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Production-living-ecological function (PLEF) represent the core dimensions of
rural systems. However, systematic studies on PLEF in mountainous counties
along China’s southeastern coast remain insufficient. Additionally, the dominant
factors influencing rural functional evolution require deeper investigation, as
these insights are crucial for regional sustainable development. This study
focuses on mountainous rural areas in Zhejiang Province, a leading region in
China’s rural revitalization. A PLEF evaluation index systemwas established. Using
comprehensive evaluation methods, exploratory spatial data analysis (ESDA), and
geographical detector (GeoDetector) models, we measured the PLEF
development index of mountainous counties in Zhejiang Province from
2005 to 2020. Spatio-temporal evolution and spatial autocorrelation analyses
were conducted, followed by identification of influencing factors. The results
show that: (1) The average PLEF development index increased from 0.88 in
2005 to 1.56 in 2020, with growth contributions ranked as: living function (LF) >
ecological function (EF) > production function (PF); (2) The developmental stages
of PF, LF and EF transitioned from a “low-low-medium” pattern to a “medium-
medium-high” configuration; (3) PLEF exhibited spatial agglomeration
characteristics; however, the spatial agglomeration weakened and spatial
dependency decreased during the study period; (4) Dominant factors shifted
across subsystems: PF transitioned from agricultural production functions to
non-agricultural production functions; LF shifted from life support functions to
social welfare functions; EF remained primarily driven by ecological provisioning
functions. These findings offer theoretical foundations for coordinating rural PLEF
development and enhancing sustainability.
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1 Introduction

Achieving human development and wellbeing while preserving
ecological environments constitutes one of the most pressing global
challenges and represents a core objective of the United Nations
Sustainable Development Goals (SDGs) (Wood et al., 2018; Xu et al.,
2020). The spatial patterns of PLEF based on rural functions are
linked to 16 SDGs (Song et al., 2024), with SDG2 (Zero Hunger) and
SDG15 (Life on Land) directly addressing agricultural production
and ecological conservation. While improvements in global
agricultural productivity have advanced poverty alleviation,
malnutrition reduction, and human rights protection, they have
concurrently caused ecological degradation and uneven rural
development (Fanzo et al., 2021; Tudi et al., 2021). Rural areas
not only serve as hubs for agricultural production but also require
multifunctional roles encompassing economic, ecological, and
cultural dimensions (Holmes, 2006; Wilson, 2008). To enhance
rural economic resilience and ecological value, agricultural
objectives must integrate sustainability principles, emphasizing
coordinated functional development to address practical
challenges (Hunter et al., 2017).

China is undergoing a critical phase of urbanization. On one
hand, urban expansion has accelerated rural transformation and
restructuring, partially constraining production spaces, fragmenting
living spaces, and disrupting ecological balances (Cheng, 2021; Duan
et al., 2021). On the other hand, the influx of technological,
informational, and digital resources into rural areas has
intensified challenges in resource utilization and allocation (Ma,
2023). Against this backdrop, the coordination of PLEF has emerged
as a central priority for China’s ecological civilization and
sustainable development strategies (Yang et al., 2020). Since 2012,
China has advocated for “intensive and efficient production spaces,
livable and moderate living spaces, and pristine ecological spaces,”
marking a policy shift from production-centric approaches to PLEF
coordination (Zhu and Qin, 2012). This transition has spurred
extensive research on territorial spatial planning (Liao et al.,
2022; Tian et al., 2020). In rural development, initiatives such as
the New Rural Construction, New Urbanization, Beautiful
Countryside, and Rural Revitalization strategies aim to enhance
multifunctionality and drive rural transformation (Li et al., 2018;
Long et al., 2011; Long et al., 2019). Nevertheless, persistent
imbalances and inadequacies in rural PLEF development remain
critical challenges requiring urgent resolution (Tu and Long, 2017).
Consequently, understanding the evolutionary processes,
interactions, and driving factors of rural PLEF is essential for
evaluating the coordination and adaptability of China’s rural
development under rapid urbanization.

PF, LF, and EF are recognized as the core dimensions of rural
systems (Zhou et al., 2024). PLEF research primarily encompasses
functional evaluation, spatiotemporal evolution, and dynamic
mechanisms (Holmes, 2006; Long et al., 2019; Qu et al., 2017;
Liu et al., 2023; Zhao and Zhao, 2023; Zhou et al., 2024). The
evaluation of PLEF serves as the foundation for rural functional
studies, with existing methodologies predominantly relying on land
use classification and index system construction (Li H. et al., 2024;
Yu et al., 2024). While land use-based approaches enable fine-scale
PLEF identification, they often inadequately address functional
complexity and spatial heterogeneity (Ji et al., 2020; Wang

J. et al., 2023; Xia et al., 2023). Alternatively, index system
methods comprehensively assess PLEF across production, living,
and ecological dimensions, utilizing techniques such as entropy
weighting and coupling coordination models. Though these
methods demonstrate strong specificity and integration,
significant variability persists in indicator selection (Yang DR.
et al., 2024). Current evaluation frameworks predominantly
employ statistical indicators, with limited integration of spatial
data, land use data, and multi-source datasets.

Investigating spatio-temporal changes in regional PLEF
constitutes a fundamental research task. Established analytical
methods include gravity center models (Li XM. et al., 2024), land
use transition matrices (Huang JT. et al., 2024), spatial
autocorrelation analysis (Aruhan and Liu, 2024), kernel density
estimation (Wang X. et al., 2024), standard deviational ellipse (Ke
et al., 2025), landscape indices (Gong et al., 2024). While extensive
research has focused on urban and territorial spaces, recent studies
have expanded to rural and ecologically fragile areas (Ke et al., 2025;
Li et al., 2022). Findings reveal significant transformations in
China’s rural industrial structures, living services, and ecological
environments, accompanied by increasingly pronounced spatial
differentiation of PLEF (Liu et al., 2023; Wang J. et al., 2016;
Zhou et al., 2020). Temporally, studies predominantly analyze
PLEF characteristics during rapid rural transitions (2000–2010),
while spatially, investigations span global, national, regional, urban
agglomeration, watershed, municipal, and county scales (Li Y. et al.,
2024; Ren et al., 2024; Fu et al., 2023). Geographically, research has
addressed PLEF in plains, coastal zones, and arid northwestern
regions (Wubuli et al., 2024; Yang L. et al., 2024), yet mountainous
counties along China’s southeastern coast remain understudied.

The analysis of factors influencing PLEF spatial heterogeneity
contributes to functional optimization. Researchers have applied
correlation analysis, principal component analysis, grey relational
analysis, GeoDetector, and random forest methods to investigate the
impacts of natural environments, economic development, socio-
cultural factors, policy systems, and technological progress on PLEF
(Zhang et al., 2023; Zhang et al., 2022; Huang Y. et al., 2024).
Specifically, rural PF is primarily influenced by natural conditions,
agricultural productivity, and output value; LF by infrastructure,
public services, and income levels; and EF by land use structure,
global change, and pollution control (Zhou et al., 2024). However,
the interactions among these influencing factors remain
insufficiently explored.

Mountainous counties experience intensified PLEF conflicts due
to complex terrain and limited development space (Zhu et al., 2024),
rendering their PLEF coordination critical for regional sustainable
development. China’s Rural Revitalization Strategy has prioritized
mountainous areas, with Zhejiang Province implementing
progressive policies. In 2015, Zhejiang replaced GDP-based
evaluations for mountainous counties with ecological protection
and income growth metrics, initiating programs such as the
Mountain-Coastal Collaboration Project, the Poverty Alleviation
Campaign for Underdeveloped Townships, and the Special Support
Policy for Key Underdeveloped Counties. The province further
classifies mountainous counties into two categories: 15 designated
for leapfrog development and 11 for ecological conservation.
Nevertheless, systematic investigations into PLEF patterns and
mechanisms in Zhejiang’s mountainous counties remain lacking.
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In summary, current PLEF studies exhibit three limitations:
insufficient integration of multi-source data in evaluation systems,
inadequate mechanistic analysis of spatio-temporal heterogeneity in
southeastern coastal China, and limited exploration of factor
interactions. This study addresses these gaps by constructing a
county-level PLEF evaluation framework for Zhejiang’s
mountainous counties. Through spatial autocorrelation analysis
and driving factor identification, the findings provide theoretical
and empirical support for optimizing rural PLEF coordination and
promoting regional sustainable development.

2 Materials and methods

2.1 Overview of the study area

Zhejiang Province is located in the southern Yangtze River Delta
along China’s southeastern coast, spanning 27°02′N to 31°11′N
latitude and 118°01′E to 123°10′E longitude (Figure 1). Bordered
by the East China Sea to the east, it adjoins Shanghai and Jiangsu
Province to the north, Anhui and Jiangxi Provinces to the west, and
Fujian Province to the south, with a total area of 105,500 km2. As of
2024, the province governs 11 prefecture-level cities and 90 county-
level administrative units (including municipal districts and county-
level cities), achieving an urbanization rate of 75.5%.

Ranked fourth in China by GDP, Zhejiang represents a highly
developed provincial economy with robust county-level

development, hosting 17 counties listed among China’s Top
100 Counties. It maintains one of the nation’s lowest urban-rural
income disparities, recording a ratio of 1.83 in 2024. The province
encompasses 26 mountainous counties, including Chunan, Yongjia,
Pingyang, Cangnan, Wencheng, Taishun, Wuyi, Panan, Kecheng,
Qujiang, Changshan, Kaihua, Longyou, Jiangshan, Sanmen, Tiantai,
Xianju, Liandu, Qingtian, Jinyun, Suichang, Songyang, Yunhe,
Qingyuan, Jingning, and Longquan. Primarily situated in
southwestern Zhejiang’s hilly and mountainous terrain, these
counties exhibit comparatively lower socio-economic
development levels than non-mountainous regions, serving as
focal areas for Zhejiang’s high-quality development and the
construction of a common prosperity demonstration zone.
Mountainous counties occupy approximately 45% of the
province’s land area and account for nearly 24% of its population.

2.2 Data sources

Land use data for Zhejiang Province (2005, 2010, 2015, 2020)
with a spatial resolution of 30 m were obtained from the Institute of
Geographic Sciences and Natural Resources Research, Chinese
Academy of Sciences, demonstrating over 93% accuracy in
primary land use classification (Ning et al., 2018). Surface PM2.5

concentration data were sourced fromWashington University in St.
Louis, featuring a spatial resolution of 0.01° × 0.01 ° (Shen et al.,
2024). The NDVI dataset was acquired from the PKU GIMMS

FIGURE 1
Study area. (A) Location. (B) Elevation of mountainous counties. (C) Land use. Note: The map is based on the standard map of China No. GS (2019)
1822 downloaded from the standard map service website of the National Administration of Surveying, Mapping and Geographic Information of China.
The base map has not been modified.
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NDVI database (spatial resolution: 1/12° × 1/12°; temporal
resolution: biweekly; temporal coverage: 1982–2022) (Li et al.,
2023). County-level socioeconomic statistics were compiled from
provincial statistical yearbooks (Zhejiang Statistical Yearbook),
national statistical compilations (China Civil Affairs Statistical
Yearbook, China Statistical Yearbook for Regional Economy),
municipal yearbooks, and county-level statistical bulletins on
national economic and social development. Administrative
boundary data were provided by the National Geomatics Center
of China (Table 1).

2.3 Theoretical framework

Rural systems, as multidimensional complexes, can be
categorized into production, living, and ecological spaces,
forming the PLEF dominated by PF, LF, and EF (Lu et al., 2024).
PF serves as the foundation of rural PLEF. Its scope extends beyond
agricultural output to encompass diverse agricultural, industrial, and
service activities contributing to local economies and community
wellbeing (Achu et al., 2021), specifically comprising agricultural
production functions and non-agricultural production functions.
Agricultural production functions focus on agricultural product
supply capacity, including fundamental capacities like cropland
utilization and food security, as well as enhanced capacities
through technological advancements such as agricultural
efficiency improvements and mechanization. Non-agricultural

production functions reflect rural areas’ wealth-generation
capabilities beyond agriculture, primarily through supporting
service economies and secondary/tertiary industries like rural
tourism and handicrafts. LF quantifies rural residents’ living
standards through socio-cultural and economic dimensions. It
encompasses basic service provision, housing, and infrastructure
supporting daily life, along with social welfare systems and safety net
implementation (Qin et al., 2024). EF is crucial for maintaining
environmental security and sustaining human livelihoods. It
involves ecosystem service provision—clean water, air, soil, and
biodiversity conservation—enhancing rural climate change
resilience and disaster mitigation. Integrating ecological
considerations into agricultural practices facilitates production-
ecology balance.

PLEF components exhibit mutually reinforcing yet constraining
relationships through complex feedback loops. PF provides material
foundations for LF while generating ecological negative externalities.
LF influences agricultural production patterns and consumes
ecological resources. EF underpins agricultural sustainability and
community viability. Synergistically, coordinated PLEF
development enhances holistic rural sustainability and promotes
high-quality development. Thus, rural PLEF emphasizes
coordinated symbiosis among functional spaces, advocating
scientific development paradigms over environmentally
detrimental models. Its objectives include efficient resource
utilization, improved resident wellbeing, and ecological
conservation through functional harmonization (Figure 2).

FIGURE 2
The interaction of rural PLEF. A rural PLE space. (A) Rural production-living-ecological space. (B) Rural PLEF. (C) Rural PLEF subsystem.

TABLE 1 Data sources in this study.

Date aspect Data content Time Date source Data
declaration

Land use Cultivated land, forest land,
grasslandetc.

2005, 2010, 2015,
2020

https://www.resdc.cn/ Raster (30 × 30 m)

Terrain NASA DEM 2020 https://earthdata.nasa.gov/esds/competitive-programs/
measures/nasadem

Raster (30 × 30 m)

NDVI Global NDVI data in half-month 2005, 2010, 2015,
2020

https://zenodo.org/records/8253971 Raster (1/12° × 1/12°)

PM2.5 Satellite-derived PM2.5 2005, 2010, 2015,
2020

https://sites.wustl.edu/acag/datasets/ Raster (0.01° × 0.01 °)
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The conceptual framework of this study is illustrated in Figure 3.
First, the research area was delineated, and multi-source data were
collected and preprocessed. Subsequently, a rural PLEF evaluation

index system was constructed, with weights determined using a
comprehensive evaluation method. This was followed by an analysis
of spatial evolution characteristics and spatial autocorrelation

FIGURE 3
Framework of research concepts.

Frontiers in Environmental Science frontiersin.org05

Xu et al. 10.3389/fenvs.2025.1495778

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1495778


patterns of rural PLEF from 2005 to 2020. Finally, the influencing
factors of each functional dimension and their interactive effects
were systematically investigated.

2.4 Methods

2.4.1 Evaluation index system
Building upon the theoretical framework and referencing

established methodologies (Wang S. et al., 2023; Yang et al., 2020),
this study developed a county-level rural PLEF evaluation index system
through comprehensive consideration of indicator stability and
county-level data availability. After consulting nine domain experts
from the Institute of Geographic Sciences and Natural Resources
Research (Chinese Academy of Sciences), The Chinese University
of Hong Kong, Zhejiang University, Zhejiang University of Finance
and Economics, and Zhejiang Academy of Agricultural Sciences, the
final system comprised 17 indicators across three dimensions: PF, LF,
and EF (Table 2). For PF, agricultural production functions were
assessed through four indicators: rural per capita arable land area
(reflecting land resource endowment), rural per capita grain yield (food
security), agricultural labor productivity (production efficiency), and
agricultural mechanization level. Non-agricultural production
functions were evaluated using per capita output value of
agriculture-related services and the proportion of rural non-
agricultural employment. LF evaluation incorporated two sub-
dimensions: life support functions and social welfare functions. Life
support metrics included rural per capita housing area (housing
security), per capita disposable income of rural residents (income
security), per capita electricity consumption of rural residents (living

service provision), and the Engel coefficient (consumption structure).
Social welfare metrics featured the proportion of rural residents
receiving minimum living allowance and number of hospital beds
per 10,000 rural residents. EF assessment addressed ecological
provisioning and environmental conservation. Ecological
provisioning functions utilized forest coverage rate and mean
NDVI, while environmental conservation functions employed
fertilizer application intensity, pesticide application intensity, and
annual average PM2.5 concentration.

To ensure indicator comparability, panel data underwent
standardized processing. The min-max normalization method (Li
et al., 2012) was employed, with distinct formulas applied to positive
and negative indicators (Equation 1):

Yλij � xλij − xmin( )/ xmax − xmin( ), Positive indicators

Yλij � xmax − xλij( )/ xmax − xmin( ),Negative indicators (1)

Where xλij denotes the original value of the jth indicator for
county i in year λ, and Yλij represents the normalized value.

2.4.2 Indicator weights
Weight assignment methods are categorized into subjective and

objective approaches. Subjective methods, including Delphi,
Analytic Hierarchy Process (AHP), and Analytic Network
Process, rely on expert judgment. AHP, the most widely applied
technique, establishes hierarchical goal-criteria-subcriteria
structures to align weights with theoretical expectations, though
results remain expert-dependent (Watson and Hudson, 2015).
Objective methods such as factor analysis, principal component
analysis, and entropy weighting derive weights mathematically. The

TABLE 2 County-level rural PLEF development index evaluation system.

Functions Primary indicators Secondary indicators Direction

PF Agricultural production Rural per capita arable land area (C1) Positive

Rural per capita grain yield (C2) Positive

Agricultural labor productivity (C3) Positive

Agricultural mechanization level (C4) Positive

Non-agricultural production Per capita output value of agriculture-related services (C5) Positive

Proportion of rural non-agricultural employment (C6) Positive

LF Life support Per capita housing area of rural residents (C7) Positive

Per capita disposable income of rural residents (C8) Positive

Per capita electricity consumption of rural residents (C9) Positive

Engel coefficient of rural residents (C10) Negative

Social welfare Proportion of rural residents receiving minimum living allowance (C11) Negative

Number of hospital beds per 10,000 rural residents (C12) Positive

EF Ecological provisioning Forest coverage rate (C13) Positive

Mean NDVI (C14) Positive

Environmental conservation Fertilizer application intensity (C15) Negative

Pesticide application intensity (C16) Negative

Annual average PM2.5 concentration (C17) Negative
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entropy method, rooted in thermodynamic principles, eliminates
subjective bias but risks data-driven distortions (Hussain et al.,
2020). This study combines AHP and entropy weighting to
calculate composite weights for the county-level rural PLEF
development index, mitigating individual method limitations
(Zhou et al., 2024). The procedure involves:

Step 1: AHPmethod. First, relative importance scores were assigned
by nine experts to determine indicator priorities. Second,
judgment matrices were constructed to calculate
eigenvalues. Finally, consistency checks were performed to
validate and finalize factor weights (Suganthi, 2018).

Step 2: Entropy Method. First, normalized processing of
indicators was conducted (Equation 2). Second, the
information entropy of each indicator was computed
(Equation 3). Finally, indicator weights were
determined (Equations 4, 5).

Pλij � Yλij/∑
t

λ�1
∑
m

i�1
Yλij (2)

Ej � − 1
ln t × m( )∑

t

λ�1
∑
m

i�1
Pλij ln Pλij( ) (3)

Wj p,l,e( ) � 1 − Ej( )/∑
n

j�1
1 − Ej( ) (4)

Zλi p,l,e( ) � ∑
n

j�1
PλijWj (5)

Where Pλij represents the normalized value of the indicator, Ej
denotes information entropy,Wj is the weight of each indicator, and
Zλi(p,l,e) corresponds to the annual county-level evaluation scores for
rural PF, LF, EF. t denotes the number of time cross-sections
(4 years), n is the number of indicators, and m represents the
number of counties.

Step 3: Composite Weight. The final composite weights were
derived by averaging the weights obtained from AHP
and entropy methods. The development indices for
rural PF, LF, and EF were categorized into three tiers:
low level (0–0.3), medium level (0.3–0.6), and high level
(0.6–1) (Cheng et al., 2019).

2.4.3 ESDA
ESDA, a widely applied spatial econometric method, is primarily

employed to characterize spatial distribution patterns and structural
features of data while revealing spatial autocorrelation
characteristics (Ma and Pei, 2010). This study utilizes global and
local spatial autocorrelation analyses under the ESDA framework to
investigate the spatial interdependencies and associations of rural
PLEF development index. The formulas are as follows (Equation 6):

Ii � Xi − �X

∑n
i�1 Xi − �X( )2 ∑

n

j�1Wij Xj − �X( )

I � n∑n
i�1∑n

j�1Wij Xi − �X( ) Xj − �X( )
∑n

i�1 Xi − �X( )2∑n

i�1∑
n

j�1Wij

Wij � 1/dij
2

(6)

Where Ii represents the local spatial autocorrelation index, I
is the global spatial autocorrelation index, Xi and Xj are the spatial
sequences of counties i and j, Wij is the spatial weight matrix based
on geographic distance, dij is the Euclidean distance between the
geographic centroids of counties i and j, and n is the number of
county-level units. This study employed K-nearest neighbors
methodology to construct spatial weight matrices based on
Euclidean distance measurements between geographic centroids.

2.4.4 GeoDetector
GeoDetector is a spatial statistical method primarily employed

to identify spatial heterogeneity of variables and analyze
influencing factors and their interactions on geographic element
differentiation (Wang Y. et al., 2016). It comprises four sub-
detectors: factor detector, risk detector, interaction detector, and
ecological detector. This study applied factor detection to assess
the explanatory power of influencing factors on spatial
heterogeneity of rural PLEF development indices, while
interaction detection examined factor interdependencies (Hou
et al., 2022). The computational formula is expressed as
Equation 7:

q � 1 − 1
Nσ2

∑
n

i�1
Niσ i

2 (7)

where q quantifies the explanatory power of influencing factors on
rural PLEF development levels, with values ranging [0, 1]. Higher q
values indicate stronger explanatory capacity for spatial
heterogeneity of PLEF, and vice versa. The implementation
involved two phases:

Step1: Data discretization. Continuous independent variables
were discretized using the natural breaks method. A
file geodatabase was created in ArcGIS software,
followed by importing feature classes. Data
classification was performed through attribute-based
symbology representation before exporting
processed datasets.

Step2: Geographical detection. The GeoDetector software was
utilized to import discretized independent variables and
dependent variable data. Software execution generated
geographical detection results, including q statistics and
interaction matrices.

3 Results

3.1 Spatio-temporal evolution
characteristics of rural PLEF

Overall, the average rural PLEF development index of
mountainous counties in Zhejiang Province increased from
0.88 in 2005 to 1.56 in 2020, with a total growth of 0.67. The
contributions to this growth ranked as follows: LF (46.05%) >EF
(32.58%) > PF (21.36%). The average growth of PLEF development
index in ecological conservation counties (0.63) was significantly
smaller than that in leapfrog development counties (0.72). The
spatial distribution of rural PLEF development index evolved
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toward equilibrium. In 2005, high-value areas were concentrated in
five ecological conservation counties; by 2010, high-value zones
expanded significantly; in 2015, a “multi-core” spatial pattern
emerged; by 2020, the distribution became more balanced, with
16 counties exceeding a PLEF index of 1.5, including nine ecological
conservation counties (Figure 4).

The average PF development index increased from 0.19 in
2005 to 0.34 in 2020, transitioning from low to medium levels.
Structurally, the score ratio of agricultural production functions to
non-agricultural production functions shifted from 57.80:42.20 in
2005 to 48.95:51.05 in 2020, indicating a significant rise in non-
agricultural contributions. Spatially, all counties were at low PF
levels in 2005; by 2010, five counties reachedmedium levels; by 2020,
15 counties achieved medium or high PF levels (10 of which were
leapfrog development counties), though spatial imbalances
remained pronounced.

The average LF development index rose from 0.14 in 2005 to
0.46 in 2020, advancing from low to medium levels. Structurally, the
ratio of life support function to social welfare function shifted from
60.26:39.74 in 2005 to 75.14:24.86 in 2020, driven by sustained
growth in rural disposable income. Spatially, all counties remained
at low LF levels from 2005 to 2010; by 2015, 25 counties reached
medium levels; by 2020, two leapfrog development counties attained
high LF levels.

The average EF development index improved from 0.54 in
2005 to 0.77 in 2020, progressing from medium to high levels.
Structurally, the ratio of ecological provisioning function to
environmental conservation function shifted from 44.27:55.73 in
2005 to 37.23:62.77 in 2020, reflecting strengthened environmental
protection measures. Spatially, 12 counties had high EF levels in
2005, increasing to 22 counties by 2020, demonstrating continuous
ecological improvements (Figure 5).

FIGURE 4
Spatio-temporal evolution of rural PLEF development index in the study area (2005–2020). Note: CA: Chunan, YJ: Yongjia, PY: Pingyang, CN:
Cangnan, WC: Wencheng, TS: Taishun, WY: Wuyi, PA: Panan, KC: Kecheng, QJ: Qujiang, CS: Changshan, KH: Kaihua, LY: Longyou, JS: Jiangshan, SM:
Sanmen, TT: Tiantai, XJ: Xianju, LD: Liandu, QT: Qingtian, JY: Jinyun, SC: Suichang, SY: Songyang, YH: Yunhe, QY: Qingyuan, JN: Jingning, LQ: Longquan.
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3.2 Spatial autocorrelation analysis of
rural PLEF

Based on the rural PLEF development index scores in 2005,
2010, 2015, and 2020, the global Moran’s I values were calculated
using the spatial autocorrelation analysis tool in GeoDa software,
with results shown in Table 3. All global Moran’s I values were
positive, with Z-scores significantly exceeding the upper limit of
the uniform distribution interval and P-values below 0.05, passing
the 5% significance test. These findings indicate significant
positive spatial correlation in the rural PLEF development
index of Zhejiang’s mountainous counties, demonstrating
spatial clustering. The global Moran’s I values declined and
stabilized over time, suggesting reduced spatial dependency
among mountainous counties and an emerging spatial
distribution pattern characterized by “small clusters with broad
dispersion”.

The local spatial autocorrelation analysis was conducted by
plotting the rural PLEF development index scores on the
horizontal axis against spatial lag values on the vertical axis,
generating a scatter plot (Figure 6). Statistically significant
points were categorized into four cluster types (Table 4). High-
High (HH) clusters, located in the first quadrant, are characterized
by both focal and neighboring counties exhibiting high PLEF
development index, indicating localized positive spatial
correlation. From 2005 to 2020, the number of counties in HH

clusters within Zhejiang’s mountainous counties gradually
decreased, reflecting weakened spatial agglomeration. Low-High
(LH) clusters, situated in the second quadrant, feature focal
counties with low PLEF indices surrounded by neighboring
counties with high indices, demonstrating spatial negative
correlation and functioning as “depression zones” adjacent to
high-value areas. SY county consistently remained an LH
cluster throughout the study period. Low-Low (LL) clusters,
occupying the third quadrant, exhibit low PLEF index in both
focal and neighboring counties, representing localized spatial
autocorrelation. Between 2005 and 2020, the spatial distribution
of LL clusters shifted from western to southeastern regions. High-
Low (HL) clusters, located in the fourth quadrant, are defined by
focal counties with high PLEF indices adjacent to neighboring
counties with low indices, indicating spatial negative correlation.
The number of counties in HL clusters decreased over time,
reaching zero by 2020.

FIGURE 5
Spatio-temporal evolution of PF (A–D), LF (E–H) and EF (I–L) development index in the study area (2005–2020).

TABLE 3 Global spatial autocorrelation of rural PLEF development index
(2005–2020).

2005 2010 2015 2020

Moran’s I 0.293 0.271 0.155 0.191

Z-score 2.850 2.551 1.699 2.072

P-value 0.007 0.015 0.044 0.003
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3.3 Identification of influencing factors for
rural PLEF

Overall, agricultural labor productivity (C3) and agricultural
mechanization level (C4) were the dominant influencing factors for
PF, per capita electricity consumption of rural residents (C9) and per
capita disposable income of rural residents (C8) for LF, and forest
coverage rate (C13) and mean NDVI (C14) for EF. Temporal analysis
revealed shifts in dominant drivers across years. For PF in 2005, the
primary influencing factor was agricultural mechanization level

(C4), which shifted to per capita output value of agriculture-
related services (C5) by 2020, indicating a transition from
agricultural production focus to non-agricultural production
emphasis. For LF, the main factor evolved from per capita
electricity consumption of rural residents (C9) to proportion of
rural residents receiving minimum living allowance (C11), reflecting
a shift from basic life support to social welfare prioritization. For EF,
the dominant factor transitioned from forest coverage rate (C13) to
mean NDVI (C14), though ecological provisioning remained the
core functional driver (Figure 7).

FIGURE 6
Local Moran’s I scatter plot of Rural PLEF development index in the study area (2005–2020).
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The interaction detection results revealed nonlinear
enhancement and bifactor enhancement effects, indicating that
all interactive factors significantly amplified their explanatory
power on the spatial heterogeneity of rural PLEF compared to
individual factors (Figure 8). This demonstrates that the spatial
differentiation of PLEF arises from the synergistic effects of multiple
factors. In 2005, interactions involving per capita disposable income
of rural residents (C8), forest coverage rate (C13), and mean NDVI
(C14) exhibited q-values exceeding 0.7, with the strongest interaction
observed between agricultural labor productivity (C2) and forest
coverage rate (C13) (q = 0.973). By 2010, interactions linked to forest
coverage rate (C13) and mean NDVI (C14) dominated (q > 0.7),

peaking in the interaction between forest coverage rate (C13) and
fertilizer application intensity (C15) (q = 0.979). In 2015, agricultural
labor productivity (C3) emerged as a key interactive factor (q > 0.7),
while the interaction between the Proportion of rural residents
receiving minimum living allowance (C11) and forest coverage
rate (C13) showed the highest explanatory power (q = 0.970). By
2020, the Proportion of rural residents receiving minimum living
allowance (C11) became the primary factor influencing spatial
heterogeneity, with the strongest interaction observed between
rural per capita arable land area (C1) and fertilizer application
intensity (C15) (q = 0.931).

4 Discussion

4.1 Discussion on the PLEF
evaluation system

This study developed a PLEF evaluation system using multi-
source data, establishing a research framework for measuring and
analyzing the evolutionary patterns of rural PLEF at the county level.
However, due to the inherent complexity of rural functions and
limitations in data availability at the county scale, the indicator

FIGURE 7
GeoDetector results of influencing factors for rural PLEF development index in the study area (2005–2020).

TABLE 4 Local spatial autocorrelation of rural PLEF development index
(2005–2020).

Cluster type 2005 2010 2015 2020

HH LQ, YH, QY, JN LQ, QY QY QY

LH SY SY SY, SM SY

LL KC, QJ KC, QJ CN TS, PY, CN

HL CA, KH CA, KH CA -
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design does not comprehensively cover all aspects of PLEF. While
spatial data such as land use, PM2.5 concentration, and NDVI were
incorporated, the majority of indicators remain statistics-based.
Although statistical reporting standards are consistent across
counties, absolute data accuracy cannot be fully guaranteed.
Future research should integrate expanded data sources,
including field surveys, POI data, and UAV monitoring, to
enhance the evaluation system’s precision and holistically capture
the functional evolution of mountainous PLEF.

4.2 Differential responses of PLEF evolution
in mountainous counties

Mountainous areas, covering over 60% of China’s land area,
represent a quintessential geographical feature. Existing studies
indicate an overall upward trend in PF and LF, while EF exhibit

significant variability, particularly fluctuating in industrialized
regions (Wang YF. et al., 2024). Economically developed coastal
areas generally demonstrate improvements in EF (Zhang HZ. et al.,
2024), aligning with the findings of this study conducted in the
southeastern coastal region of China.

Regarding the influence of topographic factors on
mountainous rural PLEF, prior research suggests that EF
dominate at high elevations, whereas PF and LF are more
prevalent in low-gradient areas (Zhang J. et al., 2024). Other
studies highlight the adverse effects of topographic complexity
on LF (Zhang W. et al., 2024). This study analyzed correlations
between topographic factors (elevation and slope) and PLEF
subsystem development levels in 2020, revealing no significant
correlation between PF and topography, a significant negative
correlation between mean elevation and LF, and significant
positive correlations between mean elevation/slope and
EF (Figure 9).

FIGURE 8
Interaction detection results of influencing factors for Rural PLEF in the study area (2005–2020). Note: “+” denotes nonlinear enhancement,
determined by the criterion q (X1∩X2)>q (X1)+q (X2); “*” indicates bifactor enhancement, defined by q (X1∩X2)>Max [q (X1),q (X2)](Wang and Xu, 2017).
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4.3 Driving mechanisms of rural PLEF

Regarding driving factors, all 17 factors exhibited either
nonlinear enhancement or bifactor enhancement effects on rural
PLEF, indicating mutually reinforcing interactions among factors.
The driving mechanisms of rural PLEF are illustrated in Figure 10.
During the 2005–2010 period, rural PLEF underwent infrastructure
development and initial integration. Centered on the “Thousand
Villages Demonstration, Ten Thousand Villages Renovation”
project (referred to as the “Ten-Thousand Villages Project”), this
phase prioritized rural infrastructure construction and
environmental remediation. PF was dominated by traditional
agriculture, with preliminary planning of grain production
functional zones laying the foundation for subsequent modern
agricultural development. LF focused on improving basic rural
residential conditions, including gradual upgrades to electricity
and water supply systems, while EF initially emphasized
increasing forest coverage. From 2010 to 2015, rural PLEF
transitioned toward ecological transformation and systemic
enhancement. Guided by the “Beautiful Countryside
Construction” initiative, this stage emphasized integrated
development of ecological habitats, economies, environments,
and cultures. PF shifted to modern agricultural parks,
significantly boosting agricultural labor productivity. LF
prioritized equal access to urban-rural public services, further
improving rural living conditions. EF strengthened systematic
governance and resource recycling, fostering green development
trends. The 2015–2020 period marked high-quality development
and multi-sectoral synergy. Driven by the Rural Revitalization
Strategy, this phase promoted coordinated development of rural
PLEF. Agricultural production advanced through digital
transformation, while secondary and tertiary industries
flourished. LF emphasized narrowing urban-rural disparities, with

increased focus on livelihood security for low-income rural
populations. EF prioritized holistic governance and resilience
enhancement through sustained ecological restoration efforts.

This study primarily investigated the evolution and influencing
factors of rural PLEF in mountainous counties but did not conduct
comparative analyses with non-mountainous counties, which could
further elucidate the distinctive characteristics of mountainous
PLEF. Future research should strengthen interregional
comparisons of PLEF and optimization strategies for rural PLEF.
Additionally, while this study focused on the explanatory power of
individual indicators within the evaluation system, it did not
quantify the contributory weights of factors or explore potential
driving effects from other variables. Future studies could
systematically investigate multidimensional drivers of rural PLEF
development and subsystem performance, including but not limited
to policy formulation, population migration, land-use changes,
economic development, and technological innovation.

4.4 Relationship between PLEF and
rural policy

Since 2003, Zhejiang Province has implemented the “Ten-
Thousand Villages Project” for over two decades, alongside a
series of policies targeting rural construction and urban-rural
integration in mountainous counties. These initiatives have
significantly improved rural ecological environments and
livability (Lin and Hou, 2023; Wang et al., 2019), effectively
narrowed regional disparities, and promoted the gradual
enhancement of rural PLEF development levels (Zhou et al.,
2017). In 2023, Zhejiang’s experience with the “Ten-Thousand
Villages Project” was nationally promoted. The 2024 Central No.
One Document of China emphasized “learning and applying the

FIGURE 9
Correlation analysis between terrain and PLEF in the study area.
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development philosophy, methodologies, and implementation
mechanisms embedded in the ‘Ten-Thousand Villages Project’.”
The evolution of rural PLEF in Zhejiang’s mountainous counties has
been synergistically driven by rural development policies, as follows:

First, the “Beautiful Countryside” and common prosperity
policies have enhanced rural LF. This study found that LF
contributed most significantly to PLEF improvement in Zhejiang,
attributable to the “Ten-Thousand Villages Project’s” continuous
upgrades to rural infrastructure and public services, alongside
common prosperity policies that expanded farmers’ income
channels and safeguarded basic welfare. Second, ecological
prioritization and green development policies have strengthened
rural EF. Guided by the “lucid waters and lush mountains are
invaluable assets” philosophy, Zhejiang has advanced ecological
restoration, pollution control, and resource recycling.
Mountainous counties have adopted the “Ecological County”
strategy to accelerate green agricultural development (Zhao et al.,
2019). Third, industrial cultivation and targeted assistance policies
have boosted PF. Focusing on whole-industry-chain development
and technological empowerment, mountainous counties have
upgraded PF toward high-value-added and specialized sectors. A
classified development strategy categorizes mountainous counties
into two types: leapfrog development counties focusing on eco-
industries and technological innovation, and ecological conservation
counties prioritizing distinctive advantageous industries. The “One
County, One Policy” framework promotes high-quality
development, while strategies like “Mountainous Zhejiang” and
“Mountain-Sea Collaboration” have spatially balanced PLEF
development across regions.

However, challenges remain in Zhejiang’s mountainous
PLEF development. First, PF require further enhancement. As
rural industrial revitalization is the cornerstone of rural
revitalization, this study identifies PF as the weakest link in
mountainous PLEF. Urgent measures—including technological
innovation, institutional reforms, and targeted assistance—are
needed to improve agricultural productivity and accelerate
modernization (Hu et al., 2023; Zhao and Li, 2022). Second,
ecological conservation counties lag behind leapfrog
development counties in PLEF performance. Prioritizing
the development of ecological conservation counties is critical
for Zhejiang’s goal of building a common prosperity
demonstration zone.

5 Conclusion

Based on the theoretical framework, this study constructed a
PLEF evaluation system comprising 17 indicators across three
dimensions. Taking Zhejiang’s mountainous counties as the study
area, the rural PLEF and subsystem development index were
calculated for 2005, 2010, 2015, and 2020. Through analyzing the
spatio-temporal evolution of PLEF, PF, LF, and EF, this study
clarified the spatial heterogeneity of rural PLEF and identified
key driving factors across different periods. The main
conclusions are as follows:

(1) From 2005 to 2020, the rural PLEF development index in
Zhejiang’s mountainous counties increased significantly, with

FIGURE 10
Driving mechanism of the rural PLEF.
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LF contributing the most to PLEF growth (46.05%), followed
by EF and PF. The growth rate of PLEF index in ecological
conservation counties was notably lower than that in leapfrog
development counties. The spatial evolution of rural PLEF
exhibited distinct heterogeneity, transitioning from a “single-
core” to a “multi-core” spatial pattern and ultimately
achieving balanced development.

(2) Disparities existed in the development levels of PLEF
subsystems. During the study period, the PF development
index transitioned from low-level to medium-level stages,
with the proportion of non-agricultural PF rising from
42.20% to 51.05%. The LF development index advanced
from low-level to medium-level stages, with a significant
overall leap occurring between 2010 and 2015. The EF
development index progressed from medium-level to high-
level stages.

(3) The rural PLEF development index exhibited positive
spatial correlation with clustering characteristics.
However, spatial dependency gradually weakened over
time, evolving into a “small clusters with broad
dispersion” distribution pattern.

(4) The primary influencing factors for rural PF were agricultural
labor productivity and agricultural mechanization levels,
with the dominant function shifting from agricultural
production to non-agricultural production during the
study period. For rural LF, the key factors were rural per
capita electricity consumption and disposable income, with
the dominant function transitioning from life support to
social welfare. For rural EF, forest coverage rate and NDVI
were the main drivers, with ecological provisioning
remaining the dominant function throughout the
study period.
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