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Introduction: As a major source of pollutant and CO2 emissions, the industrial
sector faces the dual challenge of pollution control and carbon reduction.
Accurately identifying the synergy between pollutant and carbon emissions in
different regions’ industrial sectors is crucial for developing regional policies for
coordinated pollution reduction and carbon abatement.

Methods: This study takes Guangzhou as a case study to quantitatively assess the
synergistic effect of NOx andCO2 emissions reduction in its industrial sector. First,
the LMDI decomposition method was applied to analyze the factors influencing
the change in NOx emissions in Guangzhou’s industrial sector. Next, the CFGLS
model was used to quantify the synergistic effect between NOx and CO2

emissions. Finally, a robustness check was conducted on the results.

Results and discussion: The findings indicate that the synergistic effect in carbon
reduction is themost significant driver of NOx reduction in Guangzhou’s industrial
sector, with a 10,000-ton reduction in CO2 emissions leading to a 0.4-ton
decrease in NOx emissions. The interaction effect analysis shows that
increasing the use of natural gas and reducing energy intensity do not amplify
this synergy. The results could provide valuable insights for coordinated pollution
reduction and carbon abatement policies designing in Guangzhou’s industrial
sector.
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1 Introduction

The control of pollutants has long been a focal point in environmental concerns.
Human energy activities have generated numerous pollutants such as SO2, NOx, PM2.5,
etc., causing significant damage to the ecological environment and posing risks to
human health (Burnett et al., 2018; Turner et al., 2016). Concurrently, the substantial
emission of greenhouse gases has led to global warming, with climate risks becoming
increasingly imminent. Thus, measures to control carbon emissions and gradually
achieve net-zero emissions are emerging as an international consensus. China is
confronted with the dual tasks of pollutant control and carbon reduction. In terms
of pollutant control, the State Council of China has issued the “New Action Plan for
Pollution Control,” outlining phased targets and implementation roadmaps. Regarding
carbon reduction, China made significant commitments during the 75th session of the
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United Nations General Assembly: China aims to peak its carbon
emissions by 2030 and strive for carbon neutrality by 2060.
Environmental protection policies and climate actions are
crucial topics for realizing China’s green development, with
the Chinese government actively seeking pathways to
synergistically advance both processes.

There is potential for synergistic emission reductions between
CO2 and pollutants, as highlighted in studies such as (He et al.,
2010), which quantified the synergistic effects of multiple pollutants.
Synergistic governance is considered the most cost-effective
approach to reduce both CO2 and pollutant emissions (Xue
et al., 2023). Effective synergistic governance requires policies
tailored to the specific characteristics of different regions and
industries. Previous research has mainly focused on regional or
urban levels (Chen et al., 2023; Jia et al., 2023; Shi et al., 2023), with
limited studies on specific industries, leading to a lack of localized
empirical research for industry-specific emission reduction policies.
The industrial sector, as a major source of both pollutants and CO2

emissions, plays a critical role in achieving carbon neutrality.
Therefore, quantifying and comprehensively analyzing the
synergy between CO2 and pollutant emissions in the industrial
sector is essential for formulating effective emission
reduction policies.

According to data from the Ministry of Ecology and
Environment of China, the NOx emissions from China’s
industrial sector in 2022 amounted to 3.333 million tons,
accounting for 32.7% of total industrial air pollutant emissions.
Research indicates that from 2013 to 2019, the concentrations of
PM2.5 and SO2 in 74 key Chinese cities decreased by 47% and 75%,
respectively, while NOx concentrations only declined by 23%,
indicating limited progress in NOx control (Chu et al., 2022).
CO2 and NOx reduction in the industrial sector are key to
achieving decarbonization and cleaner production. This paper
uses Guangzhou’s industrial sector as a case study,
decomposing the factors influencing NOx emissions with an
extended Kaya-LMDI model and quantifying the synergistic
effect of CO2 and NOx reductions using robust econometric
models. It also examines the factors affecting the synergy
through an interaction effect model, followed by a robustness
check of the results.

This study aims to answer the following questions: 1) What are
the factors influencing NOx emissions in Guangzhou’s industrial
sector? 2) How can the synergistic effect of CO2 and NOx emission
reductions in Guangzhou’s industrial sector be quantified? 3) How
do changes in energy structure and energy intensity impact the
synergy between CO2 and NOx reductions? The findings of this
study will provide localized empirical evidence for coordinated
emission reduction policies in Guangzhou’s industrial sector and
offer insights for broader policy development in other
industrial sectors.

The structure of this paper is outlined as follows: Section 2
reviews relevant studies; Section 3 introduces the research methods
and data sources used; Section 4 presents the decomposition
results of LMDI, followed by analysis and discussion of the
results; Sections 5, 6 discuss the estimation results of synergistic
effects and conduct robustness checks; finally, the last section
summarizes the research findings and presents corresponding
policy suggestions.

2 Literature review

The concept of carbon emission reduction synergistic effects was
first proposed by the IPCC in 2001. It refers to that GHG emission
reductions can simultaneously lead to other socio-economic
benefits, the most important part of which is to significantly
contribute to synergistic emission reductions of pollutants (Dong
et al., 2019). Research by Yi et al. (2023) supports the existence of
synergistic effects, as they found that over the past decade, China has
achieved the majority of pollutant reduction through coordinated
governance efforts. Jia et al. (2024) evaluated the synergistic effects
of PM2.5 and CO2 using a synergistic coordinate system and
emission reduction elasticity coefficients, finding that synergistic
effects exist across all major sectors. Jiao et al. (2020) analyzed the
synergistic benefits of CO2 and atmospheric pollutant reduction
measures in Guangzhou’s transportation sector using the LEAP
model, revealing that promoting the electrification of the
transportation sector can achieve the maximum synergistic
benefits. Yu et al. (2020) decomposed the factors influencing the
synergistic effects of CO2 and pollutant reduction in China’s power
sector, indicating that the key to achieving coordinated emission
reduction in the power industry lies in adjusting the energy structure
and upgrading technologies. Zeng and He (2023) quantified the
synergistic emission reduction effects of China’s transportation
sector, and based on provincial data, their research showed that
every 10,000 tons of CO2 emissions reduced in the transportation
sector could lead to a reduction of 11,950 tons of pollutants.

Research on NOx synergistic effects is relatively scarce. Existing
studies on NOx synergistic effects are mostly based on model
simulations and scenario analyses (Feng et al., 2018; Shi et al.,
2024; Yang et al., 2023). These models rely on a series of assumptions
and are difficult to comprehensively explain the real world, with
results serving only as trend references. Econometric methods and
the LMDI method are widely used in NOx emission studies. Wang
et al. (2019) used a geographically weighted regression model to
analyze the driving factors of NOx emissions from energy
consumption in 30 provinces of China, revealing significant
north-south differences influenced by economic development and
energy intensity. Ding et al. (2017) employed the LMDI method to
analyze the driving factors of NOx emissions in provinces of China
and regional challenges in emission reduction, finding that
improvements in energy efficiency and technological
advancements are the main drivers of emission reductions and
regional controls on NOx would be more effective. In addition to
national-level studies, some scholars have conducted in-depth
studies on NOx emissions in individual regions (Xu et al., 2020;
Zhang et al., 2015), while research on NOx emissions in more finely
segmented sectors and industries is relatively scarce.

Research also indicates that appropriate policies can enhance the
synergistic effect of CO2 and pollutant emission reductions. Bollen
et al. (2009) used the integrated assessment model MERGE to
simulate the synergistic effects of air pollutant and greenhouse
gas emissions reductions, finding that some long-term climate
change strategies simultaneously improve air quality in the short
term. Plachinski et al. (2014) found that low-carbon policies in the
U.S. power sector have synergistic effects in reducing
PM2.5 emissions. Also, similar results were obtained in studies
by Bollen and Brink (2014) and Alam et al. (2018), which used
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local data from the EU and Ireland, respectively. In terms of research
of China, Yang et al. (2017) pointed out that, under China’s carbon
peaking and carbon neutrality scenarios, pollutant emissions will be
significantly reduced. Yang et al. (2017), highlighted the significant
potential for CO2 and pollutant co-reduction in China’s industrial
sector based on large-scale industrial enterprise data. However, the
key to formulating appropriate synergistic emission reduction
policies for the industrial sector lies in the rigorous quantification
and empirical analysis of the synergistic effects. As specific targeted
research is still limited this paper aims to expand existing insights
in this area.

After summarizing existing literature, it is found that most
studies focus on the synergistic effects between PM2.5 and SO2,
few studies focus on the synergistic effects of NOx and CO2

reduction. Second, studies on synergistic effects are mainly
conducted at the provincial or national level, lacking research on
individual sectors. Third, research on synergistic effects of NOx and
CO2 reduction in the industrial sector is limited, while the industrial
sector serves as a major source of CO2 and NOx emissions. Fourth,
research methods for synergistic effects are mostly based on model
simulations and scenario analyses, while empirical and quantitative
analyses are scarce.

Apart from previous studies, the main contributions of this
paper are as follows: 1) Based on extended Kaya model and LMDI
method, this paper decomposes the influencing factors of NOx

emissions variation in the industrial sector of Guangzhou City
and identifies the presence of synergistic effects; 2) Employing
rigorous econometric models, this paper quantifies the synergistic
effects of carbon reduction and NOx, deriving empirically-based
conclusions and circumventing the drawbacks associated with
excessive assumption; 3) This paper identifies the interaction
between synergistic effects and factors such as energy structure
and energy intensity, which can offer policy insights for effectively
leveraging synergistic effects of carbon and NOx reduction.

3 Method and data

3.1 LMDI decomposition method

LMDI method is a technique used to decompose changes in
energy or carbon emissions (Ang, 2005). It decomposes overall
changes into contributions from individual factors based on the
logarithmic mean of the Divisia index. The advantage of this method

lies in its ability to handle zero values and absence of residuals.
Building upon the Kaya identity, we extend the relationship between
NOx emissions and CO2 emissions, energy structure, industrial
output, etc. In this expanded framework, the LMDI method can
be meaningfully applied to decompose NOx emission factors.

The NOx emissions from the industrial sector of Guangzhou
City can be decomposed into the following factors in Equation 1:

NOXMt � ∑
i

NOXMit � ∑
i

NOXMit

CMit
· CMit

Eit
· Eit

IVAit
· IVAit

(1)
Here, i represents the i-th industry in industrial sector, and t

represents the t-th year. NOXMt represents the total NOx

emissions from the industrial sector of Guangzhou City in year
t. CMit, Eit and IVAit represent the CO2 emissions, energy
consumption, and industrial value added of the i-th industry in
year t, respectively.

Let ΔNOXM represents the change in pollutant emissions from
the base year t0 to the target year t, then ΔNOXM can be expressed
as follows in Equation 2:

ΔNOXM �NOXMt −NOXMt0 � ∑
i

CSEit · ESit · EIit · IVAit

−∑
i

CSEit0 · ESit0 · EIit0 · IVAit0 � ΔNOXMCSE

+ ΔNOXMES + ΔNOXMEI + ΔNOXMIVA

(2)
Through further decomposition using the logarithmic index

method, we can obtain the following Equations 3–6.

ΔNOXMCSE � ∑
i

NOXMt
i −NOXMt0

i

lnNOXMt
i − lnNOXMt0

i

ln
CSEt

i

CSEt0
i

(3)

ΔNOXMES � ∑
i

NOXMt
i −NOXMt0

i

lnNOXMt
i − lnNOXMt0

i

ln
ESti
ESt0i

(4)

ΔNOXMEI � ∑
i

NOXMt
i −NOXMt0

i

lnNOXMt
i − lnNOXMt0

i

ln
EIti
EIt0i

(5)

ΔNOXMIVA � ∑
i

NOXMt
i −NOXMt0

i

lnNOXMt
i − lnNOXMt0

i

ln
IVAt

i

IVAt0
i

(6)

As derived above, the NOx emissions from the industrial sector
of Guangzhou City can be decomposed into four parts: ΔNOXMCSE

represents the synergistic effect of CO2 reduction on NOx reduction;
ΔNOXMES represents the energy structure effect, reflecting the
impact of changes in total energy carbon emission factors on NOx

emissions; ΔNOXMEI represents the energy intensity effect,
reflecting the impact of changes in energy intensity on NOx

emissions; ΔNOXMIVA represents the industrial output effect,
reflecting the impact of changes in industrial sector output on
NOx emissions.

3.2 Two-way fixed-effects model of
NOx reduction

To further quantify the synergistic effects between CO2 and
NOx, we established an econometric model for NOx reduction.
Building upon the decomposition results of the LMDI, this model

TABLE 1 CO2 emission factors for different energy consumption categories.

Energy consumption category Carbon emission factor

Anthracite 1.909

Fuel Oil 3.0472

Diesel Oil 3.1451

Liquefied Petroleum 2.9240

Natural Gas 21.650

Liquefied Natural gas 2.8639

Electricity 6.379
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takes the NOx reduction quantity as the dependent variable and the
CO2 reduction quantity as the core explanatory variable, with the
estimated coefficient β1 representing the amount of NOx reduction
per unit of CO2 reduction. To control other factors’ influences,
variables reflecting energy structure, energy intensity, and
industrial production scale were included in the model.
Moreover, considering the differences in industry structure,
energy preferences, and policy factors among various industrial
sectors, individual and time fixed effects were introduced to
account for common shocks. The two-way fixed-effects model
is formulated as follows in Equation 7:

NMRit � β0 + β1CMRit + β2ESit + β3EIit + β4IVAit + β5IVA2it

+ γt + δi + εit

(7)
where i represents the i-th industry and t represents the year.NMRit

represents NOx reduction and CMRit represents CO2 reduction;
ESit denotes the energy structure, given that the carbon emission
factor of natural gas is relatively low, the energy structure is
represented by the proportion of natural gas in the industry’s
energy consumption; EIit stands for energy intensity; IVAit

indicates industrial value added; IVA2it represents the quadratic
term of industrial value added. The introduction of this term aims to
observe whether there exists an inverted U-shaped curve
relationship between industrial value added and NOx reduction,
which assists the government in formulating corresponding
emission control strategies according to different stages of
industrial economic development. ϵit represents the unobserved
random error term. δi represents industry fixed effects,
representing the unobserved effects of each industry that do not
vary over time, such as differences in energy demand and industrial
production processes among industries. γt represents time fixed
effects. Considering that including time dummy variables might lead
to a loss of estimation parameters’ degrees of freedom and increase
variance, in order to save model parameters, a time trend term is
introduced into the model to control time effects, which include
various factors such as energy prices and environmental policies.

The fixed effects model employed in this study is based on the
following statistical assumptions regarding the properties of
the error term.

1) The error term has a zero mean and is uncorrelated with the
explanatory variables, individual fixed effects, and time fixed effects:
E(εit|xit, γt, δi) � 0 2) The error term is homoscedastic, with no
contemporaneous correlation across panels or serial correlation

within panels. 3) The relationship between the dependent
variable and explanatory variables is assumed to be linear,
consistent with the theoretical framework underpinning this
study. These assumptions will be validated and tested in Section
5 to determine the appropriate regression model.

3.3 Variable descriptions and data sources

The basic data used in this study primarily come from the
Guangzhou Statistical Yearbook from 2011 to 2022. Based on the
national economic industry classification of China, we subdivide
Guangzhou’s industrial sector into ten main industries: Power
(PWR), Petrochemicals (PET), Textiles (TEX), Paper and
Printing (P&P), Biopharmaceuticals (BioPhar), Iron, Equipment
Manufacturing (EM), Information Technology (IT), Building
Materials (BM), Other Industries. The CO2 emissions of each
industry were calculated according to the following Equation 8.

E � ∑Ai · μi (8)

where: E represents the total CO2 emissions of the industry, Ai

represents the consumption of the i-th type of fuel in the industry, μi
represents the carbon emission factor of the i-th type of fuel.

The fuel consumption data is sourced from the energy
consumption data provided in the Guangzhou Statistical
Yearbook, while the carbon emission factors are sourced from
the “Guidelines for Compilation of Greenhouse Gas Inventories
for Cities and Counties (Districts) in Guangdong Province (Trial),”
respectively.

The formula for calculating the dependent variable, NOx

reduction, in the econometric model is as follows in Equation 9.

NMRit � NOXMi.t−1 −NOXMi.t (9)
Here,NMRit represents the NOx reduction for the i-th industry

in year t.
The formula for the core explanatory variable, CO2 reduction, is

as follows in Equation 10:

CMRit � CMi.t−1 − CMi.t (10)
where CMRit represents the CO2 reduction for the i-th industry
in year t.

The summary of all variables is presented in Table 2. The
descriptive statistics of variables are presented in Table 3.

TABLE 2 Summary of variables.

Variable Definition Unit Source

NMR NOx reduction Thousand tons Calculated from survey data

CMR CO2 reduction Ten Thousand tons Calculated based on Table 1 and Statistical Yearbook data

ES Proportion of Natural Gas Consumption Percentage Calculated from Statistical Yearbook data

EI Energy Intensity Tons of Standard Coal per Ten Thousand Yuan Calculated from Statistical Yearbook data

IVA Industrial Value Added Hundred Million Yuan Statistical Yearbook

Note: All economic data are adjusted to 2011 comparable prices.
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4 LMDI decomposition results analysis

4.1 Overall decomposition results

Since the “12th Five-Year Plan” period, Guangzhou has actively
engaged in pollution reduction and carbon reduction efforts,
improving its energy structure and optimizing industrial layout
through measures such as technological improvement, energy
substitution, and eliminating outdated production capacity. By
2022, the energy intensity of Guangzhou’s industrial sector had
decreased by 55% compared to 2011, while the CO2 and NOx

emissions reductions reached 26.063 million tons and
63,949 tons, respectively, representing a decrease of 29.5% and
85.4% compared to 2011.

With LMDI method, we decomposed the annual changes in
NOx emissions in Guangzhou’s industrial sector from 2011 to
2022 into four influencing factors: CO2 synergistic reduction
effect (CSE), energy structure effect (ES), energy intensity effect
(EI), and industrial output effect (IVA), with “Total” representing
the total change in NOx emissions for that year. The specific
decomposition results are shown in Figure 1.

As shown in Figure 1, the NOx emissions from Guangzhou’s
industrial sector exhibits an overall downward trend from 2011 to
2019, with the most significant decrease in 2016. There is a slight
increase in 2021, followed by a continued decrease in 2022. As the

main factor contributing to the increase in NOx emission, the
industrial output effect has a consistent positive impact on NOx

emissions, indicating that the expansion of production scale leads to
a corresponding increase in emissions of pollutants such as NOx.

The main contribution to NOx reduction comes from the
synergistic effect of carbon reduction, with an average annual
carbon reduction synergy effect of 4,650 tons from 2011 to 2022,
indicating significant potential for NOx reduction through carbon
synergy. The energy intensity effect contributes an average of
3,025 tons per year to NOx reduction, second only to the carbon
reduction synergy effect. Years with negative energy intensity effects
are accompanied by a decrease in energy intensity, indicating that
improvements in energy efficiency could effectively reduce fossil fuel
consumption so that promote NOx reduction. Compared to other
effects, the energy structure effect is not significant, suggesting that
overall changes in energy carbon emission factors in Guangzhou’s
industrial sector are not pronounced, indicating significant potential
for the industrial sector’s energy clean-up.

In summary, the synergistic effect of carbon reduction, energy
intensity effect, and industrial output effect have a significant impact
on NOx reduction in Guangzhou’s industrial sector, while the energy
structure effect has a weaker influence. The industrial output effect
has a positive impact, leading to a noticeable increase in NOx

emissions with an increase in industrial output. The synergistic
effect of carbon reduction and the energy intensity effect contribute
mainly to negative effects. Among all influencing factors, the
contribution of the synergistic effect of carbon reduction to NOx

reduction is the largest, making it the most important pathway for
NOx reduction.

4.2 Decomposition results by industry

Figure 2 illustrates the decomposition results of NOx emission
changes in the 10 industry categories of Guangzhou’s industrial
sector. The total emission change is obtained by subtracting the NOx

emissions in 2022 from those in 2011 for each industry, representing
the total emission change from 2011 to 2022. Due to the significant
disparity in emission levels between the electricity industry and

TABLE 3 Descriptive statistics of variables.

Variable Observation Mean Std
Dev

Min Max

NMR 120 0.568 2.051 −1.301 15.447

CMR 120 17.971 144.102 −269.958 1146.876

ES 120 11.733 9.719 1.839 54.867

EI 120 0.785 0.752 0.125 4.365

IVA 120 559.947 608.378 30.117 3137.979

FIGURE 1
The decomposition result of NOx emission change in
Guangzhou Industrial sector.

FIGURE 2
Decomposition results of NOx emission changes by industry.
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other industries, the decomposition results are presented as the
contribution of each influencing factor to the absolute value of the
total effect. The specific calculation method is described in
Equation 11.

Contribution � Eeffecti
Total| | (11)

Consistent with the analysis in Section 4.1, we decomposed the
NOx emission changes in each industry into the sum of four
influencing factors. They are the CO2 synergistic emission
reduction effect (CSE), energy structure effect (ES), energy
intensity effect (EI), and industrial output effect (IVA).

From Figure 2, it is evident that the synergistic effect of carbon
emissions contributes the most to NOx reduction in each industry,
indicating that the synergistic effect of carbon reduction is an
important pathway for NOx reduction in the industrial sector.
Additionally, the contribution of the CO2 reduction synergistic
effect to NOx reduction varies significantly across different
industries. The power industry exhibits the highest one, with the
synergic effect accounting for a reduction of 41,111 tons of NO, and
followed by the building materials and petrochemical industries,
with contributions of 5,373.3 tons and 3,972.5 tons, respectively. The
contribution of energy intensity effect to NOx reduction is second
only to the synergistic effect of carbon reduction, and technological
progress and improved energy efficiency in each industry
significantly promote NOx reduction. The energy intensity effect
in the iron industry is positive, which is related to the increase in
energy intensity in the iron industry from 2011 to 2022. The iron
industry should actively conduct technological research and
development, optimize production processes, and reduce energy
intensity to improve economic benefits while reducing emissions of
pollutants such as NOx. The industrial output effect has a significant
positive impact on NOx emissions, indicating that the expansion of
production scale leads to a corresponding increase in emissions of
pollutants such as NOx. The industrial sector should further
transform its current production methods towards sustainable
production, introducing negative carbon technologies and
pollution control technologies to address environmental
externalities during the production process.

Compared to other effects, the energy structure effect is not
significant. Except for power and iron, the energy structure effect in
other industries is positive, indicating that these industries need to
quickly transition their energy structure to increase the proportion
of clean fuels, achieving the goal of synergistic carbon reduction and
pollution reduction.

In summary, carbon emission synergistic effect and energy
intensity effect serve as significant means and pathways for NOx

synergistic reduction in Guangzhou’s industrial sectors. All
industries should take proactive measures to reduce CO2

emissions while enhancing technological innovation to improve
energy efficiency, thereby effectively leveraging energy intensity
effects to facilitate the reduction of pollutants such as NOx.
There is ample room for optimizing the energy structure across
various industrial sectors in Guangzhou. Continuous efforts should
be made to increase the proportion of high-quality clean energy
usage and explore potential fuel substitutions to lower energy
emission intensity factors, transitioning towards a sustainable
energy structure.

5 Analysis and discussion of
econometric model results

The variables included in the econometric model (7) may be non-
stationary sequences, which can lead to “pseudo-regression.”
Therefore, before conducting regression analysis, we perform unit
root tests on the variables involved in the econometric model.
Considering the relatively small panel sample size, we employ the
IPS test. The results of the IPS test are presented in Table 4.

The results indicate that some variables are non-stationary at the
level, but the first-difference series of all variables reject the null
hypothesis of having a unit root at least at the 0.05 significance
level. Therefore, all variables are first-order integrated. To determine
the potential cointegration relationships, we conduct the Kao
cointegration test between the explanatory and dependent variables.
The results of the Kao cointegration test are presented in Table 5.

The results of the Kao cointegration test strongly reject the null
hypothesis that there is no cointegration relationship between the
dependent and explanatory variables. There exists a “long-term
equilibrium” relationship among the variables, allowing for
regression analysis using the original variable sequences.
Furthermore, to address the possibility of multicollinearity among
the variables, we computed the VIF statistic. The results in Table 6
show that all VIF, values are below 10, indicating thatmulticollinearity
is not a concern among the variables (Hair et al., 2009).

Moreover, to ensure the effectiveness of the fixed effects model
we employed, a Hausman test is conducted to select the appropriate

TABLE 4 IPS test result.

Variables IPS test unit root P-value

Levels NMR −2.8395 0.0023

CMR −1.0597 0.1446

ES 0.7143 0.7625

EI −3.4785 0.0003

IVA −2.2822 0.0112

First difference NMR −11.5221 0.0000

CMR −7.2065 0.0000

ES −1.8303 0.0336

EI −12.6974 0.0000

IVA −3.3077 0.0005

TABLE 5 Kao cointegration test result.

Statistic p-value

Modified Dickey-Fuller t −2.8764 0.0020

Dickey-Fuller t −8.1490 0.0000

Augmented Dickey-Fuller t −2.1177 0.0171

Unadjusted modified Dickey-Fuller t −7.7627 0.0000

Unadjusted modified Dickey-Fuller t −10.0633 0.0000
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estimation model. The results of the Hausman test are presented in
Table 7. The test results strongly reject the null hypothesis,
indicating that in this study, the fixed effects model is more
suitable than the random effects model.

To employ the most appropriate estimation methods, we
conduct tests for between-group heteroskedasticity, within-group
autocorrelation, and between-group contemporaneous correlation
on the panel data. The test results are presented in Table 8. The
Modified Wald test results strongly reject the null hypothesis of
“homoskedasticity,” indicating the presence of between-group
heteroskedasticity in the panel data.

We perform the Wooldridge test for within-group
autocorrelation, and the results indicate that the null hypothesis
of “no first-order within-group autocorrelation” cannot be rejected,
suggesting no issue of within-group autocorrelation in the panel
data. Additionally, we conduct Pesaran’s test and Friedman’s test for
between-group contemporaneous correlation, and both tests
strongly reject the null hypothesis of “no between-group
contemporaneous correlation,” indicating the need to consider
the issue of between-group contemporaneous correlation.

Table 8 results indicate that there is between-group
heteroskedasticity and between-group contemporaneous correlation
in the panel data of Guangzhou’s industrial sectors. Thus, appropriate
estimation methods are required to estimate the fixed-effects model.
In this case, the OLSmethod cannot provide consistent estimates, and
instead, the FGLS method is needed. Specifically, the FGLS can only
handle within-group autocorrelation, whereas the comprehensive
FGLS (CFGLS) estimation can simultaneously address issues of
between-group heteroskedasticity, within-group autocorrelation,

and between-group contemporaneous correlation. We employ the
CFGLS model to estimate the synergistic effects between CO2 and
NOx emission. Additionally, for comparison, we will report the results
of both FE, FGLS and CFGLS methods.

The estimation results of the CFGLS model, which effectively
addresses between-group heteroskedasticity and between-group
contemporaneous correlation, indicate significant synergistic effects
between CO2 and NOx emission reduction. As shown in Model (3)
of Table 9, the estimated coefficient of the core explanatory variable
CMR (CO2 emission reduction) on the dependent variable NMR is
0.0004, significant at the 0.001 level. It is noteworthy that the variables
used in the model are measured in CMR (in ten thousand tons) and
NMR (in thousand tons), implying that each ten thousand tons of CO2

reduction results in a 0.4-ton reduction in NOx emissions. The
coefficient of ES is significantly positive, which indicates that actively
improving the energy structure and increasing the proportion of natural
gas usage is one of the ways to reduce NOx emissions. Furthermore, the
estimated coefficient of the variable EI, representing energy intensity, is
significantly negative, indicating that a reduction in energy intensity
significantly promotes NOx reduction, consistent with the
decomposition results of LMDI. The improvement in energy
efficiency brought about by technological progress is an important
way to promote NOx reduction. The coefficient of the first-order term
of industrial value-added is significantly positive, while the coefficient of
the second-order term is significantly negative, indicating a reverse
U-shaped relationship between industrial value-added and NOx

reduction, with the potential for NOx reduction increasing first and
then decreasing with the development of industrial economy.

To explore the differences in synergistic effects among different
industries, we introduced interaction terms between industry
dummy variables and CMR, as shown in Model (4) of Table 9.
The interaction term between the dummy variable for the Power
industry and CMR is significantly negative, indicating that the
synergistic emission reduction potential of the Power industry is
significantly greater than that of other industries.

To further investigate the factors influencing the synergistic
effects of CO2 and NOx reduction, the interaction effects between
CMR and other variables are analyzed. In Model (5), the interaction
term between variable ES and CMR is added. It is found that the
coefficient of the interaction term is positive but close to zero. This
suggests that adjusting the energy structure to increase the
proportion of natural gas consumption does not significantly
promote synergistic effects.

In Model (6), the interaction term between variable EI and
CO2redu is added. The results show that the coefficient of the
interaction term is significantly positive, indicating that a decrease in
energy intensity does not promote synergistic effects; instead, it
weakens them. According to the energy rebound effect, a decrease in

TABLE 6 VIF test.

Variable VIF

IVA 7.990

IVA2 7.430

EI 1.190

ES 1.050

CMR 1.020

Mean value 3.730

TABLE 7 Result of Hausman test.

Statistic p-value

Hausman test 18.25 0.0011

TABLE 8 Results of the tests.

Between-group heteroscedasticity test Within-group autocorrelation tests Intergroup simultaneous correlation
tests

Statistics P-value Statistics P-value Statistics P-value

Modified wald’s test 17927.25 0.0000 Wooldridge’s test 0.084 0.7790 Pesaran’s test 9.513 0.0000

Friedman’s test 49.031 0.0000
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energy intensity improves energy efficiency, leading to a decrease in
the effective price of energy services. The lower price stimulates
more energy demand, which may result in increased energy
consumption and emissions of pollutants such as NOx.

6 Robustness tests

6.1 Lagging the core explanatory variables by
one period

The core explanatory variable CMR may suffer from endogeneity
issues. To address potential endogeneity concerns, we lagged the core
explanatory variable by one period and conduct the regression again.
The lagged variable LCMR represents the CO2 emission reduction
from the previous period, which cannot affect the current period’s
NOx emission reduction and is uncorrelated with the disturbances of
the current period. The regression results, as shown in Model (1) of

Table 10, still exhibit significantly positive coefficient estimates for the
core explanatory variable, indicating a significant synergistic effect
between CO2 and NOx reduction. The regression results for other
variables are also similar to the baseline results, which confirm the
robustness of the baseline results.

6.2 Excluding exceptional years

Due to the impact of COVID-19, the Chinese government
implemented strict measures to restrict outdoor activities and
industrial production in 2020, leading to a sharp decrease in CO2

emissions (Liang et al., 2023). Research from Nanchang, China, also
indicates that compared to the same period in 2019, the pandemic in
2020 resulted in a 2% reduction in CO2 emissions, with reductions of
54.5% and 18.9% in the power and manufacturing industries,
respectively. Furthermore, CO2 emissions in 2021 increased by
14.3%–14.9% compared to 2019, indicating a rapid recovery of

TABLE 9 Estimated results of different methods.

(1) (2) (3) (4) (5) (6)

FE FGLS CFGLS CFGLS CFGLS CFGLS

CMR 0.0007 0.0010 0.0004*** 0.0000 −0.0001 −0.0007***

(0.0008) (0.0013) (0.0001) (0.0000) (0.0001) (0.0002)

ES −0.0218 0.0341 −0.0102*** −0.0069*** −0.0057* −0.0030

(0.0384) (0.0341) (0.0018) (0.0021) (0.0023) (0.0033)

EI −0.3791 −0.2242 −0.1983*** −0.0915*** −0.1248*** 0.0519*

(0.3696) (0.8491) (0.0282) (0.0181) (0.0358) (0.0226)

IVA 0.0013 0.0019 0.0006*** 0.0005*** 0.0004** 0.0004**

(0.0007) (0.0017) (0.0001) (0.0001) (0.0001) (0.0001)

IVA2 −0.0000 −0.0000 −0.0000*** −0.0000*** −0.0000** −0.0000

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Dianli*CMR 0.0032***

(0.0005)

ES*CMR 0.0000***

(0.0000)

EI*CMR 0.0020***

(0.0005)

T −0.1237 −0.1267 −0.0550*** −0.0485*** −0.0355** −0.0373*

(0.0896) (0.1004) (0.0118) (0.0108) (0.0132) (0.0151)

Constant 249.8655 255.2836 115.3093*** 101.9122*** 76.0550** 79.2100**

(180.7593) (202.6658) (23.8682) (21.7573) (26.7385) (30.4212)

Observation 120 120 120 120 120 120

Sector fixed effect Yes Yes Yes Yes Yes Yes

Time fixed effect Yes Yes Yes Yes Yes Yes

Standard errors in parentheses.

* p < 0.05, ** p < 0.01, *** p < 0.001.
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economic activities to pre-pandemic levels (Hu et al., 2022). The
“unexpected” decline in emissions from industrial activities in
2020 due to the pandemic may interfere with the research results.
To address this, we exclude the data from 2020 and conduct the
regression again to verify the robustness of the results. Since industrial
activities and emission levels in 2021 have essentially returned to pre-
pandemic levels, data from that year are not excluded. The regression
results, as shown in Model (2) of Table 10, indicate that the estimated
coefficient for the core explanatory variable CMR remains significantly
positive, and other coefficients are similar to the baseline regression
results, demonstrating the robustness of our baseline regression results.

7 Conclusion

Pollutant emissions and carbon emissions share the same origin,
promoting synergies in reducing pollution and carbon emission has
become an inevitable choice to facilitate the comprehensive green
transformation of China’s economic and social development. This
paper, focusing on the industrial sector of Guangzhou City, employs
LMDI method to decompose the change in NOx emissions into the
effects of four influencing factors. Additionally, a two-way fixed
effects model is employed to quantify the synergistic reduction
effects between CO2 and NOx.

The LMDI decomposition results indicate the following: 1) The
largest driver of NOx reduction in Guangzhou’s industrial sector is
the synergistic reduction effect resulting from CO2 mitigation,
followed by the emission reduction effect due to decreased
energy intensity. 2) Economic growth in the industrial sector is
the primary driver of increased NOx emissions. 3) All industries
within the industrial sector exhibit significant synergistic reduction
effects between CO2 and NOx, with the power industry having the
highest synergistic reduction effect.

Based on the LMDI decomposition results, the CFGLS model was
used to quantify the synergistic reduction effects between CO2 and
NOx in Guangzhou’s industrial sector. The key conclusions are as
follows: 1) The synergistic reduction effect between CO2 and NOx is
significant at the 0.01 level, with a reduction of 10,000 tons of CO2

leading to a reduction of 0.4 tons of NOx. 2) Increasing the proportion
of natural gas usage can effectively promote NOx reduction. 3) There is
an inverted U-shaped curve between NOx reduction and industrial
added value, indicating that NOx reduction potential first increases and
then decreases with industrial economic development. 4) The study of
interaction effects shows that the synergistic carbon reduction effect in
the power industry is higher than in other industries, highlighting the
need to prioritize synergistic reduction in power industry.

This paper identifies the influencing factors of NOx emissions in
Guangzhou’s industrial sector and quantifies the synergistic
reduction effects between NOx and CO2. It can provide valuable
insights into achieving joint NOx and CO2 reductions through
synergistic effects in the industrial sector.

This study decomposes the factors influencing NOx emissions in
Guangzhou’s industrial sector, quantifies the synergistic emission
reduction effects between NOx and CO2, and analyzes the impact of
changes in energy intensity and energy structure on this synergy,
providing comprehensive and robust conclusions. However, several
limitations should be acknowledged. Due to data availability, the panel
data used in this study covers the period from 2011 to 2022. Future
research could expand the time span by incorporating additional data
sources, thereby providing results based on a larger sample. This study
focuses only on Guangzhou’s industrial sector, future research could
integrate data from multiple regions to provide more generalizable
empirical conclusions.While this study offers a thorough analysis of the
synergistic effects, it does not delve into specific synergistic emission
reductionmeasures, and future studies could explore this aspect further.
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