloud (http://www.gscloud.cn), while the annual
precipitation and temperature data were obtained from the National
Meteorological Science Data Center (http://data.cma.cn). Soil type,
vegetation type, and NDVI data were also sourced from the
Geospatial Data Cloud (http://www.gscloud.cn). Socio-economic
indicators, including nighttime light, GDP, and population data,

were retrieved from the Global Change Research Data Publishing
and Sharing Platform (http://www.geodoi.ac.cn). Road, railway,
water systems, and vector boundary data were similarly acquired
from this platform. Slope and aspect raster data were extracted from
the DEM data using ArcGIS 10.8, and data for GeoDetector analysis
were discretized using the same software.

During the data preprocessing phase, the following measures
were adopted to ensure the consistency and accuracy of value units
across different data sources:

(1) Data Resampling and Unit Standardization: Considering
differences in resolution and units across various datasets,

FIGURE 1
Geographic Location and Elevation Map of the Study area.
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resampling was performed on remote sensing images and
raster data. For remote sensing images with different
resolutions, the nearest neighbor method was used to
resample, reducing spatial errors while maintaining the
original data characteristics. Additionally, the units and
scales of all raster data were standardized, such as
converting precipitation and temperature data to
millimeters per year and degrees Celsius, respectively.

(2) Coordinate System Standardization: All datasets were
transformed into the WGS_1984_UTM_Zone_49N
coordinate system to ensure consistency in geographical
location and accurate spatial alignment, avoiding spatial
discrepancies caused by differing coordinate systems.

(3) Spatial Analysis and Reclassification: During spatial analysis
and reclassification, all data underwent standardization
processes, including clipping, reclassification, and
reprojection, to ensure a comprehensive analysis within a
unified spatial framework, considering differences in data
source formats and processing requirements.

2.3 Research methods

2.3.1 Land use transfer matrix (LUTM)
The LUTM is used to quantitatively analyze the transitions

between different land use types (LUTs) during different periods,
reflecting the dynamic changes in land use. By comparing land use
data at different time points, the LUTM reveals the transformation
patterns of land use, which is of significant importance for
understanding the driving factors of LUCC and its impact on the
ecological environment. The formula is as follows (Equation 1)
(Long et al., 2014):

Aij �
A11 A12 / A1n

A21 A22 / A2n

/ / / /
An1 An2 / Ann

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

In this context, A represents the area of the land type, i and j
refer to the land types before and after land transfer, n is the total
number of LUTs, and Aij is the area of land type i transferring to
land type j. Each row represents the flow information of land type i
to other land types, while each column represents the source
information of other land types to land type j.

2.3.2 InVEST model
The InVEST model is a comprehensive tool widely used for

ecosystem services and their change assessments, with significant
value in HQ and ecological service evaluations. This model
calculates regional HQ indices and their spatial distribution by
analyzing land use/cover maps and threat factors. In this study,
the InVEST model particularly focuses on the interaction between
natural environmental factors and landscape structure, adopting a
comprehensive perspective to evaluate the ecological service
benefits. From the natural environment perspective, HQ
assessment involves factors such as climate, soil types, and
topography, all of which directly affect ecosystem functions and
service capabilities. From the landscape perspective, dynamic

changes in land use and landscape patterns play a key role in
habitat suitability and ecological connectivity (Yang et al., 2024).

The HQ index, as a comprehensive indicator, is used to assess
the habitat suitability and degradation degree of LUTs. By
combining natural environmental and socio-economic factors,
the InVEST model can intuitively assess the comprehensive
benefits of LUCC on ecosystem services, providing a scientific
basis for regional ecological service protection and management.
The calculation formula is as follows (Equation 2) (Sharp
et al., 2018):

Qxj � Hj 1 − Dz
xj

Dz
xj +Kz

( )[ ] (2)

In the formula, Qxj represents the HQ index of LUT j for grid
cell x; Hj represents the habitat suitability score for LUT j, with a
range of 0–1; Z is the scale constant, typically 2.5; K is the half-
saturation constant, which is 0.5 in this study; Dxj represents the
habitat degradation index, indicating the degree of habitat
degradation under stress. The commonly used empirical value of
0.5 for the half-saturation constant K in the literature aligns with the
characteristics of this study area. After multiple parameter
adjustments and validations, selecting K = 0.5 helps balance the
influence of habitat suitability and habitat degradation, ensuring the
rationality and stability of the HQ index (Feng et al., 2024).

Based on previous research and the InVEST model user guide,
and considering the actual conditions of the Qin-Mang River Basin,
this study constructed a habitat threat factor and threat degree
evaluation table (Table 1), as well as a sensitivity evaluation table for
LUTs to threat factors (Table 2) (Guo et al., 2024; Chen et al., 2021;
Hu et al., 2022).

2.3.3 GeoDetector
The GeoDetector model is a tool used for spatial data analysis,

widely applied to identify the driving factors of ecological
phenomena and their mechanisms. This model analyzes the
impact of natural factors, socio-economic factors, and LUTs on
HQ changes, effectively identifying the main driving factors and
their interactions. GeoDetector is based on geographic spatial data
and reveals the influence of factors on ecological phenomena by
quantifying the explanatory power of these factors over spatial data.
Its advantage lies in assessing the interaction effects between factors,
providing a scientific basis for ecological protection and land use
planning (Zhang et al., 2023).

In the GeoDetector model, the q value reflects the explanatory
power of independent variables on the dependent variable, where q ∈
[0, 1]. A larger q value indicates a stronger explanatory ability of the
independent variable on the dependent variable. The model not only
identifies the impact of individual factors on HQ changes but also
reveals their combined influence by calculating the interaction
between different factors. Specifically, GeoDetector can compute
the interaction term q (X1∩X2), which helps determine whether the
joint effect of factors X1 and X2 strengthens or weakens the
influence of the dependent variable Y. If q (X1∩X2) is greater
than q (X1) and q (X2), it indicates that the interaction between
the two factors has a stronger influence on the dependent variable;
conversely, the interaction is weaker. The calculation formula is as
follows (Equations 3, 4) (Wang and Xu, 2017):
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q � 1 −
∑L
h�1

Nhσ2h

Nσ2
� 1 − SSW

SST
(3)

SSW � ∑L
h�1

Nhσ
2
h, SST � Nσ2 (4)

where h(h � 1, 2, . . . , l) represents the strata of the dependent
variable y or independent variable x; Here, Nh and N denote the
number of units in stratum h and the entire region, respectively; σ2h
and σ2 represent the variances within stratum h and the entire
region, respectively; SSW and SST are the within-stratum variance
and the total variance for the region, respectively; q ∈ [0, 1], with a
larger value of q indicating a stronger explanatory power of the
independent variable x on the dependent variable y, and vice versa.

2.3.4 Spatial autocorrelation analysis (SAA)
SAA is used to study the spatial distribution characteristics of

geographic features and reveal the clustering or dispersion patterns
of data. Moran’s I is used to measure overall spatial autocorrelation,
while the Getis-Ord Gi* is used to identify local hotspots and cold
spots, revealing anomalous areas in spatial distribution. This study
employs the global Moran’s I, local Moran’s I, and Getis-Ord Gi* as
primary analytical tools, respectively, for the SAA of HQ in the Qin-
Mang River Basin at both the global and local scales (Chen
et al., 2022).

2.3.4.1 Global Moran’s I (GMI)
The GMI, proposed by Patrick Alfred Pierce Moran, is used to

measure the spatial autocorrelation of features across the entire
study area. Its value ranges from −1 to 1: when Moran’s I > 0, the
data exhibit positive spatial autocorrelation (similar values tend to
cluster); when Moran’s I < 0, the data exhibit negative spatial
autocorrelation (dissimilar values tend to cluster); when Moran’s
I = 0, the data are randomly distributed in space. The calculation
formula is as follows (Equation 5) (Moran, 1950):

I �
n∑n
i�1
∑n
j�1
ωij xi − �x( ) xj − �x( )
So∑n

i�1
xi − �x( )2

(5)

In the equation, n is the total number of spatial units, and xi and
xj represent the observations of regions i and j, respectively; �x is the
mean of the observations. ωij is the spatial weight between spatial
units i and j (typically reflecting their proximity or distance); So is
the total sum of all spatial weights (So � ∑n

i�1∑n
j�1ωij).

2.3.4.2 Local Moran’s I (LMI)
LMI, proposed by Luc Anselin, is used to reveal the spatial

clustering patterns of local regions. By comparing each unit with its
neighboring units, this method identifies local hotspots (high-high
clustering, HH), cold spots (low-low clustering, LL), high-low
outliers (HL), and low-high outliers (LH). The LMI is suitable
for further analyzing the clustering patterns in specific local areas
within the study region, supporting localized strategies for ecological
priority protection or restoration. The calculation formula is as
follows (Equation 6) (Anselin, 1995):

Ii �
n xi − �x( )∑n

j�1
Wij xj − �x( )

∑n
i�1

xi − �x( )2
(6)

In the equation, xi and xj refer to the observations of regions i
and j, respectively; �x is the mean of the observations, and ωij is the
spatial weight between spatial units i and j.

2.3.4.3 Getis-Ord Gi*
The Getis-Ord Gi* is used to identify significant hotspots and

cold spots of HQ and is an important tool for analyzing the spatial
distribution of ecosystem services. In this study, in addition to using
the Getis-Ord Gi* to analyze the spatial distribution of HQ, we also
combine the spatial patterns of urbanization processes to assess the

TABLE 1 Habitat threat factors and severity.

Threat factors Farthest threat distance (km) Threat degree Declining type

Cropland 2 0.7 Linear

Impervious 2 1 Exponential

Barren 0.5 0.5 Exponential

TABLE 2 Sensitivity of LUCC types to threat factors.

LUCC types Habitat suitability Cropland Impervious Barren

Cropland 0.4 0 0.8 0.5

Forest 0.9 0.7 0.6 0.4

Grassland 0.6 0.4 0.8 0.8

Water 1 0.6 0.9 0.4

Impervious 0 0 0 0

Barren 0 0 0 0
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impact of urban expansion on ecosystem services. Urbanization
intensifies LUCC, and its impact on ecosystem services is not only
reflected in the spatial distribution differences of hotspots and cold
spots but also in the potential disruption of habitat connectivity and
suitability due to land use patterns. By integrating the Getis-Ord Gi*
with land use data, this study reveals the spatial interactions between
urban expansion and ecosystem services, providing scientific
evidence for ecological planning and restoration in urbanized
areas. The calculation formula is as follows (Equation 7) (Getis
and Ord, 1992):

Gi* �
∑n
j�1
ωijxij − �X∑n

j�1
ωij

S

�����������∑n
j�1

ωij
2− ∑n

j�1
ωij( )2

n−1

√√ (7)

In the equation, n denotes the total number of spatial unit; xj

represents the attribute value of spatial unit j; ωij is the weight
between spatial units i and j; �X is the mean of the observed values,

�X �
∑n
i�1

xi

n ; S is the standard deviation of the observed values, S ��������∑n
i�1

(xi− �X)2

n

√
.

2.3.5 Selection criteria for driving factors
In the study of the driving factors of HQ, this research selects key

factors that comprehensively reflect the influence of both the natural
environment and human activities. HQ is not only driven by natural
factors such as climate and topography but is also heavily influenced
by human social activities, including population density, economic
development, and urbanization. Although human activities play an
important role in HQ, this study focuses on the role of the natural
environment and socio-economic conditions in land use
transformation, particularly in the Qin-Mang River Basin, which
has unique geographical and ecological characteristics. Therefore,
this study selects 9 types of natural environmental factors (annual
precipitation, mean annual temperature, DEM, slope, aspect, soil
type, vegetation type, NDVI, distance to water systems) and 4 types
of socio-economic factors (GDP, residential population, nighttime
light index, distance to railways) as the main driving factors.

The specific selection criteria are as follows:

(1) Natural Driving Factors: Natural factors such as climate,
topography, and vegetation type directly affect ecological
functions. Annual precipitation and mean annual temperature
are the core factors of climate change, determining the
productivity and stability of ecosystems. They especially have
significant impacts on ecological processes such as vegetation
growth, HQ, and hydrological cycles. The climate diversity of the
Qin-Mang River Basin provides a unique context for studying
the influence of climate on HQ. Topographic factors (e.g., slope,
aspect, and DEM) affect land use patterns and water flow
direction, further determining the distribution of habitat
spaces and the evolution of ecosystems.

(2) Soil and Vegetation Factors: Soil type and vegetation cover are
key factors influencing HQ. Different soil types offer varying
levels of support for crop growth, carbon fixation, and

nutrient cycling, directly affecting ecosystem carbon
storage and soil health. NDVI, as a standardized index of
vegetation cover, can effectively reflect the health status and
productivity of an ecosystem, thereby influencing HQ.

(3) Socio-economic Driving Factors: Although this study mainly
focuses on natural environmental factors, the impact of socio-
economic factors on HQ changes cannot be ignored.
Population density and residential population reflect the
intensity and spatial distribution of human activities,
especially in urbanized and densely populated areas, where
the pressure on land use is more pronounced, and the impact
on the ecological environment is more direct. GDP represents
the level of regional economic development, which directly
influences land use patterns, resource demands, and changes
in ecosystem services. The nighttime light index effectively
indicates the intensity and distribution of economic activities.
Transportation (e.g., distance to railways) influences the
development potential of a region and land use patterns,
thereby affecting HQ.

3 Results and analysis

3.1 Spatiotemporal evolution

3.1.1 Spatiotemporal evolution of land use
types (LUTs)

Land use/land cover changes (LUCC) in the Qin-Mang River
Basin between 1992 and 2022 has significantly affected HQ. Studies
show that the reduction of cultivated land and the expansion of
built-up land are the primary drivers of HQ degradation,
particularly in the context of rapid urbanization, which has
exerted significant pressure on the ecosystem. The expansion of
built-up land not only occupies a large amount of arable and forest
land but also weakens habitat connectivity and ecological diversity.
Additionally, the reduction of forest land has impacted the region’s
carbon storage capacity and hydrological regulation functions.
Although the area of water bodies remained relatively stable,
their support for ecosystem services was limited. LUCC analysis
reveals the differential impacts of various LUTs on ecosystem
services, especially the negative effect of built-up land expansion
on HQ, emphasizing the need to address ecological losses in
urbanization processes within ecological protection policies.

LUCC shows significant variations across different periods. By
analyzing the LUT distribution maps for 1992, 2002, 2012, and 2022
(as shown in Figure 2), land use transfer matrices (Table 3), and
transfer chord diagrams (Figure 3), it is evident that the conversion
of cultivated land to built-up land and the reduction of forest land
were the primary trends. Specifically, from 1992 to 2002, the total
area of land conversion was 207.35 km2, accounting for 6.78% of the
total study area, with themost significant expansion of built-up land,
continuing over the subsequent decade. From 2002 to 2012, the total
area of land conversion was 211.32 km2, accounting for 6.91% of the
study area. Built-up land continued to expand, while cultivated and
forest lands gradually decreased. From 2012 to 2022, the total area of
land conversion was 182.56 km2, accounting for 5.97% of the study
area. Although the rate of change slowed, the expansion of built-up
land remained the dominant trend. These changes reflect the
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negative impact of built-up land expansion on HQ, particularly the
significant negative effect of converting cultivated land to built-up
land on HQ.

The spatiotemporal analysis of LUCC indicates that the
expansion of built-up land not only directly occupied a large
amount of cultivated and forest land, leading to habitat
fragmentation, but also severely weakened the critical service
functions of regional ecosystems, particularly in carbon storage
and hydrological regulation. The reduction of cultivated land and
the increase in built-up land have formed a vicious cycle,
significantly affecting biodiversity and ecosystem health. This
trend underscores the severity of HQ degradation and provides
an urgent practical need for future ecological protection and
restoration efforts. To address this challenge, future protection
policies should strengthen responses to ecological losses caused
by rapid urbanization, particularly in land resource management
and urban expansion, promoting sustainable land use development
and avoiding unreasonable development and excessive expansion.

3.1.2 Spatiotemporal evolution of habitat
quality (HQ)
3.1.2.1 Spatial distribution of HQ

In the HQ module of the InVEST model, the HQ index is
represented by values between 0 and 1, where values closer to
1 indicate better HQ, and values closer to 0 indicate poorer

quality. This index not only reflects the quality of biological
habitats within the region but also represents the region’s ability
to resist habitat-threatening factors. This study used ArcGIS
10.8 software to extract data on cultivated land, built-up land,
distance from railways, and unused land for the Qin-Mang River
Basin for the years 1992, 2002, 2012, and 2022. These data,
combined with land use maps and threat source data, were input
into the InVEST 3.9.0 model to generate HQ distribution maps for
each year (Figure 4).

The evaluation results from the InVEST model show that the
average HQ index for different land-use landscapes in the Qin-Mang
River Basin for the years 1992, 2002, 2012, and 2022 were 0.3409,
0.3167, 0.3055, and 0.2896, respectively, with standard deviations of
0.1675, 0.1724, 0.1887, and 0.1912. These results indicate a year-on-
year decline in HQ, with an increasing disparity between regions.
The increase in standard deviation suggests that the spatial
distribution of HQ degradation has become more dispersed.

Overall, the HQ index in the Qin-Mang River Basin has been
decreasing year by year, with regional disparities gradually widening.
This trend reflects the deterioration of ecosystem health, particularly
in the context of urbanization and land-use change. The degradation
of HQ and the widening spatial differences highlight the need for
differentiated protection and restoration strategies based on the
ecological conditions of different regions. Future ecological
protection measures should focus on regions with poorer or

FIGURE 2
LUTs distribution maps of the study area from 1992 to 2022.
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severely degraded HQ and implement targeted protection and
restoration efforts based on regional characteristics.

3.1.2.2 Spatial distribution of habitat degradation
The habitat degradation index measures the extent and likelihood

of HQ decline due to threatening factors. This study evaluated the
habitat degradation index for the study area from 1992 to 2022 using
the InVEST model, and the results were reclassified using the natural
breaks classification method in ArcGIS. This method, proposed by
Jenks, objectively reflects the statistical characteristics of data
distribution and exhibits significant spatial variability. Based on
this method, habitat degradation was classified into five levels:
slight degradation, mild degradation, moderate degradation, severe
degradation, and very severe degradation (Figure 5).

The evaluation results from the InVEST model show that the
average habitat degradation index for different land-use landscapes in

the study area for the years 1992, 2002, 2012, and 2022 were 0.2412,
0.2379, 0.2306, and 0.2250, respectively, with standard deviations of
0.1107, 0.1205, 0.1286, and 0.1340. The results show a general decrease
in the habitat degradation index year by year, indicating a reduction in
degradation intensity. However, the increasing standard deviation year
after year reflects an expanding difference in degradation across regions,
with the spatial distribution of degradation becoming more dispersed.

Despite the overall reduction in degradation intensity, the spatial
differences in habitat degradation in the Qin-Mang River Basin have
been increasing. This suggests that some regions have seen
improvements in ecological conditions, but some areas still face
serious ecological degradation issues. Therefore, future ecological
restoration and protection efforts should focus on areas with higher
degradation levels and uneven changes, and adopt differentiated and
localized management strategies to address the spatial variability of
habitat degradation.

TABLE 3 LUTM from 1992 to 2022 (km2).

1992 2002

Cropland Forest Grassland Water Impervious Barren Transfer out

Cropland 2187.36 7.37 6.85 10.64 126.15 0.00 151.03

Forest 30.94 332.31 0.68 0.00 0.28 0.00 31.91

Grassland 6.03 1.83 17.40 0.05 0.39 0.00 8.30

Water 6.95 0.04 0.01 13.99 5.68 0.00 12.68

Impervious 0.26 0.00 0.00 3.16 298.33 0.00 3.42

Barren 0.00 0.00 0.00 0.00 0.01 0.00 0.01

Transfer In 44.19 9.25 7.54 13.85 132.51 0.00 207.35

2002 2012

Cropland Forest Grassland Water Impervious Barren Transfer Out

Cropland 2076.69 23.30 2.11 6.84 122.56 0.04 154.86

Forest 18.44 321.37 0.60 0.00 1.14 0.00 20.19

Grassland 12.57 1.70 9.51 0.00 1.15 0.00 15.43

Water 9.02 0.08 0.05 13.30 5.27 0.14 14.55

Impervious 1.41 0.00 0.01 4.86 424.55 0.00 6.29

Barren 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Transfer In 41.44 25.08 2.77 11.71 130.13 0.18 211.32

2012 2022

Cropland Forest Grassland Water Impervious Barren Transfer Out

Cropland 1995.87 12.55 1.15 5.85 102.70 0.01 122.25

Forest 31.80 313.96 0.10 0.00 0.59 0.00 32.50

Grassland 8.37 1.29 2.23 0.14 0.26 0.00 10.06

Water 6.28 0.04 0.11 12.77 5.79 0.02 12.24

Impervious 0.55 0.00 0.02 4.75 549.34 0.01 5.33

Barren 0.02 0.00 0.00 0.11 0.04 0.00 0.18

Transfer In 47.03 13.87 1.38 10.85 109.39 0.05 182.56
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3.2 Driving mechanisms

3.2.1 Handling of driving factors
HQ is influenced by multiple factors, including both natural

environments and human activities. In terms of natural
environment factors, climate affects vegetation growth by
regulating water and heat conditions, which in turn changes
biological growth patterns and habitat spatial characteristics. In

terms of human activities, factors such as population density,
economic development level, and urbanization process have
varying degrees of impact and destruction on HQ. Therefore, this
study selected 9 types of natural environmental factors (such as DEM,
annual average temperature, annual precipitation, slope, aspect, soil
type, vegetation type, NDVI, and distance to water systems) and
4 types of socioeconomic factors (such as GDP, residential population,
nighttime light index, and distance to railways) for analysis.

FIGURE 3
Chord diagram of LUTs transitions in the study area from 1992 to 2022.

FIGURE 4
Spatial distribution map of HQ index.
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In terms of data processing, the Euclidean distance tool in
ArcGIS was used to calculate the distances to railways and water
systems. Combined with other factor data, a 1 km × 1 km fishnet
sampling method was used to extract the factor values and HQ
values at the center of each grid. After removing outliers, the data
were input into the GeoDetector model for quantitative analysis
(Figures 6, 7).

3.2.2 Detection of driving factors
Quantitative analysis of the influence of driving factors on HQ

is essential. The GeoDetector model quantifies the influence of
driving factors through the q-value, where a higher q-value
indicates a more significant driving force. Table 4 presents the
results of the driving factor detection in the study area from 1992 to
2022. The analysis reveals that the key driving factors affecting HQ
include DEM, mean annual temperature, slope, and vegetation.
Natural factors have always been the dominant drivers, but with
the reduction of forest area and the expansion of construction land,
the influence of human activities has gradually increased,
weakening the natural driving force. This suggests that,
although natural factors remain dominant in determining HQ,
human activities are significantly intensifying their impact on
ecosystems, indicating the need for timely adjustments in
ecological protection policies to address the effects of human
activities.

3.2.3 Interaction detection
Driving factors in ecosystems are interconnected and interact

with each other. The interaction detection module is used to analyze

the impact of interactions between two factors on the explanatory
power of HQ. This module processes spatial data using ArcGIS
10.8 and analyzes the data using the GeoDetector model. The results
show that the interactions between driving factors significantly affect
HQ (Figure 8). Specifically, the nonlinear enhancement in 1992,
2002, 2012, and 2022 was 22.17%, 23.08%, 25.04%, and 27.47%,
respectively. Bidirectional interactions generally have a stronger
driving force than single-factor drivers, confirming the validity of
the driving factors.

In 1992, the most significant interactions were DEM ∩
Vegetation (q-value 0.91), Annual Precipitation ∩ Soil Type
(q-value 0.90), and Annual Precipitation ∩ Slope (q-value 0.89).
In 2002, the most significant interactions were DEM ∩ Vegetation
(q-value 0.92), DEM ∩ Mean Annual Temperature (q-value 0.89),
and Slope ∩ Soil Type (q-value 0.89). In 2012, the most significant
interactions were Annual Precipitation ∩ Vegetation (q-value 0.88),
DEM ∩ Vegetation (q-value 0.87), DEM ∩ Slope (q-value 0.87), and
Mean Annual Temperature ∩ Soil Type (q-value 0.87). In 2022, the
most significant interactions were DEM ∩ Annual Precipitation
(q-value 0.89), Annual Precipitation ∩ Slope (q-value 0.88), and
Annual Precipitation ∩ Vegetation (q-value 0.87). The results
indicate that the interactions among DEM, vegetation, annual
precipitation, and slope are the most influential driving forces on
HQ. Combining the divergence factor detection, the study identifies
five key driving factors—DEM, mean annual temperature, annual
precipitation, slope, and vegetation—that have the most significant
cumulative impact on the HQ of the study area. This suggests that
the combined effect of multiple factors better explains the spatial
variation in HQ.

FIGURE 5
Spatial distribution map of habitat degradation index.
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FIGURE 6
Spatial visualization of natural driving factors.

FIGURE 7
Spatial visualization of socioeconomic driving factors.
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In summary, through the quantitative analysis of natural and
socio-economic factors, this study reveals their comprehensive
influence on HQ. The findings indicate that DEM, mean annual
temperature, annual precipitation, slope, and vegetation are the
primary driving factors, while the expansion of human activities
is gradually exerting a significant impact on ecosystems. Interaction
detection shows that the combined effects of multiple factors are
more effective in explaining the spatial variation of HQ than
individual factors. Therefore, future ecological protection policies
should prioritize these key driving factors and their interactions to
ensure the sustainability and effective conservation of ecosystems.

3.3 Spatial autocorrelation analysis (SAA)

This study utilizes the GMI, LMI, and Getis-Ord Gi* to analyze
the spatial distribution characteristics of HQ in the study area from
1992 to 2022, in order to quantify its spatial aggregation and
dispersion characteristics. The analysis shows significant spatial
positive correlation in HQ, and the changes in hotspot and
coldspot areas provide a scientific basis for further optimizing
ecological protection strategies.

3.3.1 Global SAA
The GMI analysis indicates that the spatial distribution of HQ in

the study area has a significant positive correlation. The Moran’s I
values for 1992, 2002, 2012, and 2022 were 0.699, 0.679, 0.725, and
0.726, respectively. The corresponding z-values were all higher than
the critical value, and the p-values were less than 0.05, indicating
that the results are statistically significant. This suggests that the
spatial distribution of HQ exhibits strong spatial aggregation, rather
than random distribution. The scatter plot in Figure 9 shows that
most data points are concentrated in the first and third quadrants,
indicating that high-quality habitat areas are surrounded by other

high-quality areas, and low-quality areas are surrounded by other
low-quality areas, presenting a strong positive correlation. The
Moran’s I values gradually approach 1, indicating that the spatial
aggregation effect of HQ is enhanced. This stable spatial positive
correlation reflects the separation trend between high and low HQ
areas, providing an important basis for ecological restoration and
management.

3.3.2 Local SAA
The LMI (Figure 10) clearly delineates high HQ hotspots (red,

high-high clustering), low HQ coldspot areas (blue, low-low
clustering), and spatial outlier regions that significantly differ
from their surroundings (light yellow and light green,
representing high-low and low-high clustering, respectively). The
hotspot areas are concentrated in the central and southern parts of
the basin, indicating that these regions have superior HQ, good
ecological environments, and rich biodiversity, and should be
continuously protected. In contrast, the coldspot areas in the
northern and southeastern parts reflect HQ degradation, likely
associated with unreasonable development and pollution during
urbanization, and urgently require ecological restoration.
Furthermore, although spatial outlier regions occupy a smaller
proportion, their uniqueness suggests that local ecological
anomalies, such as heavily polluting industries or densely
developed areas, should be specifically monitored to prevent
further deterioration of HQ.

The Getis-Ord Gi* analysis further validates the spatial
distribution characteristics of significant HQ hotspots (red) and
coldspot areas (blue) (Figure 11). Hotspot areas represent regions of
high HQ concentration, with strong ecosystem service functions and
rich biodiversity, and should be prioritized for protection.
Conversely, coldspot areas show lower HQ, with impaired
ecosystem functions, requiring urgent restoration. The analysis
results show that the hotspot areas are highly consistent with the
high-high clustering areas in Figure 10, further confirming the
superiority of HQ in these areas and their long-term protection
value. Similarly, the coldspot areas align with the low-low clustering
areas in Figure 10, once again confirming the low state of HQ in
these regions, emphasizing the urgency of taking effective measures
to improve these areas.

The SAA shows that the spatial distribution of HQ in the study
area exhibits significant positive correlation, and the aggregation
effect has gradually strengthened over time. Both global and local
analyses reveal the spatial migration characteristics of high- and
low-quality ecological areas, particularly emphasizing the need for
attention to low-value aggregation in rapidly urbanizing areas.

4 Discussion

4.1 Analysis of the causes of HQ decline

The study reveals a continuous decline in the HQ Index of the
Qin-Mang River Basin, accompanied by increasing regional
disparities. The primary factors driving this trend are
urbanization and economic development, which have resulted in
the conversion of arable land and the reduction of natural habitats.
Additionally, environmental pollution and the overexploitation of

TABLE 4 Results of driving factor detection.

Driving factors q Statistics

1992 2002 2012 2022

DEM 0.83 0.81 0.80 0.85

Annual temperature 0.76 0.71 0.73 0.81

Annual precipitation 0.42 0.49 0.44 0.48

Slope 0.77 0.72 0.70 0.75

Slope direction 0.21 0.24 0.21 0.22

Vegetation 0.73 0.73 0.76 0.75

NDVI 0.21 0.19 0.21 0.21

Soil type 0.39 0.32 0.33 0.37

GDP 0.41 0.51 0.48 0.49

Permanent population 0.44 0.44 0.42 0.47

Nighttime lighting 0.30 0.38 0.33 0.34

Distance from railways 0.12 0.17 0.18 0.15

Distance from water system 0.28 0.32 0.26 0.30
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resources have exacerbated the deterioration of HQ. Specifically,
pollutant emissions, unsustainable water resource utilization, and
agricultural activities have significantly impacted wetlands and
forests, contributing to habitat degradation.

Using the InVEST model, the study assessed ecosystem service
functions to analyze the natural and anthropogenic drivers of HQ.
Results indicate that rising temperatures are a major driver of
wetland ecosystem degradation in the study area, particularly
affecting water retention capacity. Persistent temperature
increases have accelerated water evaporation, hindering the
growth of herbaceous marsh wetlands. Simultaneously,
urbanization-driven excessive water consumption, along with
industrial and agricultural expansion, has further degraded the
ecological functions of wetlands. From a natural and landscape
perspective, the ecological service benefits estimated by the InVEST
model primarily reflect the direct impacts of complex factors such as
LUCC and production interactions. Future research should delve
deeper into the interplay of these factors and their cumulative effects
on HQ, particularly the role of natural factors like soil carbon
storage, to enhance the evaluation framework. Changes in soil
carbon storage have a direct impact on HQ. The intensification
of urbanization and agricultural activities has led to a decline in soil

carbon storage, potentially accelerating ecological degradation and
further impairing HQ (Liu et al., 2024).

Empirical data indicate severe water quality issues in the Qin-
Mang River Basin. Among the monitored river sections, the water
quality in the Qin River’s Wulongkou and Mang River’s Quyang
Lake sections is classified as Grade II. The Qin River’s Wuzhi canal
head section is classified as Grade III, Ji River’s section as Grade IV,
and the Mang River’s Nanguanzhuang and Wenxian Sisuitan
sections are classified as inferior to Grade V. Only 57% of the
monitored sections meet the Grade III standard or above.
Furthermore, riverine wetlands and biodiversity have been
significantly affected. Nearly half of the 14 city-controlled rivers
in Jiaozuo City are classified as inferior to Grade V, failing to meet
provincial and municipal water quality standards. The primary
causes of these issues include overexploitation of water resources,
sewage discharge, waste accumulation, and insufficient
water volume.

The Qin-Mang River Basin, as a national grain production core
area, has achieved nearly full coverage of land consolidation and
high-standard farmland construction in its plains. The region’s
advanced economy, dense population, and numerous industrial
enterprises have resulted in severe environmental challenges.

FIGURE 8
Interaction detection of HQ driving factors.
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Excessive emissions of the “three wastes” (waste gas, wastewater, and
solid waste) and irrigation with untreated wastewater have led to
significant soil pollution. Furthermore, the overuse of chemical
fertilizers and pesticides, combined with continuous cropping,
has aggravated soil-borne diseases, reduced soil fertility, and
diminished microbial activity, gradually deteriorating the
ecological environment. In the coal mining area of Jiyuan City,
the polluted soil area is approximately 117.19 km2, with severe
cadmium (Cd) and arsenic (As) contamination. The pollution
severity decreases with increasing distance from coal gangue piles
and soil depth. Major contributing factors include industrial
activities, agricultural practices, lifestyle habits, and natural
environmental conditions.

4.2 Systematic analysis of the impact of land
use transformation on HQ

Land use transformation profoundly reflects the influence of
socio-economic development on land-use patterns, directly altering
the structure and function of natural ecosystems. This study

systematically analyzes the impact of land use transformation on
HQ from both natural ecological and socio-economic perspectives,
while exploring the underlying driving mechanisms (Tang et al.,
2023; Tang et al., 2021).

In natural ecosystems, ecological background factors are crucial
to HQ. Dense forests provide habitats for wildlife, while sufficient
precipitation and suitable temperatures supply essential food
resources (Bai et al., 2019). High altitudes and steep mountains,
due to limited human activity, serve as ideal habitats for flora and
fauna (Meyfroidt, 2013). Analysis using the GeoDetector model
reveals that LUT is the core factor influencing changes in HQ,
directly reflecting the impact of land use transformation.
Additionally, natural factors such as elevation, slope, and annual
mean temperature significantly affect HQ, showing spatial
variability. Vegetation types and annual precipitation play key
roles in the spatial differentiation of HQ, highlighting their
importance in habitat suitability (Zhang et al., 2022; Qin et al.,
2024). The role of soil carbon storage in HQ changes is also notable,
especially in wetland and forest ecosystems. Declines in soil carbon
storage can exacerbate habitat suitability deterioration, affecting the
stability of wildlife habitats. Soil carbon dynamics not only mirror

FIGURE 9
Scatter plot of HQ in the study area.
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land use transformation but also drive changes in HQ (Liang
et al., 2023).

From the socio-economic perspective, advancements in socio-
economic levels significantly alter LUTs, thereby influencing HQ.
The urbanization process accelerates the demand for construction
land, leading to the conversion of arable land and other less
suitable land types, further affecting HQ. Population growth
and the rising demand for agricultural products drive changes
in land use systems, accelerating shifts in land-use patterns (Fang
et al., 2022). Socio-economic activities influence natural
ecosystems by altering land-use structures and spatial
distributions, with these changes evolving over time. In areas
with rapid urbanization, the impact of LUCC on HQ is
particularly pronounced, especially at the urban fringes where
expansion is most rapid. Intensified urbanization and agricultural
activities reduce soil carbon storage, potentially exacerbating
ecological degradation. Low-suitability LUTs not only decrease
their own HQ but may also negatively affect adjacent areas. For
instance, forested areas neighboring construction land exhibit
significant differences in HQ compared to those neighboring
grasslands, even if their habitat suitability appears similar, due
to differing potential threats (Huang et al., 2020).

The study also reveals significant spatial heterogeneity in the
distribution of HQ and the Human Development Index. Regions
with high HQ are generally located in less-disturbed natural
environments, whereas highly urbanized areas exhibit lower HQ.
This indicates that the impact of natural environmental changes on
HQ intensifies during urbanization. To better understand these

spatial heterogeneity changes, future research should strengthen
spatial autocorrelation analyses to explore the interactions between
natural and socio-economic factors across different regions and
their effects on HQ.

Driving factor analysis indicates that natural factors such as
temperature, precipitation, and LUT significantly influence changes
in HQ, showing consistent trends across regions. The GeoDetector
model identified the roles of these factors in the Qin-Mang River
Basin’s HQ changes, with comparisons to existing studies. The
findings confirm that temperature, slope, and LUCC have similar
impacts onHQ as reported in previous research. However, this study
highlights the pronounced influence of LUCC driven by
urbanization, particularly in urban fringe areas where HQ decline
is strongly associated with urban expansion rates. Unlike studies in
certain other regions, this research underscores the profound impact
of urbanization on HQ, especially in areas undergoing rapid
urbanization. By comparing with existing literature, this study
further confirms the deep association between land use
transformation and HQ, providing scientific evidence for policy
development (Li et al., 2019; Qiao et al., 2023; Wu et al., 2018).

4.3 Recommendations for enhancing habitat
suitability in the study area

To address the decline in HQ and the growing regional
disparities, this study proposes the following recommendations
aimed at improving habitat suitability in the region:

FIGURE 10
LMI clustering map of HQ in the study area.
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4.3.1 Prioritize protection of hotspot areas and
strengthen management measures

Regions with significantly higher HQ (as indicated by the red
areas in Figures 10, 11) should be designated as priority ecological
conservation zones. Strict ecological redlines should be established
to restrict human activities, particularly to curb the unregulated
expansion of construction land. Scientific conservation plans should
be implemented to ensure the stability of ecosystems within
these regions.

4.3.2 Focus on restoring coldspot areas and
implement ecological restoration projects

Areas with low HQ (as indicated by the blue areas in Figures 10,
11) should be prioritized for ecological restoration. Restoration
measures include pollution control, wetland and vegetation
restoration, and the promotion of ecological agriculture.
Specifically, agricultural structures should be adjusted according
to natural factors such as slope to minimize ecological damage.

4.3.3 Address spatial outliers with differentiated
strategies

Spatial outlier areas require detailed investigations to analyze the
causes of anomalies in HQ. Targeted protection and restoration
measures should be developed, considering geological and climatic
factors, to ensure the scientific and effective implementation of these
strategies.

4.3.4 Strengthen scientific research and
technological support

Scientific research and technological advancements are crucial for
enhancing habitat suitability. A comprehensive ecological monitoring
network should be established to track changes in HQ in real time.
Additionally, advanced ecological protection technologies should be
employed to ensure effective and practical conservation efforts,
promoting the overall progress of ecological protection initiatives.

4.3.5 Improve policies, regulations, and public
engagement

Policies and regulations related to ecological conservation
should be formulated and refined to ensure effective
implementation and improvement of HQ. Public participation
should be encouraged to raise environmental awareness, advocate
for green lifestyles, and reduce negative impacts on the environment.

4.4 Economic theoretical significance,
research contributions, and future
directions

From the perspective of economics and sustainable development,
this study holds substantial theoretical and practical significance. It
demonstrates that the rational management of ecosystem services can
not only improve HQ but also promote sustainable regional economic

FIGURE 11
Hotspot and coldspot map of HQ in the study area.
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development. By establishing a scientific ecological management
framework, policymakers can achieve economic growth while
effectively protecting the environment. Striking a balance between
ecological resource utilization and conservation, particularly during
agricultural, urbanization, and industrialization processes, has become a
critical factor for sustainable regional development. This study provides
theoretical support for future ecological conservation policies and land
use planning, particularly in addressing ecological degradation and
achieving the dual goals of ecological and economic sustainability.

This study conducts an in-depth analysis of the impacts of
LUCC on HQ in the Qin-Mang River Basin, revealing the complex
interactions among urbanization, economic development, and
ecosystem services. Theoretically, this study makes several
significant contributions: firstly, it introduces a novel perspective
to understand the relationship between LUCC and ecosystem
services; secondly, by integrating natural ecological systems with
socio-economic systems, the study expands the theoretical
framework for evaluating HQ. This comprehensive analytical
approach not only deepens the understanding of HQ dynamics
but also provides a robust theoretical foundation for future research.

Future studies should further explore the interactions among
driving factors, particularly their temporal and spatial dynamics.
This will help reveal how various factors collectively influence HQ
and ecosystem service functions across different regions and
periods. Additionally, under the dual pressures of global land use
and climate change, future research should investigate the feedback
mechanisms between LUCC, climate change, and ecosystem
services. Enhancing ecosystem service assessment models to
accurately reflect the relationship between LUCC and ecological
functions will also be a key focus for future research.

5 Conclusion

This study systematically analyzes the impact of land use
transformation on HQ in the Qin-Mang River Basin using
various methods and models. The main conclusions are as follows:

(1) Against the backdrop of rapid urbanization and economic
development, the land use pattern in the study area has
undergone significant changes. From 1992 to 2002, 2002 to
2012, and 2012 to 2022, the total land transfer area was
207.35 km2, 211.32 km2, and 182.56 km2, respectively,
mainly characterized by the conversion of farmland and
some forest land to built-up areas. Farmland area has been
decreasing year by year, forest land has remained stable, and
water areas have shown little change, overall remaining stable.
The urbanization process has significantly intensified land use
transformation, particularly the expansion of built-up areas.

(2) The InVESTmodel evaluation results show that the HQ index
in the study area has declined year by year, from 0.3409 in
1992 to 0.2896 in 2022, with the habitat degradation index
showing a slow decline. LUCC, particularly the expansion of
built-up areas, are the main driving factors of HQ changes. As
urbanization progresses, spatial differences in HQ have
gradually increased, showing a more dispersed trend.

(3) The GeoDetector model reveals that five driving factors,
including DEM, vegetation, annual average temperature,

annual precipitation, and slope, significantly influence HQ
changes. Although natural factors remain the dominant
driving forces, as human activities intensify, the impact of
LUCC on HQ has gradually surpassed natural factors. The
reduction of forests and the expansion of built-up areas have
accelerated the degradation of HQ.

(4) SAA shows that HQ in the study area exhibits significant positive
spatial autocorrelation, indicating spatial clustering characteristics.
Hotspot and cold spot analysis further reveals the spatial clustering
patterns of high and low HQ areas, providing regional scientific
evidence for future ecological protection and restoration.

In conclusion, this study deeply explores the interaction between
LUCC and HQ, particularly under the dynamic changes of natural
environmental and human activity driving factors. The research not
only advances the development of ecological economics theory but
also provides data support for policy making, especially in balancing
economic development and ecological protection during
urbanization, contributing to the achievement of sustainable
regional ecosystem development goals.

6 Article types

This is an original research article, aiming to investigate the
changes in habitat quality and their driving factors through the
analysis of land use/land cover change data from 1992, 2002, 2012,
and 2022. This study employs methods such as land use transfer
matrix, the InVEST model, the GeoDetector model, and spatial
autocorrelation analysis to provide a comprehensive analysis of
habitat quality changes in the Qin-Mang River Basin.
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