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Water use efficiency (WUE), as an important parameter of ecosystem carbon-
water cycle, is an important index to assess vulnerability to extreme drought
events. However, little was known about the corresponding cumulative and
lagged responses of WUE to drought in the dry and hot valleys of Southwest
China. This region is covered by alpine-valley landscapes, fragmented
topographic features, Foehn Effect, where drought response mechanisms
are not yet fully understood. This study analyzed the spatial-temporal
variation of WUE from 2000 to 2020 in Binchuan (BC) and Yuanmou (YM)
regions and the time-lag and -accumulation effects of 12 monthly self-
calibrating Palmer Drought Index (scPDSI) on the WUE. Given the
variability of vegetation types, land use/cover change data was used to
investigate the variability of WUE between the two areas. Subsequently,
the Pearson Correlation coefficient (Pearson, R) analysis, considering the
influence of drought on time-lag and -accumulation effects, was used to
analyze the response mechanism of water use efficiency to scPDSI in BC and
YM comparatively. The results show that (1) From 2001 to 2020, BC’s average
annual WUE was 2.59 gC m−2 mm−1, and YM’s was 2.84 gC·m−2·mm−1, with
similar spatial distributions. (2) Over the past 2 decades, BC’s WUE increased
steadily at a rate of 0.012 gC m-2 mm−1 a−1, while Yuanmou’s WUE grew at
0.0082 gC m-2 mm−1 a−1. (3) The lag response of WUE to drought is minimal in
both regions, with BC’s cultivated land showing greater sensitivity to drought
than YM. (4) The cumulative effect of drought on WUE across different land
uses in both BC and YM is generally small, with the lowest sensitivity in forest
land to drought.
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1 Introduction

Drought, a complex and pervasive natural disaster (Ukkola et al.,
2020; Xu et al., 2024), profoundly impacts vegetation and
ecosystems, with severe events potentially altering niche
thresholds and carbon-water balances (Zhang et al., 2022; Lili
et al., 2023). It is defined as a condition of water scarcity where
demand exceeds supply (Bradford et al., 2020; Zhao et al., 2020; Jiao
et al., 2021). The scPDSI judged the water surplus and deficit by
comparing local water demand with actual precipitation, and
analyzing regional water supply variations (Zhao et al., 2023; Sun
et al., 2020). China is one of the countries most severely affected by
drought, with an average of 21.57 × 104 km2 affected between
1950 and 2008 (Hao et al., 2015; Wei et al., 2020). Southwest
China, influenced by South Asian monsoons and the Tibetan
Plateau climate, experiences frequent severe droughts (Dong
et al., 2014; Xu et al., 2024). Notable drought years include 2005,
2006, 2013, and 2023, along with prolonged spring droughts
observed in 2010 and 2023 (Jiang et al., 2022). Global warming is
expected to increase the frequency and intensity of droughts,
heightening ecosystem vulnerability (Wang et al., 2013).
Therefore, an in-depth understanding of the effects of drought
on the carbon and water budgets of terrestrial ecosystems in
southern China is essential for establishing a comprehensive
natural hazard and ecological risk monitoring system.

WUE is an essential indicator for revealing the spatial and
temporal variability of carbon and water cycles in terrestrial
ecosystems, which is defined as the ratio of carbon sequestration
to water consumption (Cristiano et al., 2020; Du et al., 2023; Guo
et al., 2023).

Climatic, physiological, and vegetation factors significantly
shape the water cycle and carbon assimilation, the spatial and
temporal patterns of WUE likely aligning with these influences
and climate responses (Jiang et al., 2022; Law et al., 2001; Yang
et al., 2019). Water, essential for ecosystem function, drives
plant growth and development, and its spatial variability
causing distinct patterns in vegetation distribution and
productivity (Li LL. et al., 2024). Global warming and drying,
alongside increased CO2 concentrations, affect temperature,
photosynthesis, and transpiration, impacting carbon and
water cycles and altering WUE (Anderegg et al., 2015; Wang
et al., 2023). Mild water stress enhances plant WUE by inducing
stomatal closure and lowering transpiration (Liu et al., 2017).
However, extreme droughts pose significant threats to
ecosystem health and stability, leading to a decrease in WUE
(Law et al., 2001; Reichstein et al., 2002). In dry and hot valleys,
evaporation rates are typically over three times that of
precipitation, as a result, vegetation faces drought and heat
stress even during the rainy season especially in southwest
China (Wang et al., 2022). The analysis of the carbon-water
coupling of the scPDSI and vegetation reveals plant adaptation
strategies to drought, guides sustainable water resource
management, and highlights the ecological impacts of
drought in these regions.

In the context of climate and vegetation-driven constraints,
time effects become an inescapable phenomenon, including time
lags and accumulation (Ma et al., 2022). Climate change can exceed
the adaptive capacity of vegetation, leading to delayed vegetation

responses to such variations. For instance, drought can have a
lingering effect on tree growth, reducing it and causing impacts
that can persist for 1–4 years post-drought (Anderegg et al., 2015;
Wen et al., 2018). Peng et al. (2019) identified strong cumulative
and delayed effects of drought in the Northern Hemisphere on
autumn leaf senescence, with more pronounced impacts observed
at higher drought intensities. Li et al. (2021) highlighted distinct
time-lag effects between NDVI and climate factors among plateau
land types, illustrating a complex relationship with environmental
conditions. Accurately assessing the consequence of climate
change on vegetation is vital for formulating effective,
sustainable restoration plans. Yet, the role of extreme climate
events, along with the important dynamics of time lags and
cumulative impacts on plant life, is often underestimated
(Müller and Bahn, 2022; Yuan et al., 2024). Such oversights
may skew our understanding of how climate change shapes
vegetation patterns (Li L. et al., 2024; Ji et al., 2023). To fully
understand how vegetation behaves and responds to climate, it is
essential to consider the temporal effects of drought, including
time lags and cumulative impacts ((Anderegg et al., 2015; Piao
et al., 2020; Li et al., 2021), particularly in the dry-hot valley region
of southwest China.

The dry-hot valleys along China’s Jinsha River in the southwest,
spanning over 2,000 km2, are significantly impacted by soil erosion
and environmental degradation, mainly in Yunnan, Sichuan, and
Guizhou provinces (Qiao et al., 2022; Huang et al., 2017). BC and
YM are located within the ecologically sensitive dry-hot valley of the
Jinsha River, where they are faced with analogous natural and
anthropogenic stressors.The water infrastructures of BC and YM
are markedly different, while BC completed the “Yin-Bin” irrigation
project in 1994, the system in YM remains under development
(Zhao et al., 2023). However, the complex mechanisms underlying
the carbon-water coupling dynamics of the valley’s vegetation under
different irrigation regimes and their responses to drought have not
been thoroughly investigated. This is especially significant due to the
theoretical insights for agricultural practices in the dry-hot valleys of
the southwestern region, where it is essential to understand how
vegetation reacts to drought as a result of climate change.

This study addresses this gap by utilizing MODIS products (at a
spatial resolution of 500m)and scPDSI (a spatial resolution of 0.5) to
analyze nearly 2 decades of springtime carbon-water coupling
fluctuations and their reactions to the spatiotemporal patterns of
drought in BC and YM, Yunnan Province. The research aimed to
investigate the following questions: (1) What are the temporal and
spatial variations in WUE between BC and YM in the Southwest
Dry-Hot Valley? (2) What is the lag effect of WUE on drought
sensitivity in BC and YM, as indicated by the standardized
precipitation index for the scPDSI? (3) How does the cumulative
effect of WUE on drought sensitivity vary across different land uses
in BC and YM? The results clarify how vegetation WUEreacts to
drought in the context of climate change and the water utilization
strategies employed in these dry-hot valleys. This study contributes
to a better understanding of vulnerability to extreme drought events
in the dry and hot valleys of southwest China and provides insights
into the differential response mechanisms of WUE to drought
between BC and YM, which are critical for global change biology
and the development of strategies to mitigate the effects of drought
on ecosystems in these regions.
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2 Materials and methods

2.1 Study area

The study area for this research includes Binchuan County and
Yuanmou County. Binchuan County is located in the Dali Bai
Autonomous Prefecture, Yunnan Province (100°16′~100°59′E,
25°23′~26°12′N), on the edge of the Yunling mountain range,
part of the southwestern Yunnan-Guizhou Plateau along the
southern bank of the Jinsha River. The highest altitude point is
at the summit of Mu Xiang Ping in the northwest (3,320 m), and the
lowest point is where the Yupao River meets the Jinsha River
(1,104 m). The mean annual temperature is 17.9°C, with an
annual precipitation of 559.4 mm and the annual sunshine
duration is 2,719.4 h.Yuanmou County is located in the northern
part of the Chuxiong Yi Autonomous Prefecture, Yunnan Province
(101°35′~102°06′E, 25°23’~26°06′N), in the northern part of the
central Yunnan Plateau. The highest altitude point is at the
mountain of Da Ying Pan in Jiangbian Township (2,835.9 m),
and the lowest point is in the northeast of Heize Village, Jiangyi
Township, where the Jinsha River exits (898 m) (Figure 1). The
mean annual temperature is 22.6°C, with an annual precipitation of
637.5 mm and the annual sunshine duration is 2,183.8 h. Both
regions share a valley terrain, characterized by low precipitation,
abundant solar radiation, and external airflows obstructed by

mountain ranges. Additionally, due to the relatively enclosed
nature of the valleys, heat at the bottom is not easily dissipated,
resulting in a “Foehn effect,” ultimately forming a dry and hot valley
climate (Yu et al., 2019). In recent years, thanks to the successful
completion of the Erhai-to-Binchuan water diversion project,
Binchuan County has seen significant improvements over
Yuanmou County in areas such as vegetation growth and water
quality deterioration.

2.2 Data acquisition and processing

2.2.1 Remote sensing data
The GPP and ET data utilized were procured from the MODIS

series (MOD17A2, MOD16A2) (https://www.earthdata.nasa.gov/),
products released by the (National Aeronautics and Space
Administration (NASA), with a spatial resolution of 500 m and a
temporal resolution of 8 days, spanning the period from 2001 to
2020.The GPP data were calculated based on the radiation use
efficiency algorithm, with the specific calculation details outlined by
Running et al. (2004). The ET data were calculated based on the
Penman-Monteith equation, which considers three processes
comprehensively: soil surface evaporation, evaporation of
intercepted precipitation by the canopy, and plant transpiration.
Further details may be found in (Mu et al. (2011). All of the

FIGURE 1
Elevation distribution of BC and YM.
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aforementioned products were processed using the MRT (Modis
Reprojection Tool) software for batch splicing, clipping, and
projection transformation of MODIS data. The reprojected data
were then synthesized every month basis and clipped to the
BC and YM. The MODIS GPP and ET product data have been
validated in multiple studies using flux tower site data from various
regions around the world, and their accuracy has been confirmed
(Zhao et al., 2005; Jia et al., 2012; Chen et al., 2017; Wang et al.,
2019).

2.2.2 scPDSI
The scPDSI is derived from the Global Gridded Drought

Index dataset, which is provided by the Climatic Research
Unit of the University of East Anglia in the Uited Kingdom
(https://crudata.uea.ac.uk/). The data has a spatial resolution of
0.5 ° × 0.5 ° and a temporal resolution of monthly, spanning the
years 2001–2020. For further details on the scPDSI algorithm
(Table 1), please refer to the paper by Liu et al. (2017). To ensure
consistency in spatial resolution, elevation information was
employed as a covariate, and a variable difference method was
used with the Aunsplin4.2 software to obtain monthly scPDSI
data for BC and YM that aligned with the pixel size and
projection of the MODIS data. It has been demonstrated in
previous studies that data interpolated by the Aunsplin
software is of high accuracy and reliability.

Aunsplin model algorithm (Formula 1): Aunsplin adopts the
local thin disk smooth spline method, and its theoretical statistical
model is expressed as follows (1): where zi is the dependent variable
located at point i in space; xi is the independent variable of
d-dimensional spline; f is the unknown smooth function to be
estimated about xi; yi is the independent covariate of

p-dimensional; b is the p-dimensional coefficient of yi; ei is the
independent random error with expectation 0 and variance wi; wi is
the known local relative variation coefficient as weight, is the error
covariance, and is constant at all data points.

zi � f xi( ) + bTyi + ei (1)

2.2.3 Vegetation type data
The vegetation types and the classification scheme were derived

from the 2020 Global 30 m Land Cover Product with Fine
Classification (CLCFCS30-2020) (Zhang et al., 2021). In ArcGIS,
the product was spatially resampled to a 1 km resolution equal
latitude-longitude projection data that matched the NDVI using the
nearest neighbor method, and adjacent vegetation types were
merged (Figure 2). Based on the vegetation classification scheme,
the l in the study areas are categorized into six types: forest, cropland,
grassland, water body, and artificial surface.

2.3 Calculation of WUE

WUE is assessed by calculating the ratio of GPP to ET within an
ecosystem (Hu et al., 2009). The calculation formula remains
unchanged as follows (Formula 2):

WUE � GPP

ET
(2)

where WUE is the WUE per unit time (g C m−2 mm−1); GPP is the
total primary productivity of vegetation ecosystem per unit time
(gC m−2); ET is the evapotranspiration of vegetation ecosystem per
unit time (mm).

FIGURE 2
The land use types in BC differ from those in YM. (A) The land use types in BC; (B) The land use types in YM.
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2.4 Methods

2.4.1 Trend analysis
In the entire study region, based on each pixel, used a univariate

linear regression analysis to simulate the WUE from 2001 to 2020,
obtaining the trend of change for the three, with the calculation
formula as follows (Formula 3) (Wang et al., 2023):

θslope �
n × ∑n

i�1
i × Ci( ) − ∑n

i�1
i( ) ∑n

i�1
Ci( )

n × ∑n
i�1
i2 − ∑n

i�1
i( )

2 (3)

where n represents the number of years in the time period (n = 20),
θslope is the slope of the trend, and Ci is the WUE for the i-th year.
The significance of the annual WUE change is determined by θslope.
A negative θslope indicates a decreasing trend in WUE, while a
positive θslope indicates an increasing trend.

2.4.2 Lag effect of scPDSI on WUE
The Pearson correlation was selected due to its simplicity and

effectiveness in measuring linear relationships, which is appropriate
for the research context where we expect linear relationships to exist.
The Pearson correlation coefficient (R) is employed to investigate
the lagged effects of drought on grassland GPP (Lu et al., 2023). The
coefficient ranges from -1-1, representing the transition from
negative to positive correlations. To ensure comparability, the
study utilizes monthly WUE and 1-month scPDSI data for BC
and YM from 2001 to 2020. MonthlyWUE is combined with scPDSI
data from up to 12 previous months (0 ≤ i ≤ 12) to create a series.
The R value is then calculated for each pixel at each lag, resulting in
12 correlation coefficients (Formula 4). For instance, a 3-month lag
involves correlating monthly WUE data from January to July
(2001–2020) with scPDSI data from April to October
(2001–2020), and this process is repeated for up to a 12-month lag.

Finally, the maximum correlation coefficient Rmax_lag is selected,
and the corresponding lagging month is regarded as the lagging
effect size and time scale of the pixel (Formula 5). When the Rmax_lag

lagging effect occurs between the monthly WUE and the 1-month
scPDSI in April, the WUE lagging response time scale to scPDSI is
recorded as 4 months, indicating that the drought conditions
4 months prior have a key impact on the changes in WUE.

Ri � corr WUE, scPDSI( ) 0≤ i≤ 12 (4)
Rmax lag � max Ri( )0≤ i≤ 12 (5)

where WUE represents the monthly time series from 2001 to
2020 with an i-month lag, scPDSI is the 1-month scPDSI time
series with an i-month lag, and R is the Pearson correlation
coefficient with an i-month lag.

2.4.3 Accumulation effect of scPDSI on WUE
To quantify the accumulation impact of early drying on

grassland WUE, the Pearson correlation coefficient between
monthly WUE and accumulation scPDSI was used to obtain the
scPDSI time scale corresponding to the maximum correlation (Lu
et al., 2023). Unlike the lag effect using only scPDSI, it takes
0–12 months of scPDSI to calculate the accumulation effect.

Therefore, the correlation was determined using the scPDSI
dataset and WUE pixel values from 1–12 months between
2001 and 2020.

Firstly, correlate the WUE time series with the m-month scale
scPDSI time series (0 ≤ m ≤ 12) and calculate R (Formula 6). Then,
the accumulation months of scPDSI with the highest correlation
with WUE, Rmax_comc, are considered as the time scale of
accumulation effects (Formula 7), and Rmax_comc is determined
as the accumulation effect quantity. For example, if the correlation
between monthlyWUE and 3-month scPDSI is the highest, then the
time scale of accumulation effects is recorded as 3 months,
indicating that the accumulated 3-month drought conditions
before the current month have the greatest impact on WUE.

Rm � corr WUE,mscPDSI( ) 0≤ i≤ 12 (6)
Rmax acc � max Ri( ) 0≤ i≤ 12 (7)

where m is the accumulation time scale of scPDSI, mscPDSI is the
scPDSI time series with m accumulation months, and Rm is the
Pearson correlation coefficient between WUE and mscPDSI.

3 Results

3.1 Temporal-spatial patterns of WUE

3.1.1 Spatial characteristics of WUE
The spatial distribution and trend of WUE in BC and YM

from 2001 to 2020 are shown in Figure 3.Revealed that the
average annual WUE values in BC ranged from 1.25 to
3.33 gC m−2 mm−1, while in YM, they ranged from 1.75 to
3.71 gC m−2 mm−1. The spatial distributions in both regions
were similar, with WUE exhibiting significant spatial
heterogeneity within each region. In BC, high WUE values
were predominantly found at altitudes above 2,000 m, where
WUE exceeded 2.5 gC m−2 mm−1, accounting for approximately
28.59% of the county’s total vegetated area. Because the
vegetation type in the high altitude area of BC is mainly forest
land, and the WUE of forest land is high, WUE in high altitude
areas is higher than that in low altitude areas (Wang et al., 2023).
In contrast, YM exhibited high WUE values primarily in areas
below 2,000 m, with WUE exceeding 2.25 gC m−2 mm−1 and
accounting for approximately 88.51% of the county’s total
vegetated area. This is due to the influence of human activities
on the high altitude area of YM (Di et al., 2006), which results in
lower WUE compared to flat terrain areas. From 2001 to 2020 the
WUE in BC and YM showed an increasing trend, the increasing
rate of WUE was 0.012 gC m−2 mm-1 a−1 and
0.008 gC m−2 mm−1 a−1, respectively. YM showed no
significant increase trend, accounting for 76.02% of the total
vegetation area in YM, but a large area increased significantly in
the southeast of YM.

Among the four land use types in BC and YM (Tables 2, 3), the
average WUE value of forestland in BC is the highest, which is
2.68 gC m−2 mm−1, and the average WUE value of grassland is the
lowest, which is 2.57 gC m−2 mm−1; YM is different from BC, and the
average WUE value of cropland is the highest, which is
2.89 gC m−2 mm−1, and the average WUE value of shrubland is the
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lowest, which is 2.75 gC m−2 mm−1. In different land use types, the
change rate of vegetationWUE in the two areas has obvious differences,
but all show an increasing trend. As shown in Table 3, the highest
averageWUE growth rate in BC is grassland (0.0148 gCm−2 mm−1 a−1),
followed by shrubland (0.0144−gC m-2 mm−1 a−1), and cropland
(0.0116 gC m−2 mm−1 a−1), the lowest growth rate of WUE was
forestland, the average growth rate was 0.0099 gC m−2·mm−1 a−1. In
YM, the land use type with the highest WUE average growth rate was
forestland (0.0087−gC m-2 mm−1 a−1), followed by grassland
(0.0081 gC m−2 mm−1 a−1), shrubland (0.0070−gC m−2 mm−1 a−1),
and cropland (0.0060−ggC m-2 mm−1 a−1). Generally speaking, the
growth rate of different land use types in BC is higher than
that in YM.

3.1.2 Temporal variation characteristics of WUE
During 2001–2020, the interannual variation of WUE in BC and

YM fluctuates obviously, but the overall trend is downward
(Figure 4). The annual average WUE value of BC and YM is the
largest in 2012, 2.81 gC m−2 mm−1 and 3.08 gC m−2 mm−1

respectively; the annual average WUE value of BC and YM is the

smallest in 2016, 2.32 gC m−2 mm−1 and 2.58 gC·m−2 mm−1

respectively; The average WUE values of YM and BC during the
past 20 years were 2.84 gC m−2 mm−1 and 2.59 gC m−2 mm−1,
respectively. This indicated that the two regions at the same latitude
lost 1 mm of water through evapotranspiration at the same time, and
the amount of CO2 fixed by vegetation in YM was 0.25 g more than
that in BC. In BC, the water stress of vegetation decreased at a rate of
0.012 gC m−2 mm−1, and YM also decreased at a rate of
0.008 gC m−2 mm−1, which was slightly lower than that of BC.
This indicated that the water stress of vegetation in BC was
obviously improved due to the existence of “introducing
Erhu into BC,” which changed the water use strategy of
vegetation in BC.

The WUE of the two places fluctuates and decreases in general
within a year, with the averageWUE of YM being 2.83 gCm−2 mm−1

and BC being 2.58 gC m−2 mm−1 (Figure 5); during 2001–2020, the
WUE of the two places increases from August to April of the next
year, and the WUE values of the two places are generally higher due
to the influence of water stress from January to April, among which
the WUE of BC reaches the annual peak value of 3.15 gC·m−2 mm−1

in April; From August to December, affected by the decrease of
precipitation, the vegetation water use strategy changed, among
which WUE in YM reached the annual peak value of
4.02 gC m−2 mm−1 in October; From May to July, the
precipitation in YM decreased, and July was the peak of
precipitation in both places. Under the condition of sufficient
water, vegetation growth was no longer restricted by soil water
content, and soil ineffective evapotranspiration increased.
Therefore, WUE in July was the lowest value of the whole year,
among which, YM was 2.23 gC m−2 mm−1, BC was
2.08 gC m−2 mm−1. From the overall mean value of the two
places, WUE in YM was generally higher than that in BC.

FIGURE 3
Mean WUE in BC and YM in the past 20 years. (A) Mean WUE in BC; (B) Mean WUE in YM.

TABLE 1 scPDSI Drought severity.

Drought severity scPDSI

No drought −0.99∽0.99

Slight drought −1.99∽-1.00

Medium drough −2.99∽-2.00

Serious drought −3.99∽-3.00

Extreme drought ≤ −4.00
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3.2 Lag effects of scPDSI on WUE

In BC and YM, the lag effect of scPDSI on WUE accounts
for 13.41% and 13.29% of the positive correlation area,
respectively, while the negative correlation area accounts for
86.59% and 86.71% respectively (Figure 6). The lag effect of
scPDSI on WUE in BC is negative correlation, but there is a large
positive correlation area in the northeast; YM is similar to BC,
and also negative correlation, but there is a large positive

correlation area in the south of Yangjie Town. By comparing
the spatial distribution characteristics of the month with
the maximum lag effect in the two regions (Figure 7), it
can be found that about 81.58% of the vegetation in BC
responds to drought with a time lag of 0–2 months, while
about 64.74% of the vegetation in YM shows a time lag
response in the same period. These results indicate
that vegetation in BC is more sensitive to drought than
that in YM.

Further analysis of the vegetation area showing lag effects in the
two regions shows that there are significant differences in the lag
time scale and lag effect intensity of different vegetation types on
drought (Table 4). In BC, the main lag time of WUE affected by
drought was 0 months, but in YM, the lag time of WUE affected by
drought was 2–4 months. For forestland, the main lag time in BC is
0–2 months, while in YM it is 0 months, but there are also lag times
of 6–7months and 11–12months. The lag effect intensity of drought
on the four land use types in the two regions was mainly negative,
but in the forestland of BC and YM, there was a large area of
positive effect, of which the positive effect area accounted for
28.59% in BC and 24.09% in YM. Because both areas belong to
dry-hot valley climates, vegetation is subjected to long-term
water stress and has a strong memory effect on drought, so
short-term drought has relatively little effect on vegetation WUE
(Keersmaecker et al., 2015).

FIGURE 4
Interannual variations in WUE from 2001 to 2020 in BC and YM.

FIGURE 5
Intra-annual variations in WUE from 2001 to 2020 in BC and YM.

TABLE 2 WUE of different land use types in BC and YM in the past 20 years.

Region Cropland Forestland Grassland Shrubland

BC Annual WUE/(gCm−2mm−1) 2.47 2.68 2.57 2.59

YM 2.89 2.87 2.78 2.75

TABLE 3 Annual WUE growth rate of different land use types in Binchuan County and Yuanmou County in recent 20 years.

Region Cropland Forestland Grassland Shrubland

BC Annual WUE/(gCm−2mm−1a−1) 0.0116 0.0099 0.0148 0.0144

YM 0.0060 0.0087 0.0081 0.0070
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FIGURE 6
Maximum correlation coefficient of hysteresis effect between BC and YM. (A) Maximum correlation coefficient of hysteresis effect in BC; (B)
Maximum correlation coefficient of hysteresis effect in YM.

FIGURE 7
The maximum correlation coefficient of the lag effect in BC and YM corresponds to the number of lag months. (A) The maximum correlation
coefficient of the lag effect in BC corresponds to the number of lag months; (B) Themaximum correlation coefficient of the lag effect in YM corresponds
to the number of lag months.

Frontiers in Environmental Science frontiersin.org08

Wang et al. 10.3389/fenvs.2025.1493668

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1493668


FIGURE 8
Maximum correlation coefficient of accumulation effects between BC and YM. (A)Maximum correlation coefficient of accumulation effects in BC;
(B) Maximum correlation coefficient of accumulation effects in YM.

TABLE 4 Proportion of the area of lagging months for different land use types.

Region Type 0 1 2 3 4 5 6

YM Cropland 54.38% 1.74% 9.04% 9.39% 4.31% 1.18% 3.62%

Forestland 54.72% 2.74% 2.40% 5.20% 3.97% 1.62% 6.04%

Grassland 65.55% 0.50% 1.09% 4.03% 4.29% 1.30% 4.62%

Shrubland 83.13% 0.00% 1.20% 1.20% 3.61% — 1.20%

7 8 9 10 11 12

Cropland 2.09% 0.49% 1.60% 3.69% 3.41% 5.08%

Forestland 4.64% 1.84% 3.07% 2.74% 4.02% 6.99%

Grassland 1.13% 0.84% 1.01% 2.35% 3.49% 9.79%

Shrubland 0.00% — 1.20% 4.82% 0.00% 3.61%

0 1 2 3 4 5 6

BC Cropland 91.39% 0.40% 0.89% 0.56% 0.40% 0.68% 2.66%

Forestland 52.39% 4.75% 8.78% 3.55% 3.87% 4.81% 2.79%

Grassland 88.82% 0.41% 1.23% 0.92% 1.13% 0.51% 2.26%

Shrubland 87.37% 0.64% 2.14% 1.07% 0.64% 0.43% 1.93%

7 8 9 10 11 12

Cropland 0.68% 0.12% 0.48% 0.24% 0.48% 1.01%

Forestland 3.52% 1.79% 2.52% 2.20% 3.49% 5.52%

Grassland 0.31% 0.51% 0.21% 0.21% 0.82% 2.67%

Shrubland 1.07% 0.64% 0.21% 0.86% 0.64% 2.36%
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FIGURE 9
The maximum correlation coefficient of the accumulative effect between BC and YM corresponds to the number of lag months. (A) The maximum
correlation coefficient of the accumulative effect in BC corresponds to the number of lag months; (B) The maximum correlation coefficient of the
accumulative effect in YM corresponds to the number of lag months.

TABLE 5 The portion of the cumulative monthly area of different land use types.

Region Type 0 1 2 3 4 5 6

YM Cropland 73.16% 1.46% 1.18% 1.39% 2.16% 1.18% 1.04%

Forestland 71.21% 3.07% 1.62% 0.73% 1.23% 1.06% 1.40%

Grassland 83.28% 0.80% 0.50% 0.29% 0.92% 0.38% 0.55%

Shrubland 91.57% — 1.20% — — — —

7 8 9 10 11 12

Cropland 1.60% 1.81% 0.83% 4.38% 1.04% 8.76%

Forestland 1.96% 0.89% 1.51% 3.19% 1.96% 10.17%

Grassland 1.05% 0.46% 0.63% 3.15% 1.64% 6.34%

Shrubland — — — 2.41% — 4.82%

0 1 2 3 4 5 6

BC Cropland 96.66% 0.56% 0.40% 0.16% 0.28% 0.20% 0.24%

Forestland 60.99% 5.66% 6.08% 2.17% 2.79% 2.73% 1.56%

Grassland 94.15% 0.82% 0.41% 0.31% 0.62% 0.41% 0.21%

Shrubland 92.29% 0.43% 1.71% 1.07% 0.21% 0.00% 0.43%

7 8 9 10 11 12

Cropland 0.24% 0.08% 0.16% 0.08% 0.04% 0.89%

Forestland 3.05% 1.67% 1.79% 1.56% 0.97% 8.98%

Grassland 0.72% 0.41% 0.21% 0.21% 0.10% 1.44%

Shrubland 0.00% 0.00% 0.43% 0.43% 0.21% 2.78%
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3.3 Accumulation effects of drought onWUE

In BC and YM, the accumulative effect of scPDSI on WUE
accounted for 12.38% and 8.03% of the positive correlation area,
respectively, while the negative correlation area accounted for
87.62% and 91.97% respectively. On the whole, the high-value
areas of Rmax_acc in the BC are mainly concentrated in the
northeast of the region, and the high-value areas of Rmax_acc in
YM are mainly concentrated in the southeast of the region; the areas
with negative correlation distribution are the same in both places,
and they are both concentrated in relatively gentle areas (Figure 8).
The accumulative effect of scPDSI on WUE was negatively
correlated in both regions because of the abundant water
resources and the relatively small impact of drought on
vegetation. Further analysis of the cumulative effect areas in the
two regions (Figure 9) shows that the cumulative effect of 0-month
scale is the most significant in both places, accounting for 81.93% in
BC and 77.75% in YM; meanwhile, the cumulative effect of
12 months scale in both places also accounts for a large
proportion. This indicates that vegetation in the two regions is
sensitive to short-term drought, but due to the existence of water
replenishment projects, the impact of drought on local vegetation
growth needs a long time to accumulate.

In BC and YM, there were significant similarities in cumulative
time scale and cumulative effect and lag effect of drought among
different land use types in the cumulative effect area. The land use
types of the two regions generally show cumulative effects of
0 months on different cumulative time scales, and among the
four land use types, the cumulative area proportion of 0 months
is generally slightly higher than the lag effect of 0 months (Table 5).
In BC, the main cumulative time scale of the other three land use
types was 0 months except for forestland, which was 0–2 months. In
YM, the main cumulative time scale of cropland is 0 months, but
there is also a certain distribution in 10–12 months; the main
cumulative time scale of forestland is also 0 months, but there is
a large area of cumulative effect in 12 months; the cumulative time
scale distribution of the remaining two land use types is similar to
cropland, mainly 0 months, and a small amount of distribution in
10–12 months. The cumulative effects of drought on the four land
use types in the two areas were negative on the whole. However,
there were large areas of positive effects in the forestland of BC and
YM, among which the positive effect area accounted for 29.12% in
BC and 20.57% in YM.

4 Discussion

4.1 Temporal-spatial characteristics of WUE
in BC and YM

BC and YM, located in the dry-hot valley zone of the Jinsha
River Basin, exhibit similarities in geomorphology, vegetation, and
climate. While WUE (WUE) is increasing in both BC and YM, the
rise is not significant. BC water projects have improved soil
moisture, increasing ET and reducing stomatal conductance,
along with warmer temperatures, which has enhanced
vegetation’s carbon sequestration and WUE (Li, 2018). In YM,
stable soil moisture from natural watersheds and positive

environmental feedback enhance vegetation WUE. Among the
four land use types in BC, the highest WUE value is in high-
altitude forests and the lowest WUE is in low-altitude grasslands.
Forests possess high canopies, low resistance, strong vapor
transport, and better interception than grasslands and farmlands
(Yu et al., 2024), resulting in higher ET and WUE due to their
complex structure, larger leaf area, and robust CO2 fixation. In the
YM region, cropland demonstrates the highest WUE, while
shrubland shows the lowest. The central area, characterized by
flat terrain and stable drainage basins, has good vegetation
coverage and ample water sources, predominantly consisting of
farmland and grassland. Human activities have expanded the
cultivated area in the river valleys, leading to a complex crop
structure and enhanced plant carbon fixation capacity. As a
result, WUE in this area is higher than in other regions (Yu
et al., 2019). The changes emphasize the importance of
evaluating the impact of different land use types on WUE during
drought mitigation and adaptive management. It is also crucial to
apply effective vegetation management and strategies for
distributing water resources.

Over the past 20 years,WUE of BC and YM have experienced a
general decline, which can be attributed to warming and drying
trends in the dry and hot valleys, coupled with inadequate water use
regulation by vegetation due to climatic factors. In 2012, with rising
temperatures and declining precipitation, WUE reached its
maximum levels in BC and YM. However, the feedback
mechanisms to drought differed. The “Yin-Bin” irrigation project
at BC has significantly improved the water resource conditions,
especially for agricultural irrigation, which plays a positive role in
regulating the local climate and water cycle. In BC, suitable
temperature promoted carbon fixation capacity, low precipitation
made vegetation stomata small, and vegetation transpiration
weakened, while water conservancy facilities reduced drought
impact on the ecological environment, so WUE was still
increasing and the value was the largest, including the period
after 2012 (Zhang and Shan, 2002). The implementation of the
irrigation project may have affected the transpiration and stomatal
conductance of vegetation by increasing soil moisture, thereby
affecting the WUE. In YM, drought stress aggravated vegetation
water stress, water use formed memory and adaptation to drought,
vegetation drought tolerance increased, resulting in increased CO2

content fixed by unit water, and WUE was the largest. After 2012,
under the combined effect of overall temperature decrease and
precipitation increase, drought stress weakened, but due to the
memory effect of vegetation on drought, WUE continued to
decrease, so the WUE of both regions showed the lowest
value in 2016.

The inter-annual variation of WUE highlights the adaptation of
vegetation water consumption and productivity to the natural
environment and human intervention process, while the pattern
of intra-annual variation can more intuitively reflect the adaptation
of different vegetation types to seasonal changes (Wang et al., 2023;
Li et al., 2003). Yunnan is located at the low latitude plateau, affected
by monsoon climate and topography, the unique characteristics of
dry valley climate, resulting in droughts high frequency and long
duration in BC and YM, mainly concentrated in winter and spring
(December to May of the next year). From November to April of the
following year, the low ET caused by low precipitation, and relatively
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stable temperatures in BC and YM led to stable GPP. From May to
July, influenced by the summer rainy season, precipitation increased
significantly, stomatal conductance increased and transpiration
enhanced, while the WUE decreased because of the weak carbon
fixation capacity of vegetation at the development stage. From
August to November, the influence of summer drought
diminished as the warm and humid southwest airflow brought
abundant moisture, alleviating drought conditions. Consequently,
vegetation WUE in both regions exhibited an increasing trend from
August through April of the following year.

4.2 Lagged effect of drought on WUE

After the drought event, the carbon-water coupling mechanism
of the ecosystem remains affected by drought, leading to a “memory
effect” in vegetation. The effect causes chaotic responses, resulting in
multiple response states over an extended period, including lagged
and cumulative effects on WUE that persist long after the drought.
This memory effect may cause vegetation to exhibit varying
adaptability and resilience to subsequent environmental changes,
influencing its long-term water-carbon cycle and productivity (Ma
et al., 2024; Sun et al., 2020). Pearson correlation analysis was
employed to examine the relationship between scPDSI and WUE
in BC and YM.

The lag effect of scPDSI onWUE in BC was 0 lag, and the largest
cropland (91.39%), which is caused by the single planting structure
of cash crops.The main cash crop in Binchuan is grapes, meaning
that even small changes in water availability can lead to significant
changes in productivity. This sensitivity is partly due to the fixed
water consumption patterns and the high water demand during
critical growth stages (Liu, et al., 2025). While, the longest lag
(12 months) was forestland (5.52%), based on the strong water
capacity, it is weaker to drought stress than cropland, grassland and
shrubland, and forestland (Müller and Bahn, 2022; Yu et al., 2019).

YM, the land type with 0 hysteresis between scPDSI and WUE,
wasmainly shrubland (83.13%). The vegetation structure in this area
is single, the vertical difference is significant, and the soil loss at high
altitudes is serious. Thus, shrublands’ WUE is highly sensitive to
drought feedback (Cristiano et al., 2020; Jiang et al., 2022). While,
longest lag (12 months) was (9.79%) farmland, which is due to the
complex agricultural structure of Yuanmou County, in the process
of environmental changes, the vegetation water utilization efficiency
is remain stable (Du et al., 2023).

4.3 Accumulation effect of drought on WUE

The response mechanism of WUE to drought was
significantly different among different land use types, and the
effects of water stress on vegetation growth were persistent and
cumulative. Cumulative effect can reflect the continuous
influence of drought on vegetation growth from beginning to
end, and comprehensively consider the interaction between
WUE and drought of different land use types (Liu et al., 2017;
Lu et al., 2023; Wen et al., 2019). In BC the most significant
cumulative effects of scPDSI on WUE was cropland with 0-
accumulation (91.39%),and the forestland with the longest

feedback time for cumulative effects is forestland, which is
consistent with the lag- effects of scPDSI and WUE in this
area (Müller and Bahn, 2022; Yuan et al., 2024). The weakest
accumulation effect of scPDSI on WUE in BC is in forest land
(5.52%), which was least affected by human activities, regulates
its own ecosystems, and is less sensitive to drought than other
land use types (Xu et al., 2019). The cumulative effect of scPDSI
on WUE in YM was 0 accumulation and the largest area is
shrubland (91.57%); the cumulative effect of scPDSI on WUE
with 12 accumulation was forestland (10.17%).The cumulative
effect of forestland on drought was weaker than that of cropland,
which indicated that the cumulative feedback mechanism of
cropland ecosystem to drought was less stable than that of
forestland ecosystem under the influence of long-term
drought. All the above shows that forestland shows low
cumulative effects under drought, while the construction of
artificial forests has a positive impact on improving soil water
conservation and soil erosion, thereby enhancing the WUE
stability and drought resistance of regional vegetation (Zhao
et al., 2023). These findings have important implications for
understanding and coping with drought effects in the biology
of global change (Yang, 2007).

5 Conclusion

In this study, the GPP and ET products were based on MODIS,
to estimate spatiotemporal variation of WUE in BC and YM from
2001 to 2020. Combined with scPDSI, the lag and accumulation
effects of WUE on drought in BC and YM were analyzed. The main
conclusions are as follows:

(1) From 2001 to 2020, the average WUE in BC was
2.59 gC m−2 mm−1, and the average WUE in YM was
2.84 gC m−2 mm−1. The spatial distribution of the two
regions is similar, and the WUE in the area shows
significant spatial heterogeneity.

(2) In the past 20 years, the trend ofWUE changes in BC and YM
has shown a slow increase, with a growth rate of
0.012 gC m−2 mm−1 a−1 in BC and 0.008 gC m−2 mm−1 a−1

in YM. However, the overall WUE in YM is higher than
that in BC.

(3) The lag effect of WUE on drought in different land use types
in BC and YM is mainly manifested as 0 lag. Due to the
influence of agricultural structure, the sensitivity of cropland
WUE to drought in BC is stronger than that in YM.

(4) The accumulation effect of WUE on drought in different land
use types in BC and YM is mainly manifested as zero
accumulation. The vegetation structure of forest land is
stable, and the sensitivity of forest land to drought in both
areas is the weakest.
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