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Mines are natural reservoirs of various minerals, metals, and metalloids. Several
heavy metals (HMs), such as Pb, Cd, Cr, Cu, and Ni, are major anthropogenic
pollutants that cause severe environmental pollution. The accumulation of these
toxic HMs in soils has raised several concerns for crop growth, food safety, and
marketing. Physiological and biochemical processes in plants are severely
impacted by HMs, disrupting normal metabolic activities and reducing
biomass production. Phytoremediation plays a pivotal role in addressing HM
contamination by offering an eco-friendly, economical, and holistic solution.
Similarly, arbuscular mycorrhizal fungi (AMF) play a significant role by forming a
symbiotic relationship with plant roots. In this association, plants provide root
exudates, while AMF enhance plant growth under heavymetal stress by supplying
essential nutrients, minerals, and water. These fungi also improve nutrient status,
soil quality, and ecosystem stability. The present review and meta-analysis
encompass an examination of the global distribution of toxic HMs in mining-
affected areas. Furthermore, the study highlights the role of various plant species
and microbes, particularly AMF, in mitigating HM stress and its impact on plant
growth and nutrition. The meta-analysis also evaluates the efficacy of AMF as a
remediation strategy for HM-impacted mine soils.
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1 Introduction

Human-driven activities such as agriculture, mining, industrial processes, and the
extensive use of fertilizers and pesticides have escalated the demand for land resources since
the twentieth century (Cheng, 2016). Heavy metal pollution, desertification of land,
ecological imbalance of land, soil erosion, land degradation, environmental damage, and
decreased soil fertility are all major environmental factors that have severe effects on soil,
water, and air (Nosrati and Collins, 2019; Vaverková et al., 2019). Heavy metal (HM)
pollution is a global phenomenon. Metal mining and mineral ore processing have a dual
effect on the economy and the environment. From one perspective, they provide economic
benefits to the country, and simultaneously, they cause environmental pollution. Abundant
and active mines are the primary source of toxic HMs. During the rainy season, due to heavy
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rainfall and strong winds, runoff water washes the toxic waste
material into agricultural fields and surrounding water bodies,
simultaneously causing air, water, and soil pollution. HM
pollution has an irreversible, long-term residual effect and
toxicity that poses an immense threat to living beings as well as
the environment (Dhaliwal et al., 2020). Once these toxic HMs are
released into the surrounding ecosystem, they could migrate to
distant areas, accumulate in various biotic and abiotic components
of the system, and adversely affect the food chain, human health, and
the environment (Peralta-Videa et al., 2009). Lead (Pb), chromium
(Cr), mercury (Hg), cadmium (Cd), and arsenic (As) have lethal
effects on humans, plants, and animals. Depending on the
concentration, a few metals, such as zinc (Zn), copper (Cu),
manganese (Mn), and iron (Fe), have another role as essential
micronutrients needed for metabolic activity (Schneegurt et al.,
2001; Mohan et al., 2007). Heavy metal contamination
significantly alters soil characteristics and the surrounding micro-
environment. Microorganisms, serving as dynamic bio-indicators,
respond to these changes through variations in microbial biomass,
respiration rates, and enzyme activity under HM stress conditions
(Hinojosa et al., 2005). Long-term or short-term exposure to various
toxic HMs causes significant changes in physiological and ecological
parameters, including a reduction in basal respiration, microbial
biomass, and an increase in metabolic entropy (qCO2) (Crowley,
2008; Zhao et al., 2020). The degree of HM pollution has been
evaluated by several indices, like a pollution load index (PLI) and a
geo-accumulation index (Igeo) (Duncan et al., 2018; Hamad
et al., 2019).

Factors such as plant life cycle, plant biomass, bioaccessibility,
and bioavailability of HMs in soil can influence the metal removal
process (Ali et al., 2013). Various physical and chemical methods are
available for decontamination of toxic HMs and are usually cost-
intensive. Given the limitations of conventional cleanup techniques,
biological approaches could be considered a potential alternative
mitigation option. In some places, bioremediation via
phytoremediation of soils contaminated with organic or
inorganic pollutants, such as pesticides and hydrocarbons, has
become widely accepted. The popularity of bioremediation and
phytoremediation for the reclamation of HM-polluted soils is
growing even though it has substantial disadvantages due to its
economic viability. The term phytoremediation is defined as a green,
eco-friendly, low-cost, holistic approach to cleaning toxic
contaminants from the environment by a plant-based system (Ali
et al., 2013). Numerous phytoremediation projects have been carried
out over the past few decades, and as a result, novel
phytoremediation techniques, creative concepts, and research
have emerged. Several phytoremediation projects have been done
in the last few decades, and new phytoremediation strategies,
innovative ideas, and research have evolved as a result. More
than 500 plant species have been identified as potent HM
hyperaccumulators (Ye et al., 2020). A long time span is required
for plants to remediate a highly metal-contaminated area.
Remediation through plant or phytoremediation is one of the
most promising eco-friendly management strategies for reducing
toxic contaminants (Burges et al., 2018).

In the past few decades, researchers have worked with various
types of plants, their potentiality, and their remediation mechanism
strategies for a better understanding of the phytoremediation

process. Plants like Cymbopogon citrates (China et al., 2014),
Helianthus petiolaris (Saran et al., 2020), Helianthus annuus
(Lothe et al., 2016), Bryophyllum laetivirens (Li et al., 2020),
Cordyline fruticosa (Herlina et al., 2020), etc., are widely used to
remediate heavy metals (Pb, Cd, Cr, Cu, As), and their removal
mechanisms have been extensively studied by several researchers in
last few years. Vetiver grass (Vetiveria zizanioides) has been widely
used for the rehabilitation of mine tailings in several countries like
China and Australia. Vetiver is a perennial grass with a huge root
system (3–4 m), 1–2 m tall, and non-invasive (Andra et al., 2009).
Furthermore, vetiver grass has a strong symbiotic association in the
rhizosphere region with a wide range of soil microbes, especially
with arbuscular mycorrhizal (AM) fungi, which stipulates
phytohormones and essential nutrients for plant development
(Bahraminia et al., 2016). The most advantageous properties of
mycorrhizal root colonization are an increase in the root surface area
to enhance the phytoremediation/phytostabilization potential.

Numerous studies have focused on mining activities and heavy
metal contamination, exploring their effects on soil, plants, water
resources, ecosystems, and living organisms. Previous studies also
examine bioremediation approaches, utilizing plants and
microorganisms to mitigate the adverse impacts of HMs
effectively. This review aims to provide a comprehensive
overview of heavy metal pollution in agricultural soil caused by
various mining activities and its associated environmental impacts.
Through meta-analysis, the study assesses HM contamination and
examines the global distribution of key pollutants, including Cr, Ni,
Cd, Pb, and Cu, in mining-affected regions worldwide. This article
also sheds light on the role of different plant species and microbes
(especially AMF) in mitigating the HM stress condition while
supporting plant growth and nutrient uptake. Additionally,
through meta-analysis, the study evaluates the efficiency of AMF
as a remediation strategy for mine-impacted soils contaminated with
HMs such as Cd, Cu, Ni, and Pb.

2 Mines and associated heavy metals

According to the ancient Shamasastry, 1915, “Mines are a
Nation’s treasury.” Mineral resources from mines are abundant
in nature. The exploitation of these minerals enhances the
world’s economy and development, but at the same time, surface
mining, especially open-cast mining, causes severe environmental
problems (i.e., loss of surface vegetation, destruction of soil
structure, etc.). Mines are the source of various metals and
minerals like iron and ferroalloys (Fe, Cr, Co, Mn, Mo, Ni, etc.),
non-ferrous metals (Al, Sb, As, Bi, Cd, Cu, Pb, Hg, Li, Zn, etc.),
precious metals (Au, Pd, Pt, and Ag), industrial minerals (perlite,
sulfur, vermiculite, feldspar, graphite, gypsum, kaolin, etc.) and
mineral fuels (uranium, petroleum, cooking coal, natural gas,
etc.). China is the largest producer of total minerals, followed by
the United States, Russia, Australia, and India (Reichl et al., 2020).

2.1 Coal mines

As a fossil fuel, coal is a predominant element in nature. It is
mainly composed of carbon with variable amounts of other
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elements, including hydrogen, oxygen, nitrogen, and sulfur. China is
the largest producer of coal. Open-cast mining generates toxic
overburden dumps (OB) and coal dust that contain enormous
amounts of toxic HMs and are responsible for metal
contamination in adjacent agricultural land (Li et al., 2007). In
descending order, metals Fe > Mn > Zn > Cu are present in coal
mines: the most bioavailable and mobile element is Mn, followed by
Zn and Cu, and the least mobile metal is Fe. The reason behind Fe’s
lesser mobility is the residual fraction of Fe, which indicates its
strong affinity toward minerals, the solid matrix, and strongly
bounded clay minerals (Kartal et al., 2006). A pseudo-total
concentration of HMs, including Zn (314 mg kg−1), Mn
(132 mg kg−1), Pb (82 mg kg−1), Cu (45 mg kg−1), and Co
(34 mg kg−1), has been found in reclaimed mine soil (RMS). The
bioavailable forms (DTPA-extractable) of Zn, Mn, and Cu are
significantly higher in RMS than in control soil. Pb can
selectively accumulate in leaves, stem bark, and root bark,
whereas Zn and Mn accumulate in leaves, and Cu accumulates in
stem wood and root wood. These indicate that the accumulation of
metals might be tissue specific (Maiti et al., 2016). The most effective
remediation pathway for OB dumps is trees, which can accumulate
toxic HMs from OB. Trees that are used for the reclamation of OB
dumps should be drought resistant, woody, fast-growing, and able to
grow in arid areas and nutrient-deficient areas (Pratas et al., 2005).
Various woody plant species, such as A. auriculiformis, M.
azedarach, Leucaena leucocephala (Lam.) de Wit, Tectona grandis
L. f., Gmelina arborea Roxb., Acacia mangium Wild., Bambusa
arundanacea L., Cassia siamea Lam, and Azadirachta indica A. Juss,
etc., are used for reclamation of coal OB dumps (Maiti et al., 2016).
The Pb concentration inA. auriculiformis, hybrid eucalyptus trees, is
significantly higher in root bark than leaf tissue as bark tissue can
accumulate lead for longer time while leaves are shed periodically
(Sawidis et al., 2011). Through bark exudates, Pb can be removed
from plants, which is an important defense mechanism against HM
toxicity (Alloway, 2012). In the case of Cu (BCF >1; TFleaf,
TFstembark, and TFstem wood <1), two tree species, A.
auriculiformis and M. azedarach, might be used for Cu
phytostabilization (Sawidis et al., 2011).

2.2 Copper mines

Cu mines are a prime source of potentially toxic HMs (Cu,
Zn, As, Cd, and Pb) (Cai et al., 2015). South Africa, Chile, and
Peru are the largest producers of copper. Due to the chemical
weathering process, waste rocks from the Predra Verde mine
(Brazil) show potential risks to the environment (Perlatti et al.,
2021). In Jiuhuashan, Jiangsu Province, and in eastern China,
agricultural soil near abandoned mines contained high levels of
copper (816.8 mg kg−1 and 147 mg kg−1, respectively)
contamination (Qin et al., 2012; Wu et al., 2011). Acidic
drainage compounds (Cu, Zn, and Fe) have been produced
from the La Concordia Mine (Argentina) (Nieva et al., 2018).
According to China et al. (2014), of environmentally available
metal, that is, total metal excluding the silicate matrix-bound
metals, Cu (154 mg kg−1) is one of the most abundant heavy
metals found in the Mosabani copper mine (India), followed by
Ni (136 mg kg−1) and Pb (9.9 mg kg−1). The underground tissues

of this plant have an average concentration of 1959 mg kg−1 Cu,
which is much higher than shoot (124 mg kg−1 Cu). Therefore, it
indicates that HM mobility is limited inside the plant as the
translocation factor for Cu (0.06), Ni (0.36), Co (0.68), and Zn
(0.24) is less than 1, while Mn is present in higher concentration
in the above-ground tissue (TF > 1; Mn 1.37) (Das and Maiti,
2007). The toxicity level of Cu and Ni in plants is 20–100 mg kg-−1

and 10–100 mg kg−1, respectively (Kabata-Pendias, 2011). The
bioavailability of copper also depends on soil pH, soil cation
exchange capacity (CEC), and total copper content in soil (Bravin
et al., 2009; Brun et al., 2001). Copper also plays an essential role
in plant growth and development processes such as protein
synthesis, CO2 assimilation, ATP synthesis, maintaining
homeostasis within chloroplast, photosynthesis, etc. (Hänsch
and Mendel, 2009; Yruela, 2013). A high concentration of
copper has a toxic effect on seed germination, decreases plant
height, causes chlorosis of plant leaves, and reduces plant
biomass and grain yield (Adrees et al., 2015).

2.3 Chromite mines

Ferrochromium is the only natural and economical resource of
chromium produced in chromite mines by carbothermic smelting
(Beukes et al., 2010). It is a crystalline alloy generally composed of
chromium and iron compounds. Globally, South Africa has the
most chromite ores, followed by Kazakhstan, India, Albania, and
Turkey (ICDA, 2022). The active and abandoned mine wastes are
reservoirs of heavy metals that have lethal effects on water, soil,
and living beings (Fernández-Caliani et al., 2009). These mine
wastes are generally composed of different types of toxic HMs,
mainly chromium (Cr) and Nickel (Ni), along with other metals
such as Cu, Cd, Pb, Ni, and Mn present in lesser quantities (Bueno
et al., 2009). Chromium (Cr) is generally utilized in industrial
activities such as the processing and finishing of leather, the
production of refractory steel by the stainless steel industry,
electroplating cleaning agents, drilling muds, the production of
chromic acid and other chemicals, and food preservation (Shanker
et al., 2005). Chromium exhibits different levels of toxicity
depending on its chemical form, pH, reaction with other
elements, and solubility index (Thatoi et al., 2014). Cr (VI)
exhibits high toxicity and bioavailability due to its better
solubility than Cr (III) (Abyaneh and Fazaelipoor, 2016). A lack
of Cr (III) in human and animal diets can cause metabolic
deterioration, cardiac problems, and diabetes, but an excess
presence in the body has harmful health effects (WHO, 2000).
Hexavalent chromium tends to act as a strong oxidizing agent;
therefore, Cr (VI) is 10–100 times more toxic than Cr (III) (Zayed
et al., 1998). The toxicity level of hexavalent chromium for plants
in solution is as low as 0.5 mg kg−1 and 5 mg kg−1 for soil (Turner
and Rust, 1971). Highly carcinogenic chromium and asbestos
exposure may lead to cancer, mesothelioma, pneumoconiosis,
skin irritations, and other respiratory problems such as
irritation of the larynx and pharynx, edema, coughing, asthma,
etc. (Bloise et al., 2008; Pugnaloni et al., 2013). Cr is mostly
accumulated in plant roots rather than in the shoot due to its
reduced mobility in root vacuoles. However, Ni accumulation is
higher in the shoot than in the root due to greater mobility of Ni
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through xylem tissue (Pulford et al., 2001; Shanker et al., 2005).
The Cr and Ni concentration in the Roro chromite mine waste soil
is 3,120 mg kg−1 and 1,620 mg kg−1, respectively, which exceeds the
safety level (Cr:75–100 mg kg−1; Ni: 100 mg kg−1) of metals present
in soil (IS, 1993). In similar studies in the Almadén mine site in
Spain and southern Togo mine sites, Cr and Ni concentrations are
86–35 Cr mg kg−1 and 21.2–126Ni mg kg−1 and 182–1,029 Cr
mg kg−1 and 15–432Ni mg kg−1, respectively, due to deposition of
mine tailings in agricultural soil (Gnandi and Tobschall, 2002;
Bueno et al., 2009). In the Daduk mine area of Korea, due to the
dispersion of metals from tailings and watercourses, various toxic
metals are reported in nearby paddy fields (Lee et al., 2001). In
another study in the Co Dinh mine of Vietnam, high levels of
potentially toxic elements are also detected in rice fields (5,750 Cr
mg kg−1, 375 Comg kg−1, and 5,590 Ni mg kg−1) (Kien et al., 2010).
Based on the dynamic translocation factor (TF dyn>1), Cr and Ni
accumulation is higher in plant parts of Oryza sativa growing in
contaminated agricultural fields that might have a potential risk of
transfer of toxic HMs to livestock or humans (Kien et al., 2010;
Kumar and Maiti, 2014).

2.4 Iron mines

Globally, the production of crude steel has expanded
drastically since 2000 to meet increasing demand. Iron ores are
the backbone of the world economy (World Steel Association,
2021). Australia, Brazil, and China are the top three countries for
the production of iron (around 69%) (Holmes et al., 2022). To
maintain the growing demand, iron ore industries have
continuously increased mining activity. As a result, huge
concentrations of Cd, Mn, As, Ni, Pb, Zn, and Cr have been
found in the agricultural soil near iron mines (Hosseini et al.,
2018). Toxic tailing wastes from iron mining are dumped into a
tailings pond located at the Noamundi–Jodda belt, India. As a
result, during monsoon season, the toxic fine particles washed off
by heavy wind and rain are deposited into nearby water bodies and
soil, thereby causing air, water, and soil pollution. Although Fe is
essential for the synthesis of chlorophyll, chloroplast structure and
its functions, excessive concentrations of iron might enter into the
food chain and show toxic effects on plant, animal, and human
health (Maiti et al., 2005). According to Dhatrak et al. (2017), the
health status of mine workers and a nearby population around an
open-cast iron mine showed noise-induced hearing loss (NIHL)
and anemia as major health effects. Ironmining plays an important
role in economic development and simultaneously causes air
pollution by blasting, drilling, unloading, and loading minerals
and overburdens by wind at mineral handling plants, workshops,
etc. These air pollutants affect the flora and fauna of the local
environment (Tripathi et al., 2014; Chaturvedi and Patra, 2016).
Some native plant species, such as Cassia sophera Eupatorium
odoratum, Techtona grandis, Alstonia scholaris, Cassia tora, etc.,
can be found in Fe tailings. Techtona grandis can accumulate a
higher concentration of HMs than Alstonia scholaris, but these
HMs have not shown any detrimental effect on native plants.
Rather, higher Fe content promotes lavish growth, as stated by
Maiti et al. (2005).

2.5 Uranium mines

Worldwide, Kazakhstan is the largest producer of uranium,
followed by Australia, Namibia, Uzbekistan, and Canada.
Jaduguda, India’s first, oldest, and most productive underground
uranium (U) mine, consists of uraninite and other associated
accessory minerals such as copper, nickel, arsenic, cobalt
molybdenum, and magnetite, etc. (Sethy et al., 2014). Uranium
occurs naturally in the earth’s crust with a mean concentration of
approximately 3 mg kg−1 (Gupta and Singh, 2003). Hexavalent U is
the most soluble form and is present as the uranyl cation (UO2)

+2 in
80%–90% of the soil. It prevails in solutions predominantly as a
stable ion (UO2)

+2 and as soluble carbonate complexes, that is,
UO2CO3, UO2(CO3)2

−2, UO2(CO3)3
–4, (UO2)2CO3(OH)−3 and

(UO2)3(CO3)6
–6. In the absence of dissolved inorganic ligands

(fluoride, carbonate, sulfate, and phosphate) and a pH range
within 4–7.5, the hydrolysis ion UO2OH

+ in water and soil forms
complexes with these inorganic ligands. As a result, these complexes
increase the total solubility of U (Shahandeh and Hossner, 2002).
Uranium is a radioactive element that undergoes a continuous
decaying process, emits alpha (α), beta (β), and gamma (γ) rays,
and produces various isotopes. This transformation stops when the
stable product lead (206Pb) is formed (Sarangi, 2003). The radiation
that is emitted from these naturally occurring isotopes is very low
and does not penetrate due to its high density, which acts as a shield
against its own radiation (Wang et al., 2009). According to WHO
(2012), a mean concentration of U in ambient air has been reported
to be approximately 0.02 ng m−3 in Tokyo, Japan, and 0.076 ng m−3

in New York City, United States of America. Uranium enters the
kidney through water or food, and the uranyl ion forms bicarbonate
and citrate complexes in blood plasma and affects the proximal
tubules of the kidney, causing tubular degeneration, liver damage,
genetic malfunction, cancer, and necrosis (Miller et al., 2004; Sethy
et al., 2011). The Environmental Protection Agency (EPA) of the
United States has categorized U as a carcinogenic element, and in
drinking water, the maximum contaminant level (MCL) of U is
30 µg L−1 (EPA, 1999). The proposed interim maximum acceptable
level (IMAC) of U in Canada is 20 µg L−1, whereas WHO strictly
recommended the permissible level to be 2 µg L−1 (Shin et al., 2002).
In humans, the ingestion and intake dose is very low (2 µSv.Y−1),
which is far below the WHO permissible level (100 uSv.Y−1). The
mean metal pollution index (MPI) value indicates the overall
pollution level in ground and surface water to be below the
maximum threshold value of 100 (Mohan et al., 1996). Several
experiments have been conducted for the accumulation of U in
native plant species to determine the mechanism of U uptake
absorption by plants and for biological exploration of U from
soil (Petrova, 2006). Uranium accumulation varies depending
upon plant species as well as genotypes, lines within species, and
cultivars; moreover, U is accumulated higher in the root portion
than in the shoot. Therefore, only a small portion is translocated to
the shoot. Less than 1 mg kg−1 of U is found to be toxic in the soil
(Sheppard et al., 1992; Stojanović et al., 2010). According to
(Pentyala and Eapen, 2020), Vetiveria zizanioides L. Nash
showed good ability for phytoextraction (84%–95% of recovery)
of U from hydroponic solution at a concentration below 200 ppm
under controlled experimental conditions. U is generally restricted
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in the root portion of vetiver, but at concentrations above
1,000 ppm, it is translocated from the root to the shoot.

3 Quantitative evaluation of various
toxic metals in mining areas through
meta-analysis

The main aim of the meta-analysis was to compare a selected
number of peer-reviewed articles and to determine the potential risk
of toxic metals on soil health using global datasets. We searched
literature published in the Web of Science database between
2012 and 2022 and selected research according to our objectives.
The keywords were “Mine,” “pollution,” “Copper,” “Cadmium,”
“Nickel,” “Chromium,” “Lead,” and “World.”
From >2,500 published reports, we excluded studies based on
data originality. We screened the remaining articles from
different origins depending on the title and abstract. From the
vast range of published articles, the research papers were selected
based on the manuscripts reporting metal toxicity due to mining
activity across different types of mines, and proper analytical
methods were followed. Finally, based on the inclusion criteria,
55, 41, 98, 52, and 51 research papers were considered for Cr, Ni, Pb,
Cd, and Cu, respectively. The Preferred Reporting Items for
Systematic Review and Meta-analysis (PRISMA) flowchart is
depicted in Supplementary Figure S3.

From the literature survey, we considered parameters like
standard error, sample size, and the difference between the tested
and control means. The effect size or outcomes were calculated by
the mean difference between the maximum concentration of metals
(Cr, Ni, Pb, Cd, and Cu) and the permissible limit of metals in mine
areas. The maximum permissible limit of metals in soil (Cr, Ni, Pb,
and Cu) was that suggested by World Health Organization,
1996 (Cu: 36 mg kg−1, Ni: 35 mg kg−1, Cr: 100 mg kg−1, and Pb:
85 mg kg−1). The result was expressed on mean difference as a
continuous factor for statistical analysis at the 95% confidence level
(CI) between the group of individual studies and the permissible
limit of metals (Cr, Ni, Pb, Cd, and Cu) in the mine areas. Then,
from the random effect model (RE), forest plots were designed to
summarize all the study information of individual research work,
and this plot simultaneously provides a visual representation of
heterogeneities. The vertical line in the middle of the forest plot,
commonly known as the zero-effect line, shows that there was no
difference between the study group mean and the permissible limit.
This mean difference is zero at this point.

From Figures 1, 2 it can be observed from the RE model that the
overall mean value for Cr was 0.16 (CIs: 0.14–0.17) and for Ni, it was
0.19 (CIs: 0.16–0.22), statistically significant with p < 0.05 and
inconsistency indexes (I2) of 98.58% and 96.05%, respectively,
which represented substantial heterogeneity [43,49,63,68, 84–87].
Similarly, for Cd, Pb, and Cu (Figures 3–5) from the RE model,
the overall mean values were 0.01 (CIs: 0.01–0.01), 0.06 (CIs:
0.06–0.07), and 0.08 (CIs: 0.07–0.09), respectively, which are
statistical significance at p < 0.05. The overall inconsistency
indexes (I2) of Cd, Pb, and Cu were 47.34%, 99.24%, and 98.02%,
respectively, indicating substantial heterogeneity. The positive value
indicated that the total concentrations of Cr, Ni, Cd, Pb, and Cu in
mine areas were higher than the permissible level recommended by

WHO. In ameta-analysis of the summarymeans, mostmetals (Cr, Ni,
Pb, and Cu) present in mine areas were found to be significant at the
p< 0.05 level, as the confidence intervals did not overlap with the zero-
effect line except for Cd. Various factors like runoff water and aerial
deposition from mines lead to the contamination of nearby
agricultural lands, water bodies, etc. As a result, the presence of
higher concentrations of metals in different mine areas may influence
the potential risk of metal toxicity and its relative risk to the ecosystem
(Qu et al., 2012; Chen et al., 2017; Liu et al., 2019; Sun et al., 2018).

4 Remediation strategies

Worldwide, the immense development in industrial sectors,
especially mining, metal, energy supply, agriculture, chemical
production, and transport, causes significant pollution of the
ecosystem. Globally, heavy metal contamination is a problem for
the environment as well as for living beings (Sun et al., 2012;
Cachada et al., 2018). As we know, remediation of heavy metals
is more complicated than remediation of other organic pollutants.
Various traditional, mechanical, and chemical techniques, including
electrochemical treatments, thermal methods, incineration,
excavation, vitrification, chemical oxidation, and solvent
extraction, are widely utilized to remove or destroy these toxic
HMs in soil. However, these methods are often costly, time-
intensive, and labor-demanding. Moreover, they can lead to soil
degradation and generate secondary waste materials, posing
additional environmental management challenges (Khan et al.,
2018). Bio-remediation techniques have gained attention due to
their cost-effectiveness, viability, no generation of secondary waste,
and eco-friendly (Akande et al., 2018; ALAM et al., 2018). These
techniques include plants and various microbes (bacteria, fungi,
mycorrhiza, etc.) that are utilized to decontaminate the hazardous
compounds from soil. For soil purification, applications of plants
alone or in association with microorganisms help to stabilize,
mineralize, transfer, and remove toxic metals (Wang et al., 2018).

4.1 Phytoremediation

The term “phytoremediation” is derived from Greek (“phyton”)
and Latin (“remedium”), which means “plant” and “to correct,”
respectively (Cunningham et al., 1996). Phytoremediation is a
bioremediation process in which plants (alone or in association
with microbes) are used as purifying agents to remove, stabilize, or
destroy the toxic metals from air, water, and soil in an eco-friendly
manner (Wani et al., 2012). Supplementary Table S1 shows different
mechanisms of phytoremediation, and Supplementary Figure S2
shows images of such mechanisms. Generally, plants can extract
essential nutrients (Fe, Zn, Ni, Mn, and Cu) as well as non-essential
metals (Cr, Cd, As, Pb, and Hg) that are not required in their
physiological process and can store an enormous amount of the
toxic metals (hyper-accumulator) in their parts from contaminated
soil and water (Tangahu et al., 2011). Several studies have been done
regarding different mechanisms of phytoremediation strategies, as
shown in Supplementary Table S2. The advantages of
phytoremediation are as follows: 1) inexpensive technology
(60%–80% lesser than traditional process); 2) minimize soil
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deterioration; 3) solar-driven remediation process; 4) no generation
of secondary hazardous compounds; 5) suitable and broad-spectrum
treatment; 6) sustainable and environment-friendly technique. One
limitation is that plants require time for their growth and
development (Morikawa and Erkin, 2003). Techniques like
phytoextraction and phytostabilization are commonly used for
remediating HM-polluted sites. Several plant species have
demonstrated the ability to absorb, bioaccumulate, immobilize,
and degrade heavy metals (HMs) from contaminated sites. Some
examples include C. citrates, H. petiolaris, V. zizanioides L,
Pennisetum purpureum cv. Mott, Conocarpus lancifolius, and
Cordyline fruticose, etc. (Andra et al., 2009; China et al., 2014;
Herlina et al., 2020; Rasheed et al., 2020; Kowitwiwat and
Sampanpanish, 2020; Saran et al., 2020). These species are key in
cleaning contaminated soils either by extracting HMs into their
tissues or stabilizing them in the soil. Vegetation helps limit
pollutant transport, reduce wind dispersion, and prevent water
erosion (Perronnet et al., 2000). Unlike conventional methods
that disturb soil physical properties, phyto-strategies maintain
and enhance soil quality. Successful phytoremediation
implementation requires considerations of biomass production,
heavy metal concentration in plant material, and the time needed
for soil remediation (Robinson et al., 1998). Phytodegradation
involves the uptake of toxic compounds by plants, where plant
enzymes break down these substances into less harmful forms (Sun
et al., 2012; Hamdi et al., 2012). Plant species like Arabidopsis

thaliana and Azolla filiculoides are used for phytodegradation of
pollutants such as 2,4-DNT and bisphenol A in the United States
and Iran (Yoon et al., 2008; Zazouli et al., 2014). Phytovolatilization
occurs when plants transform the contaminant into volatile
compounds and emit them into the atmosphere through
transpiration or radial diffusion from their leaves, stems, and
roots (Limmer and Burken, 2016; Peter et al., 2017).
Rhizodegradation is the breakdown of contaminants facilitated by
rhizospheric microorganisms, where root-released enzymes and
exudates help decompose pollutants into non-toxic forms (Jia
et al., 2016; Gkorezis et al., 2016). Plants like Pteris vittata
(Sakakibara et al., 2010) and Salicornia bigelovii (Shrestha et al.,
2006) are involved in phytovolatilization of arsenic and selenium in
Japan and the United States, respectively. The efficacy of
phytoremediation depends on selecting appropriate plant species
and various environmental factors. Overall, phytoremediation is a
complex process involving multiple plant mechanisms.
Understanding these processes can enhance plant adaptation to
metal stress and improve efficiency, providing sustainable solutions
for heavy metal contamination and ecosystem restoration.

4.2 Mycorrhizal remediation

Naturally, plants interact constantly with many microorganisms
in their rhizospheric region. Beneficial microorganisms, especially

FIGURE 1
Forest plot indicating the mean difference of individual observations regarding Cr contamination in mine areas.
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arbuscular mycorrhizal fungi (AMF), have a symbiotic association
with plant roots where AMF increase plant nutrient uptake ability,
improve biomass accumulation, amplify photosynthesis capacity,
and provide protection against heavy metal toxicity. Successively,
the plant provides exudates of amino acids, carbon, and
photosynthetic products to the AMF for growth and
development (Mitra et al., 2020).

Around 80% of terrestrial plants and 90% of agricultural plants
have mycorrhizal associations in their roots, where fungal hyphae
enter the cortical cells of plant roots, forming vesicles, hyphae, and
arbuscles (Smith and Read, 2010). Supplementary Figure S1 denotes
the schematic diagram of the heavy metal detoxification mechanism
through AMF. AMF help immobilize heavy metals by binding them
at the cortical region, preventing translocation to the upper ground
part (shoot, stem, leaves), and preventing damage to leaves. Plants
are categorized based on TF value into hyper-accumulators (TF > 1)
and non-hyperaccumulators (TF < 1). The translocation factor (TF)
is higher in non-mycorrhizal-associated plants than in mycorrhizal-
associated plants (Arshad et al., 2008). Endomycorrhizal fungi AMF
belong to the phylum Glomeromycota. They are considered an eco-
friendly, sustainable strategy to enhance plant growth, increase
shoot biomass, improve soil health and water uptake capacity,
provide protection to the plant against biotic and abiotic stress,

and detoxify heavy metal-induced stress (Mishra et al., 2019).
Glomeromycota are obligate symbiotic organisms, so they require
around 20% of carbon from host plant cells for their survival.
Simultaneously, they provide water and nutrients (P, N) through
their arbuscles and intracellular and extracellular hyphae to the host
plant (Parniske, 2008). AMF combat heavy metal stress by
immobilization, precipitation, chelation, and sequestration in the
rhizosphere and vacuoles and activate the plant anti-oxidant defense
system (Mitra et al., 2020). Another AMF defense mechanism is to
secrete a hydrophobic unique glycoprotein called glomalin, which is
composed of carbon (39%–59%), phosphorus (0.03%–0.1%),
nitrogen (3%–5%), hydrogen (4%–6%), oxygen (33%–49%), and a
trace amount of iron (Schindler et al., 2007; Zhang et al., 2017). This
protein is basically an N-linked glycoprotein produced from the
spores and hyphae of AMF, which helps in soil aggregation, cellular
function, toxic heavy metal stress, carbon storage, etc. (Emran et al.,
2012; Wu et al., 2015). Easily extractable glomalin-related soil
protein (EE-GRSP) and total glomalin-related soil protein
(T-GRSP) are both readily quantified from the soil with the help
of a citrate buffer (Wright and Upadhyaya, 1996).

For plant growth and nutrition, AMF increase the surface area
with the help of extracellular and intracellular hyphae for better
absorption of nutrients, water, and the ions that are generally

FIGURE 2
Forest plot indicating the mean difference of individual observations regarding Ni contamination in mine areas.
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present in an immobilized form in soil. AMF also improve the
plant’s ability to acquire nutrients from the depleted zone of the
rhizosphere (Smith and Read, 2010; Smith and Smith, 2011). As
stated by Nakmee et al. (2016), native species of AMF Glomus
aggregatum, Acaulospora scrobiculata, and F. mosseae provide
positive effect on plant nutrient uptake (total N, P, K) and
enhance plant biomass, leaf number, and plant height of
sorghum. It was observed that those wheat plants inoculated with
AMF culture (F. mosseae and R. intraradices) contain a
1.13–2.76 times higher concentration of Zn than non-inoculated
wheat plants (Coccina et al., 2019). Various abiotic stresses include
salinity, heavy metals, drought, flooding, extreme temperature, etc.
AMF communities independently withstand these unfavorable
stress conditions for their host plants, provide sufficient water in
drought stress, supply nutrients (phosphorus), and balance osmotic
pressure in flooding stress conditions (Zhu et al., 2017; Caradonia

et al., 2019). Under drought conditions, tomato plants containing
AMF (R. intraradices) colonized on their roots provide sufficient
water-based nutrients to the tomato plant for better growth during
water-stress situations. Inoculation with G. etunicatum enhances
total chlorophyll content, root-shoot height-weight, increased N, P,
K, Ca, Zn, Cu concentration, flavonoid content, soluble sugar,
proline, glycine betaine, polyamine, POD, and CAT activity in
Pistaciavera L under stress conditions (Abbaspour et al., 2012).
Studies revealed that G. etunicatum F. mosseae and R. irregularis
increased the growth and grain yield of Triticum aestivum L.,
regulate nutrient uptake capacity, and decreased Na+ and Cl-
concentration at times of salinity stress (Daei et al., 2009).
According to Hashem et al. (2016), oxidative stress generates a
high concentration of malonaldehyde and hydrogen peroxide in
Solanum lycopersicum L. AMF strains (Glomus mosseae, Glomus
intraradices, and Glomus etunicatum) help to decrease the

FIGURE 3
Forest plot indicating the mean difference of individual observations regarding Cd contamination in mine areas.
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concentration of these elements and boost the plant’s defense system
against Cd stress. AMF also provide protection against biotic stress.
Various pathogens, such as root-rot fungi, pathogenic bacteria,
nematodes, and other harmful microorganisms, can cause various
diseases. However, the presence of AMF significantly reduce
pathogen-induced damage and infection by enhancing nutrient
availability, stimulating root growth, and improving root
morphology. AMF secrete beneficial enzymes in the rhizosphere,
strengthening plant defenses and enabling plants to better withstand
biotic stress (Vos et al., 2012; Spagnoletti et al., 2020). Fusarium wilt

causes damage to Cicer arietinum L, but treatment with an AMF
strain (Glomus hoi) provides protection against wilt disease and
increases the nitrogen and phosphate content in treated plants as
compared with non-treated plants (Singh et al., 2010). Similarly,
Glomus sp. synthesizes antimicrobial compounds that help to arrest
the mycelia growth of Fusarium oxysporum on L. esculentum plants
and increase the chlorophyll, N, P, and K content of the plants.
Furthermore, inCapsicum annum,Glomus sp. reduces the activity of
the pathogen Pythium aphanidermatum and provides better yield of
the plant (Kumari and Prabina, 2019; Kumari and Srimeena, 2019).

FIGURE 4
Forest plot indicating the mean difference of individual observations regarding Pb contamination in mine areas.
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5 Evaluation of AMF as a tool to
remediate metals through
meta-analysis

Studies published between 2005 and 2022 were searched in the
Web of Science database and selected based on their reporting
quality. The keywords were “Arbuscular mycorrhizal fungi,”
“Mine,” “Soil,” “World,” “Cadmium,” “Nickel,” “Lead,” “Copper,”
and “Chromium.” After assessing more than 250 peer-reviewed
articles, articles were excluded based on the following reasons: a)
Lack of analytical techniques (not mentioning the QA/QC), b)
remediation through other microbes, and c) graphical
representation of data. A total of 24 studies comprising nine,
twelve, seven, and five studies for Cd, Pb, Cu, and Ni,
respectively, were included in the meta-analysis, which assessed
the efficacy of AMF in remediating metal-contaminated mine soils
(Table 1). Studies reporting remediation of Cr with AMF were not
found during the systemic review. The PRISMA flowchart is
displayed in Supplementary Figure S4.

From the RE models shown in Figures 6A–D, the overall mean
values for Pb, Cd, Ni, and Cu were 1.34 (CIs: 1.19–1.49), 1.08 (CIs:
0.86–1.31), 0.79 (CIs: 0.53–1.05), and 1.46 (CIs: 1.02–1.90),
respectively. The data showed statistical significance at p < 0.05.
The inconsistency indexes (I2) of Pb, Cd, Ni, and Cu were 92.94%,

96.39%, 99.30%, and 98.89%, respectively, indicating substantial
heterogeneity. The positive effect sizes for all the metals indicated
that the AMF can reduce the metal accumulation capacity in plants.
Studies fromUnited States (Punamiya et al., 2010), China (Zhan et al.,
2019), Mexico (González-Villalobos et al., 2021), etc., indicate that the
Pb accumulation in plants was increased by AMF (Diversispora
spurcum, G. mosseae, Rhizophagus irregularis) except for Wu et al.
(2010), Solís-Domínguez et al. (2011), and Bahraminia et al. (2016),
for which the CI values overlapped the zero-effect line and were
determined to be non-significant (Figure 6A). Case studies from Spain
(Arriagada et al., 2007), Brazil (de Andrade et al., 2008), China (Zhong
et al., 2012), and Canada (Hassan et al., 2013) showed that the
accumulation of Cd in plant systems increased in the presence of
AMF inoculation of Glomus deserticola, G. intraradices, and R.
irregularis. In other studies from China (Wu et al., 2010; Hu et al.,
2013; Liu et al., 2014; He et al., 2020), the Cd accumulation in the plant
decreased (Glomus constrictum, Glomus caledonium, and G.
intraradices) (Figure 6B). For Ni and Cu, the accumulation
decreases in the presence of AMF (Glomus tenue, Glomus
margarita) (Orłowska et al., 2011; Lam and Lai, 2018; Manyiwa
and Ultra Jr, 2022), and accumulation increases with the help of
G. mosseae, G. etunicatum (Chen et al., 2005; Lins et al., 2006)
(Figures 6C,D). Plant roots are symbiotically associated with AMF,
which increase plant nutrient uptake ability, increases biomass

FIGURE 5
Forest plot indicating the mean difference of individual observations regarding Cu contamination in mine areas.
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TABLE 1 Summary of studies on arbuscular mycorrhizal fungi in toxic metal remediation.

Country Metal Type of
experiment

Name of AMF Inherent total metal
concentration in soil
(mg kg−1)

Experimental
dose (mg kg−1)

Plant
metal
content
(mg kg−1)

Test crop Effect of AMF
inoculation

Reference

South Africa Ni Pot experiment Native AMF
sp. (Gigaspora sp. and

Glomus tenue)

650 7,020 Berkheya coddii
Roessle

Orlowska et al., 2011

South Africa Ni Pot experiment Native AMF 650 724 Berkheya coddii
Roessle

Orłowska et al. (2013)

France Ni Pot experiment Glomus etunicatum
SFONL

60 881 Cloezia artensis Amir et al. (2013)

Taiwan Ni Pot experiment AMF 459.5 90.1 Ipomoea aquatica
Forsk.

Lam and Lai (2018)

South Africa Ni Pot experiment AMF 634.25 66.10 Colosphospermum
mopane

Manyiwa and Ultra Jr
(2022)

China Pb Pot experiment AMF 600 259.81 Kummerowia striata Chen et al. (2005)

China Pb Pot
experiment

Glomus mosseae and
Glomus intraradices

4,418 1.11 Leucaena
leucocephala

Ma et al. (2006)

Spain Pb Pot experiment Glomus deserticola 595.96 284.1 Eucalyptus globulus Arriagada et al. (2007)

United States Pb Pot experiment Glomus mosseae 1,200 2,179 Chrysopogon
zizanioides (L.)

Punamiya et al. (2010)

China Pb Field experiment Glomus intraradices and
Glomus mosseae

209 12.6 Chrysopogon
zizanioides (L.)

Wu et al. (2010)

United States Pb Pot experiment Glomus deserticola 4,620 3.89 Prosopis juliflora Solís-Domínguez et al.
(2011)

China Pb Pot experiment AMF 3,683 1,500 2,655 Viola baoshanensis Zhong et al. (2012)

Iran Pb Pot experiment Glomus versiforme 800 119.80 Chrysopogon
zizanioides

Bahraminia et al.
(2016)

Brazil Pb Pot experiment Acaulospora scrobiculata 125 103 Chrysopogon
zizanioides (L.)

Meyer et al. (2017)

China Pb Pot experiment Gaeumannomyces
cylindrosporus

1,000 252.25 Zea mays L Yihui et al., 2017

China Pb Pot experiment Diversispora spurcum 1426.7 732.9 Cynodon dactylon
(L.) Pers.

Zhan et al. (2019)

(Continued on following page)
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TABLE 1 (Continued) Summary of studies on arbuscular mycorrhizal fungi in toxic metal remediation.

Country Metal Type of
experiment

Name of AMF Inherent total metal
concentration in soil
(mg kg−1)

Experimental
dose (mg kg−1)

Plant
metal
content
(mg kg−1)

Test crop Effect of AMF
inoculation

Reference

Mexico Pb Pot experiment Rhizophagus irregularis 640 237.97 Parkinsonia
aculeata L

González-Villalobo
et al. (2021)

Spain Cd Pot experiment Glomus deserticola 21.48 7.4 Eucalyptus globulus Arriagada et al. (2007)

Brazil Cd Pot experiment Glomus intraradices 0.02 885 Helianthus annuus L. de Andrade et al.
(2008)

China Cd Field
experiment

Glomus intraradices and
Glomus mosseae

2.25 939 Chrysopogon
zizanioides (L.)

Wu et al. (2010)

China Cd Pot experiment AMF 113 200 6,952 Viola baoshanensis Zhong et al. (2012)

China Cd Pot experiment Glomus caledonium 90036 1.54 1.44 Sedum alfredii Hance Hu et al. (2013)

Canada Cd Pot experiment Rhizophagus irregularis 0.75 40 256.44 Helianthus annuus L. Hassan et al. (2013)

China Cd Pot experiment Glomus constrictum 112 8.27 Zea mays L. Liu et al. (2014)

China Cd Pot experiment Diversispora spurcum 16.9 14.5 Cynodon dactylon
(L.) Pers.

Zhan et al. (2019)

China Cd Field experiment AMF 19.02 4.8 Zea mays L. He et al. (2020)

Brazil Cu Pot experiment Glomus etunicatum 125.71 Leucaena
leucocephala

Lins et al. (2006)

China Cu Pot experiment Glomus mosseae 232 1267.34 Lolium perenne Chen et al. (2005)

South Africa Cu Pot experiment Native AMF
sp. (Gigaspora sp. and

Glomus tenue)

55 108 (29) Berkheya coddii
Roessle

Orlowska et al., 2011

United States Cu Pot experiment Native AMF 653 21.5 Prosopis juliflora Solís-Domínguez et al.
(2011)

South Africa Cu Pot experiment Native AMF 55 26 Berkheya coddii
Roessle

Orłowska et al. (2013)

Brazil Cu Pot experiment Glomus margarita 17.7 102 Chrysopogon
zizanioides (L.)

Meyer et al. (2017)
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accumulation, increases photosynthesis capacity, and modulates
metal toxicity. Through the formation of extracellular and
intracellular hyphae, AMF increase soil surface area for better
absorption of soil nutrients (N and P) and toxic metals (Cr, Ni,
Cd, Pb, and Cu), improves root growth and root morphology, and
secretes various proteins like glomalin (Amir et al., 2013; Lam and Lai,
2018; Zhan et al., 2019;Manyiwa andUltra Jr, 2022). In this paradigm,
the presence or absence of AMF in plant systems could impact the
accumulation capacity of toxic metals, thus increasing or decreasing
ecosystem risk.

6 Conclusion

Global heavy metal pollution is of great concern to
environmentalists. Numerous research papers have explored the
toxic effects of HMs on plants, animals, humans, and other living
organisms. These studies highlight the detrimental impact of HM
contamination on the ecosystem, emphasizing the need for effective
remediation strategies. Plants play an efficient role in the remediation of
poisonous HMs. However, the effectiveness of phytoremediation is
often limited by slow plant growth and lower efficiency in removing
HMs. To address these challenges, the use of plant-associated microbes,
especially arbuscular mycorrhizal fungi (AMF), can significantly
enhance the removal efficiency of HMs from contaminated soils.
These microbes can also improve plant health, nutrient uptake, and
stress tolerance, thereby boosting the overall phytoremediation process.
The success of this bioremediation technology depends on the proper
selection and screening of plant species and AMF cultures to optimize
their effectiveness inmitigatingHMs from contaminated environments.
Future research should focus on optimizing AMF-based remediation
strategies, particularly in metal-polluted soils, to enhance ecological
sustainability and agricultural productivity. Several areas of research
could potentially improve the remediation of metal-contaminated soils
in the future. Some of these include:

• Developing more efficient and cost-effective methods for
removing or treating metal contaminants.

• Improving our understanding of the behavior and mobility of
metal contaminants in the environment, which could lead to
more targeted and effective remediation methods.

• Developing new technologies for detecting and measuring
metal contaminants in soil, which could enable more
accurate assessments of contamination levels and the
effectiveness of remediation efforts.

• Investigating alternative materials and methods for
immobilizing contaminants, such as natural or synthetic
zeolites, to overcome the limitations of traditional
stabilization/solidification methods.

• Investigating the use of new microorganisms, enzymes, or new
biotechnology approaches for bioremediation and making it
more efficient.

• Investigating the use of hybrid approaches, such as combining
phytoremediation with bioremediation or chemical treatment,
to increase the efficiency of remediation.

• Investigating the use of machine learning and AI tools to
optimize the effectiveness of remediation methods and better
predict the behavior of contaminants in different soil types.T
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• Conducting more long-term studies to assess the effectiveness
of different remediation methods and to identify any potential
negative effects on the environment or human health.
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