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The prediction accuracy of atmospheric visibility significantly impacts daily life.
However, there is a relative scarcity of research on post-processing methods for
visibility obtained from the WRF-Chem atmospheric chemistry model results. In
order to explore a more accurate method for visibility calculation, we conducted
a study on the meteorological conditions in the East China region during a heavy
pollution period from October 1 to 23 in the year of 2022. The meteorological
data were processed using both the XGBoost (XGB) model and the IMPROVE to
calculate visibility. The results indicate that XGB outperforms the IMPROVE in
various aspects. The visibility improved from a correlation of 0.56–0.71 with the
use of XGB. And in comparison with the IMPROVE equation, XGB demonstrated a
statistically significant reduction in RMSE by 1.96 km. Even in regions where the
IMPROVE performs poorly, XGB demonstrates superior performance. In regions
where the correlation simulated by the IMPROVE equation is less than 0.2 (Anqing
and Nanyang), XGB still performswell, achieving correlations of 0.69 (Anqing) and
0.68 (Nanyang). Throughout the entire study period, the average visibility results
obtained by XGB deviate by only 0.07 km from the observed values. These
findings underscore the importance of incorporating the XGBoost model into
WRF-Chem visibility simulations, as it significantly improves the accuracy of
visibility predictions.
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1 Introduction

Visibility is a critical meteorological parameter with significant implications (Deng
et al., 2011) in various domains, including aviation and road transportation. Visibility is
essential for the safe operation of flights, in that reduced visibility can result in flight delays,
cancellations, and potentially hazardous situations (Shen et al., 2023). Therefore, accurate
visibility forecasting is of paramount importance to ensure the smooth functioning of flights
and the safety of both pilots and passengers. Currently, research in the field of visibility
focuses on predicting visibility, analyzing factors associated with it (Che et al., 2007; Gao
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et al., 2016), and understanding the underlying causes of reduced
visibility (Chmielecki and Raftery, 2011; Guo et al., 2017; Benjamin
et al., 2004; Gultepe and Milbrandt, 2010).

Currently, two primary methods are frequently used for
visibility prediction. One approach utilizes statistical methods,
where relevant meteorological variables are employed as
predictors to construct models for visibility prediction. Previous
research (Bari and Ouagabi, 2020) has shown that machine learning
techniques, which incorporate multiple relevant predictors,
significantly outperform models that rely solely on individual
meteorological variables with high correlations. Furthermore,
artificial neural networks (Colabone et al., 2015) have been
utilized to address complex nonlinear relationships between
variables. Various machine learning algorithms, including multi-
layer perceptrons (Riedmiller, 1994) and support vector regression
(Awad et al., 2015) have demonstrated commendable predictive
performance for runway visibility at airports such as Valladolid
(Cornejo-Bueno et al., 2017). Additionally, decision trees (Bari and
Ouagabi, 2020), k-nearest neighbors (KNN) (Peterson, 2009), and
neural networks (Liu et al., 2020) have been applied to predict
visibility in the Chengdu region, effectively enhancing the credibility
of visibility forecasts (Zhang et al., 2022). These studies underline the
potential of machine learning to improve the accuracy of
meteorological forecasting (Wen et al., 2023; Castillo-Botón et al.,
2022; Fang et al., 2023). Previous studies (Bari and Ouagabi, 2020;
Kim et al., 2022; Gao et al., 2024; Kumar et al., 2023; Xiong et al.,
2022) have shown that the XGB model has unique advantages when
dealing with the complex nonlinear relationship of meteorological
data, and can effectively avoid overfitting. On the other hand, the
XGB model is based on the gradient boosting framework, which
converges faster when iteratively optimizing the loss function, and
can efficiently train meteorological datasets to achieve a higher
prediction level.

The other method involves numerical weather predictions,
utilizing mathematical models and computer simulations based
on the principles of atmospheric science and physics to forecast
atmospheric and meteorological phenomena (Roman Cascon et al.,
2016; Steeneveld et al., 2015). Among these numerical models, the
WRF-Chem model is renowned for its exceptional performance in
meteorological research (Hu et al., 2021; Sati and Mohan, 2021),
primarily attributed to its consideration of aerosol-radiation
interactions and aerosol-cloud interactions (Che et al., 2019; Gao
et al., 2020). Researchers (Ding et al., 2016) have observed that the
bi-directionally coupled WRF-Chem atmospheric chemistry model
significantly enhances the simulation and prediction of air pollution
concentrations, particularly in highly polluted conditions, in
comparison to other numerical forecast models. Several studies
(Malm and Hand, 2007; Wang et al., 2015; Deng et al., 2016)
collectively validate the effectiveness of the IMPROVE empirical
formula in calculating atmospheric extinction coefficients and
deriving visibility information from WRF-Chem simulations.
However, it is crucial to note that under hazy conditions, the
IMPROVE formula may introduce biases, potentially leading to
overestimation of visibility (Tao et al., 2020). In addition, the
research (Peng et al., 2020) has also identified that, in high-
humidity environments, the application of the IMPROVE
formula leads to a significant overestimation of visibility values.
These research findings indicate that the IMPROVE empirical

formula falls slightly short in accounting for the light-scattering
properties of fog droplets, particularly under conditions of haze and
high humidity. These shortcomings significantly affect the
estimation of atmospheric extinction coefficients, subsequently
resulting in deviations in visibility. In conclusion, it is necessary
to explore a new approach for handling meteorological elements
output by theWRF-Chemmodel in order to enhance the accuracy of
visibility predictions. This will contribute to the research on how to
improve the accuracy of visibility forecasts.

The primary objective of this study is to enhance the visibility
calculation method based on the WRF-Chem model, combining the
flexibility of machine learning with the precision of atmospheric
physics and chemical reactions in numerical simulations. Under
complex conditions, this approach aims to simulate the relationships
more accurately among various meteorological elements, thereby
improving the accuracy of visibility predictions.

2 Model and methods

2.1 Configuration of the WRF-Chem model

The numerical simulation model employed in this study is the
WRF-Chem model, which possesses the capability to provide
comprehensive aerosol feedback, including aerosol-radiation
interactions and aerosol-cloud interactions. Additionally, it offers
a selection of various physical and chemical parameterization
schemes, facilitating the tight coupling of physical and chemical
processes. Thus, it is widely used in relevant research fields (Gao
et al., 2017; Chen et al., 2023). For this research, meteorological
initial and boundary conditions are provided by the National Center
for Atmospheric Research (NCAR, https://rda.ucar.edu/). FNL data
and default detailed topographic data (Download URL: https://
www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog.
html) are used as input sources in the meteorological data
preprocessing phase of the Weather Research and Forecasting
(WRF) model. These data are processed through the “ungrib”
and “geogrid” modules and then integrated into the WRF model
as initial fields and boundary conditions. The specific process of data
processing is shown in Figure 1.

The WRF-Chem model employed the following chemical and
physical modules in this study: The RRTMG (Rapid Radiative
Transfer Model for General Circulation Models) from a global
atmospheric circulation model was selected to simulate longwave
and shortwave radiation (Zhang et al., 2015). The cloud
microphysics utilized the Morrison double-parameter scheme,
and the cumulus convection parameterization employed the
Kain-Fritsch scheme (Kain, 2004). Furthermore, the Noah land
surface scheme (Jiménez and Dudhia, 2013) and the YSU
planetary boundary layer (PBL) scheme (Hong et al., 2006) were
chosen to specify the lower boundary conditions in the study. The
chemical scheme employed was the CBM-Z gas-phase chemistry
mechanism (Zaveri and Peters, 1999), along with theMOSAIC four-
modal aerosol simulation mechanism (Zaveri et al., 2008). The Fast-
J scheme was utilized for photochemistry (Wild et al., 2000).

The study region’s grid configuration was as follows: it
comprised 24 vertical layers and featured two nested horizontal
grids. The outer grid had a resolution of 36 km, while the inner grid
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had a resolution of 12 km. The second nested grid covered the entire
regions of five provinces: Shandong, Zhejiang, Jiangsu, Henan, and
Anhui. The regional center point was located at 36°N, 103.5°E. The
anthropogenic emission source inventory was provided by Multi-
resolution Emission Inventory model for Climate and air pollution
research (MEIC group) in Tsinghua University, and the chemical
boundary field was based on MOZART. The sources of biogenic
emissions are obtained from the data downloaded from the National
Center for Atmospheric Research (NCAR), accessible via the
provided link (https://www.acom.ucar.edu/wrf-chem/download.
shtml). This data is processed using the Model of Emissions of
Gases and Aerosols from Nature (MEGAN) and its associated
procedural framework. Due to limited computing resources, we
selected autumn as the research period. During this season, the
atmospheric conditions are relatively stable, which is unfavorable for
the spread of pollutants.The simulation covered meteorological
conditions from October 1st to 23 October 2022 and the output
frequency of WRF-Chem is one simulation result per hour. To
ensure the accuracy of results, a 1-week spin-up was conducted in
the month prior to the research. Various meteorological parameter
data were utilized for model evaluation, primarily including ground-
level meteorological observation data such as humidity and
visibility. This data was sourced from a global dataset provided
by the National Center for Environmental Information (NCEI,
https://www.ncei.noaa.gov/), encompassing essential
meteorological data with quality control from relevant
observation stations within the study area. Ground-based
observation data for the particles are from the access of China
National Environmental Monitoring Centre. The data includes
hourly mass concentrations of PM2.5, PM10 and so on, providing
a solid basis for evaluating model performance.

2.2 Extreme gradient boosting

XGBoost (Chen and Guestrin, 2016) is an efficient gradient
boosting decision tree algorithm based on GBDT (Gradient
Boosting Decision Trees). It minimizes the loss function through

multiple iterations of multiple decision trees, continuously
enhancing model accuracy using the “boosting” technique (Kim
et al., 2022). This approach empowers XGBoost to excel in predictive
and computational tasks across a variety of datasets. Furthermore, it
can assess the significance of different input features in generating
output data, facilitating an understanding of which features are
pivotal for the model’s predictions. XGBoost is particularly well-
suited for addressing regression and classification challenges (Phan
et al., 2020). The XGBoost algorithm can be viewed as an additive
model formed by the accumulation of ‘m’ regression trees, with the
Formula 1 provided as follows:

ŷm
i � ∑m

j�1
fj xi( ) (1)

Let i represent the ith sample, Xi denote the features of the ith
sample, and yi be the prediction of this model for the ith sample. The
revised content for the objective function (Equation 2) (Chen and
Guestrin, 2016) is as follows:

obj ϕ( ) � ∑n
i�1
L yi, ŷi( ) +∑m

k�1
Ω fk( ) (2)

Where:

Ω f( ) � γT + 1
2
λ∑T
j�1
ω2
j

Here, obj(φ) signifies the objective function, where φ represents
the predictive function of the model. n represents the total number
of samples in the dataset. L (yi, ŷi) represents the loss function, which
quantifies the difference between the predicted value ŷi for the ith
sample and the true value yi. And Ω(f k) serves as the regularization
term, which is employed to control the complexity of the kth tree
and mitigate the risk of overfitting. m denotes the total number of
regression trees within the model. ωj signifies the value assigned to
the jth leaf node of a regression tree. T represents the number of
current leaf nodes in the regression tree. The hyperparameters γ and
λ are introduced to regulate the model’s complexity: γ is responsible
for controlling the number of leaf nodes, while λ governs the sum of

FIGURE 1
Meteorological data preprocessing.
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the squares of the leaf node weights. An increase in T corresponds to
a deeper tree, which can lead to a greater propensity for overfitting.
Consequently, the selection of these hyperparameters is essential for
imposing an appropriate level of penalty on the model to enhance its
generalization capabilities.

To compute visibility, we gathered data from the WRF-Chem
model’s simulations, which included PM10, PM2.5, temperature (Ta),
dew point temperature (Td), relative humidity (RH), atmospheric
pressure (Pa), and wind speed (WS) as input for the XGBoost
algorithm and we utilized existing visibility observation data to
assess the accuracy of visibility calculations by XGBoost, following
the methodology of previous research (Kim et al., 2022). In prior
studies, when employing statistical methods like machine learning
for prediction, it was common practice to select dry weather
conditions with relative humidity below 60% to eliminate the
effects of rapid aerosol hygroscopic growth under high humidity
conditions (Robasky et al., 2006; Guo et al., 2020), with the aim of
achieving a better model fit. However, in this study, the input data
was obtained fromWRF-Chemmodel simulations, which accurately
represent meteorological elements after simulating the physical and
chemical conditions of the atmosphere. Furthermore, the selected
chemical option in this study allows some aqueous phases reacitons
to take place, so that the complete feedback process of the aerosols
can be accurately represented. Therefore, in this study, all data,
except for invalid value, were employed to estimate visibility under
all weather conditions.

The performance of the XGBoost model is notably influenced by
parameter selection, with “max_depth” (the maximum depth of the
binary tree) and “learning_rate” being key parameters. “max_depth”
specifies the maximum length of the longest path from the root node
to a leaf node in the decision tree. Its primary purpose is to limit the
tree’s depth to prevent overfitting and excessive sensitivity to data
details. On the other hand, “learning_rate” determines the extent of
updates to the weights of leaf nodes in each iteration. It is used not
only to control the training speed of the model but also to ensure
model stability, enhance generalization performance, and reduce the
risk of overfitting.

In this study, we randomly divided the data into training and
testing sets in a 6:4 ratio. Through cross-validation, we
systematically assessed the impact of various parameter
combinations on the performance of the XGBoost model. Our
analysis led us to determine the optimal parameter combination,
which consisted of “max_depth = 7” and “learning_rate = 0.08,”
ensuring that the model performs optimally when encountering
unseen data.

2.3 Visibility parameterization equation

In this study, concerning the parameterization of visibility, we
employed the most widely used Koschmieder equation (Israël et al.,
1959) and the IMPROVE equation (Malm and Hand, 2007). The
Koschmieder Equation 3 is as follows:

VR � K

bext
(3)

Where: VR represents visibility (Km); K is a constant; bext denotes
atmospheric extinction coefficient (Mm⁻1).

This method has been improved, and the enhanced
parameterization scheme takes into account the extinction
coefficients of both particulate matter and gas molecules,
including the scattering and absorption coefficients of gas
molecules, for calculating atmospheric extinction coefficients (Hu
et al., 2017).

VR � K

bp + bag + bsg
× 106 (4)

In the Equation 4: VR represents visibility in meters (m); K is a
constant determined based on previous research approaches
(Ozkaynak et al., 1985; Yu et al., 2016) bsg stands for gas
molecule scattering coefficient, primarily due to Rayleigh
scattering by atmospheric molecules, which is typically assumed
to be constant and has a value of 13 Mm⁻1; bp denotes the extinction
coefficient of particulate matter, measured in Mm⁻1; bag represents
the absorption coefficient of gas molecules, primarily influenced by
NO2 pollution, with an absorption coefficient approximately
0.33 times the NO2 mass concentration, measured in Mm⁻1.

To simplify the calculation, an empirical formula based on the
U.S. IMPROVE project was referenced (Sisler andMalm, 2000). The
formula for the sum of particulate matter extinction coefficient and
gas molecule absorption coefficient is as follows:

bp + bag � 2.2 × fS RH( ) × S sulfate( )
+ 4.8 × fL RH( ) × L sulfate( )
+ 2.4 × fS RH( ) × S nitrate( )
+ 5.1 × fL RH( ) × L nitrate( ) + 2.8 × S OM( )
+ 6.1 × L OM( ) + 10 × EC[ ] + FS[ ] + 0.6 × CM[ ]
+ 0.33 × NO2[ ] (5)

In the Equation 5, fS (RH) and fL (RH) represent the hygroscopic
growth factors for coarse and fine particles, respectively. These
factors are functions of relative humidity (RH). L(X) and S(X)
correspond to aerosol mass concentrations for coarse and fine
particles, where X represents sulfate, nitrate, and organic matter
[EC], [FS], and [CM] denote the concentrations of elemental carbon,
fine soil dust aerosols, and coarse particles, measured in units of
μg m−³. [NO2] represents the volume fraction of NO2, with units
of 10−9.

2.4 Model evaluation methods

This study uses root mean square error (RMSE), mean deviation
(MB), normalized mean deviation (NMB), and correlation
coefficient (r) as indicators to evaluate model performance. The
specific formula is as Equations 6–9 follows:

Root mean square error (RMSE):

RMSE �

���������������
1
N

∑N
i�1

f xi( ) − yi

∣∣∣∣ ∣∣∣∣2
√√

(6)
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Mean bias (MB):

MB �
∑N
i�1

f xi( ) − yi( )
N

(7)
Normalized mean bias (NMB):

NMB �
∑N
i�1

f xi( ) − yi( )
∑N
i�1
yi

(8)

Correlation coefficient (r):

r �
∑N
i�1

f xi( ) − �f x( )( ) yi − �y( )������������������������∑N
i�1

f xi( ) − �f x( )( )2∑N
i�1

yi − �y( )2√ (9)

Where N represents the total number of samples, f (xi) denotes the
simulated visibility value computed for sample i, and yi corresponds
to the observed visibility value for sample i. A smaller RMSE or a
larger r indicates better model performance.

3 Results and discussion

3.1 Visibility forecast model applicability
verification

In this study, the WRF-Chem model is nested with d01 and
d02 regions as illustrated in Figure 2.

To ensure the reliability of the input features for the
XGB and IMPROVE equations, it is imperative to
comprehensively validate the accuracy of the WRF-Chem model,
as shown in Table 1.

FIGURE 2
Schematic map of simulated domains in WRF-Chem and distribution of meteorological stations.

TABLE 1 Verification of meteorological element accuracy.

Meteorological
characteristics

Correlation Mean
deviation (MB)

Normalized mean bias
(NMB)/%

Root mean square error
(RMSE)

T 0.87 −0.76°C −4.41 2.67°C

WS 0.66 0.93 m s-1 24.43 2.00 m s−1

RH 0.71 −2.43% −5.10 7.82%

Td 0.74 3.14°C 32.8 5.88°C

PM2.5 0.63 −3.10 ug m-3 −9.72 7.88 ug m−3

PM10 0.76 −9.35 ug m-3 −14.54 13.13 ug m−3
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Table 1 reveals that the simulation results for temperature, wind
speed, dew point temperature, relative humidity, and particulate
matter all exhibit a high degree of accuracy, approaching or
surpassing the levels of previously published studies (Tuccella
et al., 2012; Zhou et al., 2017). The simulations of ground-level
air temperature (T) at 2 m, wind speed at a height of 10 m (WS),
relative humidity (RH) at 2 m among meteorological elements, and
dew point temperature (Td) are satisfactory, with correlation
coefficients of 0.87, 0.66, 0.71, and 0.74, respectively, which is
comparatively well in relevant studies. The simulated temperature
and relative humidity are both slightly underestimated, by 4.41%
and 5.1% respectively, while the wind speed is overestimated less
than 1 m/s. These discrepancies may stem from the complex
interplay of various factors, including incomplete terrain
information provided in the WRF preprocessing dataset, the
spatial resolution of surface characteristics, and seasonal
variations. These factors can lead to intricate temporal and
spatial variations in the simulation of these meteorological
factors, potentially resulting in biases in the simulation outcomes.
Despite these noted deviations, the model, as a whole, maintains its
credibility in replicating the meteorological conditions during the
study period.

As for chemical species, ground-based measurement data of PM2.5

mass concentration are provided for comparison with the simulation
results. The concentration of fine particulate matter shows a reasonable
agreement, with a correlation coefficient of 0.66, and a normalizedmean
bias of only −9.72%. Additionally, the correlation coefficient for PM10 is
0.76, which is comparable to the simulation of PM2.5 and also indicates
an underestimation, with a bias of 14.54%. This suggests that the model
can be able to offer valuable insights when simulating atmospheric
conditions, particularly with respect to crucial meteorological factors
such as temperature, relative humidity, dew point temperature, and
particulate matter concentrations.

3.2 Analysis of XGBoost model results

The initial dataset is divided into a training set (60%) and a
testing set (40%). 248 sets of samples are used for training, and
166 sets of samples are used for testing. This division is essential to
prevent the model from becoming overly complex and tailored only

to the training data, thus lacking the ability to make predictions for
unknown data. The first portion of data (60%) is employed for
model training. Through the use of features such as dew point
temperature (Td), date, dew point deficit (Ta-Td), and various
meteorological factors, the model progressively improves its
predictive capabilities. By identifying and extracting general
patterns within the dataset based on this series of input features,
the model becomes proficient in making predictions for unknown
data. Simultaneously, the second portion of data (40%) is reserved
for testing the model’s performance on unfamiliar data. This phase
aims to assess the model’s ability to generalize, evaluating how
effectively the model predicts unknown data. This data splitting
approach is crucial for a comprehensive evaluation of the model’s
robustness, ensuring that the model can provide reliable predictions
in practical applications.

To prevent the model from overfitting, we adopt an early
stopping mechanism during the model training process to
observe the performance of the model on the set in a timely
manner. Meanwhile, to reduce the input of redundant
information, the input features are screened and processed in
advance. As indicated by Figure 3, the XGBoost (XGB) model’s
loss curve exhibits a gradual reduction in variation during the
training process, tending towards stability. This implies a
continuous improvement in the model’s convergence, reducing
its reliance on specific samples within the training data. To a
large extent, the model has grasped the interrelationships among
the data, which significantly impacts its performance on the test
dataset. Furthermore, the descending trend of the loss curve suggests
that the XGB model is likely to generalize better to unseen data,
indicating improved stability and predictive capability when dealing
with new data points.

To further validate the accuracy of XGBoost in calculating
visibility, a correlation assessment was conducted between the
computed XGB values and the actual observed results for the
selected cities. The results, as depicted in Figure 4, reveal a
strong positive correlation for the chosen cities, with the highest
correlation reaching 0.98. The XGBoost model demonstrates an
excellent correlation with observed visibility values, indicating its
capability to accurately predict or compute visibility. The
predictions closely align with the actual observed results,
highlighting the model’s consistency and accuracy.

FIGURE 3
Loss curve of the training set.
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Additionally, in the further analysis of the XGBmodel’s visibility
simulation results, a spatial distribution map was created to visually
assess the model’s performance across various geographical
locations. Figure 5 vividly demonstrates the spatial performance

of the XGB model in simulating visibility, along with its predictive
accuracy and reliability in different cities. It is observed that the XGB
model performs well over a broad geographical range, with the
simulated mean visibility values closely matching the observed

FIGURE 4
Verification of XGB simulation results for visibility [(A–O) are the cities studied].
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FIGURE 5
Spatial distribution map of XGB simulated mean visibility comparing with observation.

FIGURE 6
Bar chart of feature importance for XGB.
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values. This indicates that the model not only excels in a specific city
but also maintains a certain level of predictive accuracy in different
geographical environments. In the investigated urban
agglomeration, the model demonstrates relatively high prediction
precision in five areas including Qingdao, Linyi, Lianyungang,
Zhoukou and Nanjing. Even under the circumstances of
unfavorable actual visibility conditions, the average error of
visibility is less than 0.5 km.

XGBoost calculates the importance scores for each input feature
by considering the frequency of splitting and the gain from splitting.
If a feature is used by multiple nodes, it significantly contributes to
the model’s performance (Kim et al., 2022). To gain a visual and
clear understanding of the impact of input variables on model
performance, feature importance bar charts (as depicted in
Figure 6) and correlation heatmaps (as shown in Figure 7) were
generated. In previous research, relative humidity (RH) and aerosol
substance mass concentrations (PM) have been identified as the two
variables most closely associated with visibility (Kim et al., 2021;
Feng et al., 2023; Zhang et al., 2019). In cities with more severe
pollution, RH has a more pronounced influence on visibility trends.
However, in cities with lower pollution levels, visibility trends are
primarily affected by variations in particulate matter (Maurer et al.,

2019). It’s essential to note that when examining different regions
and time frames, the relative importance of the same feature
variables may vary. This variation is attributed to the changing
influence of these variables in response to shifts in meteorological
conditions. In this study, dew point temperature (Td) displayed the
highest relative importance among all variables (40.95%), followed
by the date sequence (date) with a relative importance of 9.45%, and
dew point deficit (Ta-Td) with a relative importance of 8.53%. Due
to the different seasons, meteorological parameters such as air
pressure, humidity, temperature, and wind speed vary. For
instance, in the winter, there is an increase in carbon emissions
accompanied by phenomena like haze and snow. In contrast, the
high temperatures and humidity during the summer lead to fog and
rain. Therefore, both meteorological factors and pollutants exhibit
temporal and spatial continuity. Analyzing historical date data is
crucial for the model to recognize and establish specific weather
patterns for given dates. This, in turn, helps the model consider
seasonal variations and enhances prediction accuracy. Hence, the
significance of the date feature in the XGBoost modeling process
should not be underestimated.

Figure 7 provides a clear visualization of the close relationships
between various meteorological elements and visibility (VIS).

FIGURE 7
Correlation heatmap.
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Specifically, it illustrates the positive or negative impact of each
element on visibility, contributing to a deeper understanding of how
atmospheric conditions influence visibility. The analysis shows that
pollutants have a negative impact on visibility, and they tend to
mutually exacerbate each other’s growth, resulting in a detrimental
effect on visibility. This implies that the presence of pollutants
typically leads to decreased visibility. Furthermore, our study
reveals that a larger dew point deficit (Ta-Td) has a positive
effect on visibility. A larger dew point deficit indicates lower
relative humidity in the atmosphere, often suggesting drier
atmospheric conditions. In such dry atmospheric conditions, the
hygroscopic formation of aerosols is unlikely to happen, so as fogs.
This will contribute to the maintenance of good visibility.

As depicted in Figure 8, the RMSE of the forecasted visibility
values, as modeled by the XGB algorithm, remains
predominantly within the range of 3 Km. This indicates that
the average discrepancy between the forecasted and the actual
observed values is maintained at a relatively low level. The
consistency of the RMSE, without significant fluctuations
throughout the process, suggests that the XGB model is adept
at discerning the interrelations among various input features
from the data. Consequently, the forecasted values demonstrate a
commendable degree of reliability.

3.3 Visibility parameterization verification

To facilitate a better comparison with XGBoost (XGB), it is
essential to validate the visibility results calculated based on the
IMPROVE equation, as depicted in Figure 8. It is evident that in
cities such as Bengbu (Figure 9A), Fuyang (Figure 9C), Lishui
(Figure 9F), Jining (Figure 9M), Anqing (Figure 9N), and
Nanyang (Figure 9O), the correlation is remarkably low, all
below 0.4. This indicates a significant systematic bias in the
visibility calculations by the IMPROVE equation. In contrast,
XGB performs admirably in these cities, with correlations
improving by 0.60, 0.56, 0.41, 0.24, 0.50, and 0.49, and achieving
the best performance in Bengbu, where the correlation reaches 0.92.
However, in the case of Lishui and Jining, XGB’s performance is
relatively modest, with correlations of only 0.66 and 0.60,
respectively.

Additionally, in the nine regions with favorable correlation
results as illustrated in Figures 9B, D, E, and Figures 9G–L, the
R2 calculated using the IMPROVE equation range from 0.42 to 0.59.
In these areas, the performance of XGB remains consistently stable.
Notably, in the regions of Linyi (Figure 9B), Nanjing (Figures 9H),
and Liaocheng (Figure 9I), the correlation of XGB has significantly
improved, with increases of 0.54, 0.45, and 0.35, respectively. This
suggests that XGB can provide a more reliable meteorological
forecasting model.

3.4 Analysis of the visibility estimation results

In order to provide a clearer assessment of the validation
performance for the IMPROVE equation and the XGBoost
(XGB) model, we have computed their respective average
simulated values, normalized mean biases (NMB), mean biases
(MB), and root mean square errors (RMSE). As shown in
Table 2, within the study area, the standardized mean bias for
visibility calculated by the IMPROVE equation and the XGBoost
model are 32.42% and −2.68%, respectively. The mean biases are
2.42 km and −0.07 km, respectively.

This comparison reveals that, on the whole, the accuracy of the
XGBoost model significantly surpasses that of the IMPROVE
equation and is slightly lower than the actual observational
values. Additionally, the root mean square error for the XGBoost
model is 1.96 km smaller than that of the IMPROVE equation. This
signifies that, relatively speaking, the XGBoost model demonstrates
a smaller average error in relation to the actual observational values,
further highlighting the superiority of the XGBoost model in
predicting visibility.

From this analysis, it becomes evident that the XGBoost (XGB)
model demonstrates a relatively high level of accuracy in simulating
visibility. It is capable of modeling visibility based on input features
and naturally adapts to the complex relationships within the data.
Furthermore, the model possesses the ability to conduct importance
analysis on the input data.

According to Figure 10, the results obtained by XGB closely
align with the observed values, whereas the performance of the
IMPROVE equation in simulating these aspects is subpar. This
indicates that XGB excels in model training and data prediction,

FIGURE 8
RMSE of the XGBoost-Modeled visibility values.
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demonstrating significantly higher accuracy and better alignment
with actual observations.

Existing studies have demonstrated that particulate matter,
relative humidity, and wind speed are significant factors

influencing visibility variations (Qu et al., 2015; Lee et al., 2015;
Kim et al., 2022). Especially under conditions of low visibility, there
is a complex interplay among physical processes as well as chemical
reactions, and a single mathematical equation is insufficient to

FIGURE 9
Verification of IMPROVE simulation results for visibility [(A–O) are the cities studied].
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accurately model the relationships between meteorological and
chemical elements. As evidenced by the aforementioned
validation, applying machine learning regression techniques to
the outputs of numerical models can yield improved predictions
of visibility. The gradient boosting algorithm constructs new
decision trees, with each tree attempting to correct the errors of
its predecessor, thereby capturing nonlinear characteristics within
the data. In the XGBoost model, each tree is trained to address the
predictive errors of the previous round of trees, constructing a
series of functions that enhance the model’s generalization
capabilities. This approach has shown excellent scalability and
performance when dealing with large-scale datasets (Chen and
Guestrin, 2016).

However, based on the comparative results presented in Table 2
and Figure 10, it is also noticeable that the XGB model’s simulation
results tend to exhibit underestimation in comparison to the actual
observed results. This underestimation can be influenced by
multiple factors. Firstly, the performance of the XGB model
heavily relies on the quality and accuracy of the input data.
Despite the implementation of a series of advanced and
comprehensive chemical reaction mechanisms in WRF-Chem to
simulate the evolution of aerosols and chemical substances in the
atmosphere, these mechanisms may still struggle to encompass all
the intricate atmospheric chemical processes, particularly in
extremely complex atmospheric conditions. As a result, the
model may introduce errors in simulating atmospheric chemical
reactions, leading to the observed biases between the observed and
simulated values.

Secondly, the accuracy of emission sources within WRF-Chem
also contributes to deviations in the simulation results. Errors in
emission sources may further introduce inaccuracies whenmodeling
visibility, thereby affecting the accuracy of the simulation results.
Additionally, the complexity and uncertainty of atmospheric
chemical reactions are also contributing factors to the
underestimation. Atmospheric chemical processes involve
numerous intricate reactions and interactions, and some of these
processes may not be fully understood or adequately simulated. This
lack of completeness implies that the model may fail to accurately
capture all chemical changes in the atmosphere, resulting in the
underestimation observed in the simulation results.

In contrast to the XGB model, the visibility calculated using the
improve equation exhibits significant errors and lower confidence.
Apart from the inherent reasons associated with WRF-Chem, this
lower confidence may also be attributed to the improve equation
itself. The improve equation is a relatively simple mathematical
model that employs fixed parameters and is better suited for
relatively restrained scenarios. In cases where the actual
meteorological relationships are more complex, along with more
sophisticated chemical feedback, certain important features may
sometimes be overlooked, leading to substantial discrepancies
between the improve equation’s predictions and the actual
observed values.

4 Conclusion

In this study, we conducted an in-depth investigation of visibility
in the East China region using simulated results from WRF-Chem
for atmospheric pollutant concentrations and various
meteorological elements in October. Visibility was calculated
using both the XGBoost (XGB) model and the IMPROVE
equation, and the simulation results were comprehensively
assessed. Comparing the simulated visibility values with actual
observations during the study period, it is evident that the XGB
model demonstrates high accuracy and reliability in its predictions.
The model exhibits adaptability to various regions and
meteorological conditions, particularly in areas where the
IMPROVE equation’s simulation performance is satisfying, the
XGB model still showcases exceptional predictive capability.

What is particularly encouraging is that the XGBoost (XGB)
model exhibits a significantly lower mean bias compared to the
results obtained from the IMPROVE equation. This implies that the
XGB model provides visibility simulations that are much closer to
the actual observed values. Additionally, we observed a
0.15 improvement in the correlation with observational data
when using the XGB model, further underscoring its exceptional
performance. In summary, our research results strongly indicate

TABLE 2 Comparison and validation of improve and XGBoost.

Method Correlation Mean
simulation/Km

Mean deviation
(MB)/Km

Normalized mean bias
(NMB)/%

Root mean square error
(RMSE)/Km

IMPROVE
equation

0.56 11.95 2.42 32.42 5.64

XGBoost 0.71 9.46 −0.07 −2.68 3.68

FIGURE 10
Assessing the performance of IMPROVE and XGB models
through box plots.
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that the XGB model offers higher accuracy, flexibility, and
applicability in simulating visibility, especially in cases where the
improve equation’s performance is less satisfactory. This finding
holds significant implications for enhancing the accuracy of
meteorological forecasts and environmental monitoring,
providing robust support for future research and applications.

While this study highlights the crucial role of XGBoost (XGB) in
post-processing WRF-Chem results, there are some noteworthy
limitations in this study. Firstly, due to computational resource
constraints and limitations in accessing relevant input data, WRF-
Chem simulations were conducted for only 1 month. Future
research could consider integrating WRF-Chem and XGB in
different seasons and regions with varying background weather
characteristics to comprehensively assess XGB’s performance.
Secondly, this study does not fully explore and compare the
uncertainties in natural and anthropogenic emission inventories.
It is worth further investigation and research to effectively reduce
biases in visibility prediction through improved emission inputs
(Zhang et al., 2009). Finally, it is worth considering further
improvements in other factors, such as terrain features and
subgrid feedback loops in numerical simulations, in future
research. These enhancements can significantly improve the
accuracy of WRF-Chem simulation results and reduce biases in
visibility prediction. Therefore, we encourage future research to
focus more on these improvements to further enhance the accuracy
of visibility simulations.
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