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The implementation of Chinese policies promoting fuel ethanol has significantly
influenced the land use structure, water resources, and soil environment in
ethanol raw material planting areas. This paper focuses on the Hulan River
Basin, a benchmark region for maize cultivation, to investigate the specific
crop allocation issues in relation to the impact of land use changes on water
quality. The study projects an environmentally and economically sustainable
structure for the cultivation of fuel ethanol raw materials using the CLUE-S
model and multiple linear programming. Additionally, the carbon
sequestration potential is assessed under different scenarios. Throughout the
study period, the net ecosystem productivity (NEP) in the Hulan River Basin
demonstrated variability, evidenced by a decrease of 33.96 gC·m−2·a−1 from
2010 to 2015 and a subsequent augmentation of 55.64 gC·m−2·a−1 from
2015 to 2020. Furthermore, the three scenarios (Grain Crop Priority Policy,
Fuel Ethanol Crop Priority Policy, and Carbon Storage Priority Policy)
effectively addressed the requirements for land use/cover types and enhanced
carbon sequestration within the study area. Consequently, the outcomes provide
a conceptual foundation for regional policymakers, providing insights into the
refinement of land use within ethanol crop zones and fostering the advancement
of the fuel ethanol industry, thus undergirding prospective land use strategies and
refinement from the water, energy, food, and carbon perspectives.
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Highlights

• The variation in crop water demand within the Hulan River
Basin is relatively small, indicating a limited disparity in water
requirements among different agricultural crops.

• The carbon sink exhibits distinct seasonal fluctuations, with
the winter season experiencing a comparatively lower level.

• The scenario simulation not only reduces regional non-point
source pollution and increases water storage capacity but also
enhances the regional carbon sink, providing a theoretical
basis for optimizing the structure of ethanol raw material
cultivation.

1 Introduction

In September 2017, following approval from the State Council, a
coalition of 15 ministries, including the National Development and
Reform Commission, unveiled the “Plan for the Expansion of
Biofuel Ethanol Manufacturing and the Advancement of Vehicle
Ethanol Gasoline Use.” This plan emphasized the need for a robust
expansion of advanced bioliquid fuels, such as cellulosic ethanol, to
accommodate the market’s ongoing demand. The strategy also set
ambitious targets to ensure that ethanol-blended gasoline is
universally available for vehicles by 2020 and to scale up the
production of cellulosic ethanol by 2025. The aim is to position
the technology, equipment, and industry at the forefront globally
while establishing a more comprehensive, market-driven
operational framework. However, in 2017, China’s biofuel
ethanol output was a modest 33.12 × 106 m3, representing just
3% of the global output. With an annual gasoline production
surpassing 104 million tons, biofuel ethanol constituted a mere
2% of the total gasoline production (Mao et al., 2018). This indicates
that the potential for biofuel ethanol growth in China is vast. Yet, the
bioenergy policy’s backing could result in the preferential cultivation
of energy crops like corn, cassava, and sugarcane, potentially
impacting the planting areas for other crops and altering the
internal structure of arable land. The extensive influence of
human activities on land use has become a pivotal factor in the
non-point source pollution of regional water environments. At
present, China predominantly utilizes first-generation biofuel
ethanol, predominantly derived from corn. Consequently, this
study has chosen to focus on the corn cultivation base in
Heilongjiang Province, China.

China, a nation with scarce water reserves, must prioritize the
strategic planning and rational distribution of water resources to
ensure sustainable agricultural water conservation (Yue et al., 2018).
Research on agricultural water-saving in typical biological ethanol
fuel planting areas should start with understanding the water
requirement of crops. Evapotranspiration (ET) of plants refers to
the total amount of water required by plants throughout their entire
growth cycle (Wei et al., 2018). The water demand at different stages
of crop growth is related to the transpiration and growth coefficient
of crops, and the calculation of transpiration requires the
Penman–Monteith formula (Schmidt and Zinkernagel, 2017).
The growth coefficient is not only related to crop types, but it is
also influenced by the geographical location of crops. Therefore,
many studies have used remote sensing (Hassan et al., 2022)

technology to study crop water demand on a large scale. In
addition to the issue of agricultural water-saving, the control of
agricultural non-point source pollution is also a current hot topic.
Xu et al. (2022) pointed out that agricultural non-point source
pollution is the most significant obstacle to the green development of
agriculture and the ecological protection of planting areas.
Agricultural non-point source pollution is characterized by
significant randomness in its formation process, complex
influencing factors, a wide distribution range, and a profound
impact. The formation process is complex, and the mechanism is
vague. Due to its long incubation period and significant harm (Chen
and Fu, 2000), its pollutants can enter the water system from the soil
through irrigation, resulting in excessive nitrogen and phosphorus
content in rivers (Wang et al., 2019). In the field of agricultural non-
point source pollution, research by He et al. (2022) has proved that
the main pollutants of agricultural non-point source pollution are
total nitrogen (TN) and total phosphorus (TP), which are also the
main governance objects in the control of agricultural non-point
source pollution. China’s growing population and urbanization
highlight the need for sustainable management of water, energy,
food, and carbon resources. A multi-objective optimization model
incorporating carbon emissions and sequestration was developed to
optimize crop structure and water allocation (Li et al., 2024; Wu
et al., 2025). This model provides scientific support for regional
green development and sustainable resource allocation strategies
applicable to similar areas.

To achieve the two major goals of agricultural water-saving and
non-point source pollution control mentioned above, it is necessary
to optimize the allocation of land use. Land use/cover layout refers to
the spatial distribution of different types of land use and is an
important basis for spatial regulation in land use planning. A large
amount of research has proven that changes in land use, especially in
a short period of time, can greatly affect the ecosystem of a certain
region, thereby changing the environmental level of the region
(Ndegwa Mundia and Murayama, 2009). Therefore, analyzing the
environment from the perspective of land use change is one of the
mainstream entry points for the current large-scale regional
environment (Wu et al., 2024). In order to better regulate various
types of land use within the research area, mainstream researchers
have used many software programs to assist (Zhang et al., 2013) in
establishing data models to better evaluate watershed ecological
issues from a macro perspective (Li and Zhang, 2019), including
SWAT (Liu et al., 2014; Ahmed et al., 2022) and InVEST (Liang
et al., 2017; Zhao et al., 2019). In this experiment, another small-
scale land use change model (CLUE-S) is used, which offers the
advantages of simple model principles and high accuracy. Many
current studies have used this model (Peng et al., 2020; Liu and
Wang, 2021; Zhao et al., 2019). Based on the CLUE-S model and
combined with SPSS, a known study area is predicted and simulated
using the method of multi-objective linear programming to obtain
the optimal balance between ecological environment protection and
economic development (Zhou et al., 2021; Su et al., 2024). This study
calculates the water demand for the entire growth cycle of crops in
typical fuel ethanol raw material crop planting areas. It analyzes the
land use changes in the research area in recent years, combining
social and economic factors such as policy restrictions and economic
benefits, as well as natural factors such as geographical
characteristics and crop characteristics, to find the optimal land
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use method that meets policy and environmental quality
requirements. It provides a reference basis for the ecological
environment protection and economic development of fuel
ethanol crop planting areas in the future. The research content is
mainly divided into the following three parts:

(1) Analysis of the water demand of main crops in the Harbin
section of the Hulan River Basin.

(2) According to the policy requirements, hydrological
constraints, environmental requirements, and social and
economic benefits, objectives and constraints are
established through multi-objective linear programming,
and the carbon storage of various crops in the study area
is quantified under different scenario assumptions to
determine the optimal land use allocation in the study area.

(3) Using the CLUE-S model, the land use situation in 2015 is
simulated based on the land use situation in 2010. When the
Kappa coefficient verifies the effectiveness of the model
simulation, the obtained optimal land use situation in the
study area is substituted to obtain a visualized land use
optimization design for the 2030 study area.

This study divides cultivated land into crop levels to provide a
scientific basis and more detailed management suggestions for local
agricultural land planning and soil management.

2 Materials and methods

2.1 Overview of the study area

The Harbin section of the Hulan River Basin is located in the
middle of Heilongjiang Province, covering an area of 856 km2. The
Hulan River is a tributary of the Songhua River and flows from

northwest to southeast in the study area, with a total length of
approximately 35 km. The region is located between 45°50′–46°10′
and between 126°15′–126°50′ (Figure 1) (Wang et al., 2021). The
selected area is a typical maize-growing area. The wet season in
Heilongjiang is from June to September; therefore, the main planting
period for crops in this research area is from May to October. The
main land use in the Hulan River Basin was cultivated land. The
percentage area of farmland was 75.6%, and the irrigated farmland
was 3.8%. The occupied areas of construction land and river land
were 7.9% and 5.6%, respectively. The topography of the research
area was plain, and the soil fertility was higher. The main soil types
in the maize-growing area were black soil and meadow soil. There
were several maize alcohol producers in the research area.

Based on the distinct characteristics of the wet season in the
region, the Penman–Monteith formula (ElNesr and Alazba, 2012)
was used to calculate the water demand of the main crops in the
region, and the results were used for subsequent land use/cover
planning in Equation 1:

ET0 � 0.408Δ Rn − G( ) + γ 900u2 es − ea( )/ Tmean + 273( )
Δ + γ 1.034u2( ) , (1)

where ET0 is reference crop evapotranspiration, mm/d; Rn is net
surface radiation, MJ/(m2·d); G is the soil heat flux MJ/(m2·d); Tmean

is the daily average temperature, °C; U2 is the wind speed at a height
of 2 m, m/s; es is the saturated water pressure, kPa; ea is the actual
water pressure, kPa; Δ is the slope of the saturated water pressure
curve, kPa/°C; and γ is the constant of hygrometer, kPa/°C.

According to the different stages of crop growth (initial, mid-
growth, maturity, etc.), Kc for different growth periods was obtained by
referring to the crop coefficient table provided by FAO, and the actual
crop evapotranspiration (ETc) was then calculated using Equation 2:

ETc � ET0 × Kc, (2)
where ETc is actual crop evapotranspiration, mm/d.

FIGURE 1
Overview of the maize planting area in the Hulan River Basin.

Frontiers in Environmental Science frontiersin.org03

Cui et al. 10.3389/fenvs.2024.1530694

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1530694


The deduction of effective precipitation (Pe) was calculated
using Equation 3:

Pe � P × Utilisation factor, (3)
where P is the total precipitation, mm. The utilization factor is
determined by factors such as soil type and topography.

Based on Pe obtained from the abovementioned calculation, the
irrigation water requirement (IWR) was calculated using Equation 4:

IWR � ETc − Pe, (4)
where the irrigation water requirement is recorded as 0 (no
irrigation required) when Pe > ETc.

2.2 Interpretation of land use

Landsat-TM remote sensing image data with cloud
volume ≤5% from 2010 to 2020 were downloaded from the
official website of NASA. The downloaded remote sensing
image data were preprocessed by radiometric calibration,
atmospheric correction, band synthesis, and image clipping.
According to the classification system of the Chinese Academy
of Sciences (CAS), land use was divided into farmland, forest,
grassland, water, construction, unused land, and wetland (the
first-level classification). Because of the different crop phenology
information, the farmland in the Hulan River Basin was further
divided into maize, soybean, rice, and other crops (the second-
level classification). The spatial distribution maps of land use
types were visualized using ArcGIS.

Due to the construction of a wetland park at the Hulan River
Estuary in the Hulan River research area in 2018, there was a
significant error in constructing the model using the 2020 land
use/cover situation. Therefore, the actual model was constructed
using the land use/cover change situation from 2010 to 2015, and the
2020 land use/cover situation was selected as the initial state for
future simulation. Figure 2A shows the land use/cover situation
under the first-level classification of the Hulan River research area in
2020, and Figure 2B shows the land use/cover situation under the
second-level classification of the same area in 2020.

2.3 CLUE-S model construction

The CLUE-S framework is designed to analyze transformations in
land use and land cover within a defined geographical area. It integrates
physical and environmental factors with socio-economic influences to
provide a comprehensive understanding of the spatial and temporal
dynamics of land use and land cover. Developed by a team of
researchers from Wageningen University in the Netherlands, led by
P.H. Verburg, the CLUE-S builds upon the foundational work of its
predecessor, the CLUE model. The model posits that regional shifts in
land use and land cover are propelled by the demand for these uses and
covers, with their distribution in equilibrium with regional land
demand, as well as the natural and socio-economic context.
Utilizing systems theory, the CLUE-S model manages the
competitive interactions between various types of land use and land
cover, enabling the concurrent simulation of their changes. The
theoretical underpinnings of the CLUE-S model encompass the
interconnectivity, stratification, rivalry, and relative stability inherent
in land use and land cover transitions.

2.3.1 Selection and testing of driving factors
The driving factor is an important part of the CLUE-S model.

Selecting driving factors that are highly correlated with the research
area for simulation can provide a more accurate analysis of land use
change in the region. The research area for land use/cover
simulation should have no less than seven driving factors,
including two categories: natural driving factors and humanistic
driving factors. The determination of seven driving factors in the
Hulan River research area is shown in Table 1.

The receiver operating characteristic (ROC) curves are instrumental
in assessing the precision of selected drivers in simulating land use
transitions within a study region. Figure 3 illustrates the ROC curves for
various land uses in the Hulan River study area, with values spanning
from 0.5 to 1, indicating their fitness for evaluation. A higher value
signifies a greater capacity to explain the data. The figure reveals seven
distinct land use/cover categories in the area, with water and
construction land uses exhibiting perfect explanatory power, as
indicated by an ROC value of 1. Wetlands have an ROC value of
0.94, indicating a strong explanatory capacity, while unused land and

FIGURE 2
Land use/cover situation of the Hulan River research area in 2020. (A) The first-level classification, (B) The second-level classification.
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grasslands have values of 0.84 and 0.88, respectively, also demonstrating
robust explanatory power. The ROC values for arable land and forests
are comparatively lower, at 0.77 and 0.76, yet they still surpass the
commonly accepted threshold of 0.75 for strong explanatory power.
Consequently, a thorough analysis indicates that the model developed
in this study possesses commendable explanatory capabilities.

2.3.2 Model file settings
The CLUE-S model includes a non-spatial analysis module and

a space allocation module. The non-spatial analysis module is used
to calculate the demand quantity of each category in the study area
in the target year, which needs to be calculated by external models or
mathematical methods. The spatial allocation module is based on

the input of land demand parameters and the spatial distribution
characteristics of driving factors and iteratively allocates the land
category ownership of grid units, thereby achieving spatiotemporal
simulations of land categories for each year. Table 2 shows all the
space allocation module files required for the CLUE-S model.

By comparing the land transfer situation in the Hulan River
research area between 2010 and 2015, combined with other existing
studies, the conversion elasticity of the Hulan River research area is
set as shown in Table 3.

2.4 Estimation of Net ecosystem
productivity

Net ecosystem productivity (NEP) is the difference between the
net primary productivity (NPP) of vegetation in an ecosystem and
the fraction of photosynthetic products consumed by soil
heterotrophic respiration (RH), which was used as a measure of
the carbon sink in Equation 5:

NEP � NPP-RH. (5)

2.4.1 Estimation of NPP based on the CASA model
This study used ArcGIS 10.4 for data processing to estimate the

NPP for the study area based on the CASAmodel. The CASAmodel
is based on light energy utilization. It was developed by Potter et al.
(1993). The model was subsequently refined by Potter and Klooster

TABLE 1 Selection of driving factors for the research area.

Hulan River research area Natural driving factors

DEM Slope Slope direction Distance from water

Social driving factors

Distance from road Distance from construction Gross agricultural product

FIGURE 3
ROC curves of each land use type in the Hulan River research area.

TABLE 2 Various documents required to build the CLUE-S model.

File name Document content

cov.x.x Land use/cover in the initial year

demand.in Various land demands year by year

region.fil Restricted area

sclgr.fil Driving factor

allow.txt Land transfer matrix

allocl.reg Logistic regression coefficient

main.txt Main parameter file
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et al. It is applied in the studies of the carbon cycle and vegetation
NPP (Potter et al., 1993).

NPP is calculated from the absorbed light and effective radiation
available to the plant, along with the actual light utilization rate. The
expression of NPP is shown in Equations 6–11:

NPP x, t( ) � APAR x, t( ) × ε x, t( ), (6)
where APAR(x, t) is the photosynthetic effective radiation absorbed
by pixel x during month t (g C·m−2·month−1) and ε(x, t) represents
the actual light energy utilization by pixel x during month t
(g C·m−2·month−1).

APAR x, t( ) � SOL x, t( ) × FPAR x, t( ) × 0.5, (7)
FPAR x, t( ) � αFPARNDVI + 1-α( )FPARSR, (8)

FPARNDVI � NDVI x,t( ) - NDVI i,min( )
NDVI i,max( ) - NDVI i,min( )

× FPARmax - FPARmin( )
+ FPARmin,

(9)
FPARSR � SR x,t( ) - SR i,min( )

SR i,max( ) - SR i,min( )
× FPARmax - FPARmin( ) + FPARmin,

(10)
SR x, t( ) � 1 +NDVI x,t( )

1 -NDVI x,t( )
, (11)

where SOL(x, t) represents the total solar radiation of pixel x in
month t (MJ C·m−2·month−1); FPAR(x, t) represents the proportion
of photosynthetically active radiation absorbed by the vegetation of
pixel x in month t; the constant 0.5 indicates the proportion of the
effective solar radiation (the wavelength is 0.38–0.71 μm) that the
vegetation can use to the total solar radiation; NDVI (i, max) and
NDVI (i, min) correspond to the maximum and minimum values of
NDVI for vegetation type I, respectively, while SRmax and SRmin
correspond to the percentage quantile at 5% and 95% of NDVI for
vegetation type i, respectively. α is the adjustment factor for both
methods of calculating FPAR, which is generally taken as 0.5.
FPARmax is taken as 0.95, and FPARmin is taken as 0.001.

The expression of ε(x, t) is shown in Equations 12–15:

ε x, t( ) � Tε1 x, t( ) × Tε2 x, t( ) × Wε x, t( ) × εmax, (12)
where Tε1(x, t) and Tε2(x, t) are the stress effects of low and high
temperatures on light energy utilization, respectively; Wε(x, t) refers
to the water stress effect coefficient; and εmax is the maximum light
energy utilization of vegetation under ideal conditions.

Tε1 is the reduction in vegetation first productivity due to the
limitation of photosynthesis by the intrinsic biochemical action of
the plant at low or high temperatures. It is calculated using
Equation 13:

Tε1 x, t( ) � 0.8 + 0.02 × Topt x( ) - 0.0005 × Topt x( )[ ]
2
, (13)

where Topt(x) is the mean monthly temperature (°C) at which the
vegetation NDVI value reaches its maximum.

Tε2 represents the trend of gradually decreasing plant light
energy utilization as the ambient temperature changes from
Topt(x) to high or low temperatures. It is calculated using
Equation 14:

Tε2 �
1.184

1 + exp 0.2 × Topt x( ) - 10 - T x, t( )[ ]{ }

×
1

1 + {1 + exp [0.3 × (- Topt - 10 + T x, t( ) ,]
(14)

where T(x, t) is the average monthly temperature. When the average
monthly temperature is 10°C higher or 13°C lower than the optimum
temperature Topt(x), the value of Tε2 (x, t) for that month is equal to
half the value of Tε2(x, t) when the average monthly temperature
T(x, t) was the optimum temperature Topt(x). The expression of
Wε(x, t) is shown in Equation 15:

Wε x, t( ) � 0.5 + 0.5 × E x, t( )/Ep x, t( ), (15)

where regional actual evapotranspiration E(x, t) is obtained
according to the regional actual evapotranspiration model
established by Zhou et al. (2002) and regional potential
evapotranspiration Ep(x, t) is obtained according to the
complementary relationship.

2.4.2 Estimation of RH

RH is calculated by referring to the empirical equation studied by
Pei et al. (2009). It is calculated using Equation 16:

RH � 0.22 × exp 0.0912T( ) + ln 0.3145R + 1( )[ ] × 30 × 46.5%,

(16)
where RH’s unit is g C·m−2·a−1; T is the temperature (°C); and R is
precipitation (mm).

2.5 Multi-objective linear programming

In addition to the spatial analysis module, other software
applications or programs shall be used to complete the non-
spatial analysis module. In this paper, the non-spatial analysis
module used LINGO 18.0 for multi-objective linear programming
(Yang et al., 2013). Interpreted data is used to create a land use
transfer matrix for the study area. Considering local policies,
agricultural water-saving, non-point source pollution control, and
socio-economic benefits, equations are established from
environmental and policy requirements; objective functions and
constraint equations are established; and optimal land use/cover
planning that meets all constraint conditions in the research area
is analyzed.

Based on the carbon storage data of the study area obtained
above, three assumptions are made for the possible future situation
of the study area, namely, the priority scenario of grain crops
(maximizing the planting area of grain crops), the priority

TABLE 3 Conversion elasticity of land use/cover types.

Farmland Forest Grassland Water Construction Unused land Wetland

0.6 0.8 0.3 0.9 0.9 0.2 0.3
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scenario of ethanol fuel crops (maximizing the planting area of
ethanol fuel crops), and the priority scenario of carbon storage
(maximizing the total carbon storage of the research area).

According to the secondary land use/cover classification, all the
land in the research area will be fully divided. The Hulan River
research area included 10 categories, namely, maize, forest,
grassland, water, construction, unused land, soybean, rice, other
crops, and wetland. Among them, maize, soybean, rice, and other
crops were integrated into the first-level classification of farmland.
Table 4 shows the land use/cover equation codes and initial year
(2020) allocation of the Hulan River research area.

The setting of constraint equations for the research area should
include the following three aspects:

(1) Land area constraints

The total area of the study area should remain unchanged during
the total research period.

X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10 � 85655.88.

(2) Indicator constraints

① Based on the purpose and practical requirements of
minimizing pollutants, following a literature review and research
by the same research group, it can be concluded that the main
pollutants in farmland are total nitrogen and total phosphorus.
Therefore, this paper integrates the existing research on soil nitrogen
and phosphorus loads in the research area conducted by our
research group and calculates the average nitrogen and
phosphorus loads of soil under different land use/cover types.
These values are used to represent the average nitrogen and
phosphorus load caused by this type of land use/cover, with
constraints aimed at minimizing nitrogen and phosphorus loads.
Figure 4 shows the spatial distribution of nitrogen and phosphorus
loads based on field studies and validated with published data.

Total nitrogen minimization:

MIN TN � X1*2035 + X7*1864 + X8*2027 + X9*1946.

Total phosphorus minimization:

MIN TP � X1*710 + X7*687 + X8*774 + X9*672.

② To achieve the goal of minimizing water consumption,
hypothesis constraints were applied to reduce water demand.
This study utilizes the ET0 calculator, a specialized program
developed by the FAO (Food and Agriculture Organization of
the United Nations). The software program integrates multiple
calculation methods and is based on the Penman–Monteith
equation, as mentioned in Equation (1). The irrigation water
demand for the study area is determined by subtracting the
effective precipitation, which is presented in Table 6 of Section 3.1.

MIN F(x) = ∑t
x�ibimi, where bi refers to the unit water

consumption of the land use/cover type i and mi refers to the
area of the land use/cover type i.

MINW � X1*252.95 + X7*121.90 + X8*201.512 + X9*192.92.

③ To achieve the goal of maximizing economic benefits, the
agricultural product wholesale website was consulted to obtain the
purchase prices of the main agricultural products in the research
area. Assuming the goal was to maximize economic benefits, an
equation was constructed for this purpose. Economic benefits are
embodied in the average purchase price of crops and total theoretical
maximum output within a 1-year cycle (Table 5).

MAX F(x) =∑t
x�iaimi, where ai refers to the output efficiency per

unit area of the land use/cover type i and mi refers to the area of the
land use/cover type i.

MAX Y � X1*260000 + X7*140000 + X8*210000 + X9*300000.

(3) Assumption scenario constraints

Under the three set scenario assumptions, constraints were
established under different hypothetical conditions. The order of
priority was to maximize the planting area of grain, fuel ethanol
crops, and carbon sequestration.

TABLE 4 Regression equation codes and initial year area of the research area.

Land use/cover Code Allocation in 2020 (hectare)

Maize X1 35,719.2

Forest X2 602.91

Grassland X3 2,209.32

Water X4 3,168.36

Construction X5 7,486.11

Unused land X6 3,322.35

Soybean X7 2,226.51

Rice X8 3,276.18

Other crops X9 25,944.93

Wetland X10 1,700.01

Farmland X1+X7+X8+X9 67,166.82

Total — 85,655.88
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① Maximizing the planting area of grain: ensuring the
maximization of the planting area of grain crops (rice and maize).

MAX R � X1 + X8.

②Maximizing the planting area of fuel ethanol crops: ensuring
the maximization of the planting area of fuel ethanol crops (maize).

MAX R � X1.

③ Maximizing carbon sequestration: ensuring the
maximization of land use/cover types with significant carbon
sequestration. The calculation process is detailed in Section 2.4 of
this paper. The carbon sink results are shown in Table 7 of Section
3.3. The carbon sink capacity of each land use type is considered the
key indicator for the equation as follows:

MAX C � X1* 352.78 + X2* 733.14 + X3* 339.02 + X6* 293.68

+ X7* 374.78 + X8* 247.85 + X9* 337.33.

The overall technical route of the study is shown in Figure 5.

3 Results and discussion

3.1 Water demand of the main crops

The ET0 calculator, a specialized program developed by the Food
and Agriculture Organization of the United Nations (FAO), is used
to assist in the calculation of ET0. The water demand calculation

results are shown in Table 6. In the Hulan River Basin, there is no
significant variation in the overall irrigation water demand. Notably,
maize cultivation exhibits the highest irrigation water demand
(252.77 mm) because of a higher Kc factor, while soybean
cultivation has the lowest irrigation water demand (121.90 mm),
representing a minimal difference of 130.87 mm between the
two crops.

3.2 Land use interpretation results

The land use types of the Hulan River Basin included farmland,
forest, grassland, water, construction, unused land, and wetland.
Among them, the unused land was mainly swamp. According to the
actual crop structures, farmland was subdivided into maize, rice,
soybean, and other crops. The interpretation results of the three
terms are displayed in Figure 6. The river channel at the outlet into
the Songhua River was gentle and had abundant water. From 2010 to
2015, construction land was mostly distributed on the north bank.
After 2015, the area of construction land increased across the river.

Figures 7, 8 depict the dynamics of land use transfers in the
Hulan River Basin over 2010–2020. During the period of 2010–2015,
the most prominent alteration in land use, in terms of area
modification, was observed with the conversion of other
cultivated land to maize cultivation. This transformation covered
an extensive area of approximately 6704.46 ha, primarily
concentrated in the northern and northwestern sectors of the
study area. Furthermore, a significant land area of approximately
4644.27 ha underwent a transition from maize to other crops, with
the main concentration observed in the southern and western
sectors of the study area. Additionally, in the western part of the
study area, an area of approximately 1392 ha, previously dominated
by soybean, was predominantly converted to maize. Among the land
use transfers involving forest, grassland, water, construction, and
wetland, the transition towardmaize exhibited themost pronounced
spatial change. Consequently, there was a significant expansion in
the extent of maize from 2010 to 2015. Notably, approximately 78%
of the region remained unaffected by any alterations in land
use types.

FIGURE 4
Nitrogen and phosphorus content of soil of the Hulan River Basin [(A) TN; (B) TP].

TABLE 5 Economic factors for the main crop types of the study area.

Average purchase price of crops (yuan/kg)

Maize Soybean Rice Cabbage Potato

4 7 3.5 1 1.2

Theoretical maximum output (kg/ha)

65,000 20,000 60,000 300,000 250,000
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From 2015 to 2020, the most prominent land use change in the
Hulan River Basin was the conversion of maize to other crops,
encompassing approximately 9161.64 ha. It exhibited a wide
distribution, albeit with relatively lower occurrences observed in
the southeastern direction. The second noteworthy land use change
involved the conversion of beach land to unused land, amounting to
approximately 1953.36 ha, primarily concentrated near the
riverbanks in midstream and downstream of the river.
Additionally, there was a significant and widespread
transformation of approximately 2918.61 ha of other crops
into maize.

3.3 Distribution characteristics of carbon
sink in the Hulan River basin

The Hulan River Basin’s carbon sink was estimated using the
CASA model. According to the results, the carbon sink was
estimated to be 329.35 gC·m−2·a−1 in 2010, but it decreased to
295.59 gC·m−2·a−1 in 2015. In 2020, 350.76 gC·m−2·a−1 of the
carbon sink was achieved. According to Zhou et al. (2023),
which covered the Heilongjiang Province from 2010 to 2020, the
average yearly NEP was 329.77 gC·m−2·a−1. The NEP ranged from
281.38 gC·m−2·a−1 to 380.07 gC·m−2·a−1, suggesting a consistent trend
with this paper. Specifically, between 2010 and 2015, NEP in the
Hulan River Basin decreased by 33.96 gC·m−2·a−1. However, from
2015 to 2020, NEP increased by 55.64 gC·m−2·a−1. For each land use
type, the carbon sink capacity is shown in Table 7.

Figure 9A illustrates the temporal distribution pattern of the
Hulan River Basin’s NEP, with an initial increase followed by a
decrease. In 2010, the highest NEP was observed in July, reaching
107.08 gC·m−2·a−1. The NEP levels in January, February, and
December were comparatively lower, ranging from roughly 0.5 to
0.6 gC·m−2·a−1. The peak of NEP in 2015 was measured in August at
78.67 gC·m−2·a−1, which was less than the maximum values
documented for 2020 and 2010. In addition, there was a slight
decrease in NEP in April, and the lowest monthly average value,
0.44 gC·m−2·a−1, appeared in December. In 2020, the carbon sink in
the Hulan River Basin exhibited its highest monthly average value in
July, reaching 114.51 gC·m−2·a−1. Conversely, the lowest monthly
average value was observed in January, amounting
to 0.35 gC·m−2·a−1.

According to Figure 9B, variations in land use types and their
per unit area carbon sink capacities were observed in 2010, 2015, and
2020. Notably, forests showed higher NEP values due to their higher
vegetation cover and carbon sequestration capabilities, while
grassland and farmland showed varying performance. As the
main crop in the area, soybean obtained relatively higher carbon
sequestration than maize and rice. Noppol et al. (2022) found that
the conversion of forest to agricultural land significantly reduced
carbon stocks, while some conversions to grassland increased
carbon stocks. Soil erodibility varied with the type of land use,
with lower erodibility in grasslands due to higher organic carbon
content and lower silt concentration. In contrast, chernozem soil,
commonly found in Heilongjiang Province, typically has higher silt
and clay concentrations, which benefits the fertile agricultural

FIGURE 5
Technical route of the study.

TABLE 6 Water demand data of different crops and irrigation water demand calculated using the Penman–Monteith formula in the study area (mm).

Crop type Kc Water demand Effective precipitation Irrigation water consumption

Hulan River Basin Maize 1.2 467.11 214.34 252.77

Soybean 0.5 336.25 214.34 121.90

Rice 1.2 390.08 188.57 201.51

Others (cabbage and potato) 1.1 369.01 176.09 192.92
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FIGURE 6
Land use/cover of the Hulan River Basin [(A) 2010; (B) 2015; and (C) 2020].

FIGURE 7
Chords of land use transfer in the Hulan River Basin [(A) 2010–2015 and (B) 2015–2020].
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practices of maize and soybean cultivation. Therefore, unlike the
grassland ecosystems of northern China (Li et al., 2023), policies
aimed at returning forest or grassland grazing to grassland areas are
not suitable for the Hulan River Basin.

Previous papers have indicated that climate change has certain
influences on carbon sinks (Wang et al., 2021; Xu et al., 2023).
Temperature and precipitation changes are factors directly
influencing vegetation photosynthetic activity and soil respiration.
Higher temperatures can enhance photosynthesis up to a threshold,
while extreme precipitation variability may disrupt carbon
sequestration (Wang et al., 2023; Arunrat et al., 2018). The
stimulation of vegetation’s photosynthetic activity and subsequent
vegetation growth are facilitated by the elevated temperatures (Yuan
et al., 2023). Moderate precipitation plays a critical role in facilitating
optimal vegetation growth. Inadequate or excessive rainfall can exert
deleterious impacts on vegetation growth, thereby significantly
influencing the magnitude of NEP (Li et al., 2021). The crucial
developmental phase for vegetation, wherein it grows from initiation
to maturity, typically occurs during June and July each year. NEP for
all 3 years peaks between June and September, indicating that the
carbon absorption capacity of ecosystems is the strongest in the
warm seasons. After the peak, NEP rapidly decreases by November,
showing a clear seasonal pattern. The seasonal variations in
temperature and precipitation directly influence NEP, resulting in
increased NEP during these months. In 2020, the Hulan River Basin
experienced relatively high levels of temperature and precipitation
from June to August, ensuring optimal water-thermal conditions for
vegetation and effectively enhancing vegetation’s photosynthetic
capacity. Consequently, land use types such as grassland and
soybean exhibited the highest carbon sink per unit area among
the 3 years. Conversely, lower precipitation levels were recorded
from June to August 2015, contributing to regional aridity and
restricted vegetation growth. Hence, grassland, soybean, and other

land use types demonstrated the lowest carbon sink per unit area in
that particular year.

The Hulan River Basin is in Heilongjiang Province, which is
characterized by a cold temperate and temperate continental
monsoon climate. Summers are hot, while winters are frigid and
dry, with temperatures dropping below 0°C. There were discernible
seasonal fluctuations in NEP. The carbon sink per unit area
underwent a substantial increase during the months of April and
May, whereas a rapid decrease was observed after July and August.
Previous studies have provided substantial evidence to support the
notion that precipitation exerts primary control over the NEP of
China’s terrestrial systems (Zhang et al., 2023). Hence, the carbon
sink per unit area in July 2015 exhibited a notable decrease
compared to the peak values observed in July 2010 and 2020. In
both 2015 and 2020, a discernible decrease in monthly NEP was
observed. This decrease can be attributed to agricultural activities
and the significant reduction in April precipitation levels, especially
when compared to those of 2010. The observed decrease in monthly
NEP during these periods can be attributed to unfavorable
hydrothermal conditions.

The carbon sink classification in the Hulan River Basin used the
natural breakpoint method, where the range of 0–253 gC·m−2·a−1
was designated as the low carbon sink zone, 253–426 gC·m−2·a−1 was
designated as the medium carbon sink zone, and
426–1,075 gC·m−2·a−1 was designated as the high carbon sink
zone. As depicted in Figure 10, in 2010, the low carbon sink
regions were predominantly located near the southeastern
floodplains and riverbanks, with a substantial portion classified as
medium carbon sink zones. Conversely, the high carbon sink regions
are primarily concentrated in the northwestern area of
the study area.

From 2010 to 2015, there was a noticeable decrease in the carbon
sink. The low carbon sink areas remained concentrated near the

FIGURE 8
Spatial distribution of land use transfer in the Hulan River Basin [(A) 2010–2015 and (B) 2015–2020].

TABLE 7 Carbon sequestration of various land use types in the study area (g/m2).

Grassland Forest Rice Maize Unused land Soybean Other crops

339.02 733.14 247.85 352.78 293.68 374.78 337.33
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southeastern floodplains and riverbanks, while the medium carbon
sink zones showed a more extensive distribution. Notably, the high
carbon sink areas experienced a significant reduction in the
northwestern part of the study area.

However, in 2020, there was a marked increase in carbon sink.
The low carbon sink areas persisted near the southeastern
floodplains, albeit with a diminished spatial extent. The medium
carbon sink zones demonstrated a pronounced increase and wider
distribution. The high carbon sink regions were concentrated in the
northwestern and northern parts of the study area. Over the period
from 2010 to 2020, the Hulan River Basin witnessed an overall
increase in NEP. The northwest had a discernible decrease in NEP
and an increase in carbon sinks close to the water.

3.4 Land use scenario assumptions in the
Hulan River Basin

Table 8 shows the results of multiple linear regression in the
research area. From the data, under the Grain Crop Priority Policy,
the planting area of rice and maize has reached maximum, and the

rice area has increased significantly compared to the other two
assumptions and the situation in 2020. Under the Ethanol Crop
Priority Policy, the priority of rice yield is reduced, andmaize yield is
further expanded to reach the maximum value among various
assumed types. Under the carbon sequestration priority policy,
the area of forest and grassland has been increased to the
maximum of the three assumptions, resulting in the farmland
area under this assumption reaching the minimum of the three
assumptions. Under the three policies, the areas of other crops,
unused land, and wetland have all decreased, indicating that these
three types of land are relatively unimportant in policy planning.

3.4.1 Grain Crop Priority Policy
Figure 11A shows the land use/cover situation under the Grain

Crop Priority Policy in 2030, and Figure 11B shows the land use/
cover change situation from 2020 to 2030. The specific area demand
value can be found in Table 8. Under this policy, the area of maize,
soybean, and rice has all increased. At the same time, while the total
farmland area increased by 3255.8 ha, the area of other crops except
for maize, soybeans, and rice decreased by 1262.41 ha, and other
land use/cover types also had varying degrees of reduction. The area

FIGURE 9
(A) Monthly average NEP of the Hulan River Basin. (B) NEP values for different land use types in the Hulan River Basin. (C) Monthly average
temperature and precipitation of the Hulan River Basin.
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of unused land and wetland on the north bank of the estuary has
decreased, while the grassland has increased, having been
transferred from water and unused land. This reflects efforts to
restore natural habitats or use previously undeveloped land. The
transformation of unused land to grassland could indicate a positive
trend toward land restoration or a strategy to prevent land
degradation. However, the change in water area might raise
environmental concerns due to the loss of biodiversity and

natural water regulation provided by wetlands. In this situation,
the area of maize and rice increases, with the main increase being in
the unused land on the south bank of the estuary, while the rice area
mainly increases near the existing rice planting area.

3.4.2 Fuel Ethanol Crop Priority Policy
Figure 12A shows the land use/cover situation under the Fuel

Ethanol Crop Priority Policy in 2030, and Figure 12B shows the

FIGURE 10
Spatial distribution of NEP (gC·m−2·a−1) in the Hulan River Basin [(A) 2010; (B) 2015; and (C) 2020]. Spatial distribution of changes in NEP (gC·m−2·a−1) in
the Hulan River Basin [(D) 2010; (E) 2015; and (F) 2020].
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land use/cover changes from 2020 to 2030. The specific area’s
demand value can be found in Table 8. In this scenario, the area
of maize as the only fuel ethanol crop in the research area has
increased by 3572.8 ha, while all other land use/cover areas have
decreased, with soybean, rice, and other crops decreasing by
223.51 ha, 328.18 ha, and 159.41 ha, respectively. Under the Fuel
Ethanol Crop Priority Policy, the area of maize has significantly
increased, like in scenario 1. The main growth point of maize is
on the south bank of the estuary. At the same time, due to the
reduction in soybean, rice, and other crops, a portion of the
farmland near maize has also been converted to maize
cultivation. The situation is similar to the Grain Crop Priority
Policy, which shows the dual actions of maize in food security
and fuel ethanol production promotion. This scenario illustrates

a dynamic landscape where agricultural expansion, especially
maize cultivation, is prominent, along with significant
transitions from natural or unused lands to more
productive uses.

3.4.3 Carbon Storage Priority Policy
Figure 13A shows the land use under the Carbon Storage

Priority Policy in 2030, and Figure 13B shows the land use/cover
change from 2020 to 2030. The specific area demand value can be
found in Table 8. In this scenario, the area of forest and grassland,
which have the largest carbon sink per unit area, increased by
61.09 ha and 221.68 ha, respectively, and the area of maize
increased by 5.44%, with a total area of 1943.97 ha. The same
trend appears in soybean cultivation. All other land use/cover

TABLE 8 Multiple linear regression results in the research area (hectare).

Land use/cover 2020 2030 scenario 1 2030 scenario 2 2030 scenario 3

Maize 35,719.20 38,975.00 39,292.00 38,063.00

Forest 602.91 542.00 542.00 681.00

Grassland 2,209.32 1,988.00 1,988.00 2,631.00

Water 3,168.36 3,168.36 3,168.36 3,168.36

Construction 7,486.11 6,737.00 6,737.00 6,737.00

Unused land 3,322.35 1,662.00 1,662.00 1,662.00

Soybean 2,226.51 2,450.00 2003.00 2,450.00

Rice 3,276.18 3,921.00 2,948.00 2,948.00

Other crops 25,944.93 24,682.52 25,785.52 25,785.52

Wetland 1,700.01 1,530.00 1,530.00 1,530.00

Total 85,655.88 85,655.88 85,655.88 85,655.88

a2030 scenario 1: grain crop planting priority; 2030 scenario 2: ethanol crop planting priority; 2030 scenario 3: maximize carbon sequestration priority. Meaning of symbol a: It explains the

specific scenarios corresponding to each one.

FIGURE 11
Simulation results under the Grain Crop Priority Policy in the research area. (A) 2030 (B) Change situation from 2020 to 2030.
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areas decreased, including rice and other crops by 328.18 ha and
159.41 ha, respectively. Maize and soybean perform well in
carbon storage, especially in Heilongjiang Province where a
suitable planting environment is provided. The prominent
constraint for maize expansion is the water pollution effect,
which reminds the government to pay attention to non-point
source pollution prevention while promoting maize planting. In
the southern part of the area, construction land is transferred to
maize, which may have benefits for water pollution control and
carbon sink purposes. In this scenario, the forest area and
grassland area have significantly increased, and the main
growth point of grassland is still the unused land on the south
bank of the estuary. It is speculated that due to the difficulty of
converting to forest, the growth rate of grassland in this scenario
is even higher than forest. Unused land is relatively easily
transferred because of its high elasticity. It transforms
grassland near the water body into a transition zone from
water to wetland.

3.5 Carbon sinks of different scenario
assumptions

The carbon sink status for three scenarios in 2030 was estimated
by calculating the average NEP for each land use category based on
the NEP values in 2020. The results are shown in Figure 14.
Compared to 2020, scenario 1 shows a significant increase in the
cultivated areas of maize and rice, withmaize having a relatively high
carbon sink per unit area. NEP has increased to approximately
4.67 × 103 tC compared to 2020. In scenario 2, NEP has increased by
3.71 × 103 tC compared to 2020. In scenario 3, the primary focus is
on maintaining the carbon sink in the study area. Therefore, the
forest and grassland areas with higher carbon sink potential have
expanded. This has led to an overall improvement in the regional
carbon sink capacity. Scenario 3 also has the highest NEP value
among the three scenarios simulated. Compared to 2020, scenario
3 shows a substantial increase in the NEP value, with an addition of
8.32 × 103 tC.

FIGURE 12
Simulation results under the Fuel Ethanol Crop Priority Policy in the research area. (A) 2030 (B) Change situation from 2020 to 2030.

FIGURE 13
Simulation results under the Carbon Storage Priority Policy in the research area. (A) 2030 (B) Change situation from 2020 to 2030.
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4 Conclusion

NEP in the Hulan River Basin follows a pattern of initial increase
followed by a subsequent decrease over the annual cycle. Between
2010 and 2015, NEP decreased by 33.96 g of carbon per square meter
per year, whereas from 2015 to 2020, an increase of 55.64 g of carbon
per square meter per year was observed. The fluctuations in NEP are
intricately linked to climatic conditions and land use practices
within the Hulan River Basin. Spanning the decade from 2010 to
2020, areas with low carbon sequestration capabilities were
predominantly found in the southeast of the region, showing a
notable reduction in their geographic spread. Moderate carbon sink
areas were more ubiquitous, with a lower frequency in the
northwest. High carbon sink areas were largely situated in the
northwest, forming the primary concentration of such zones.

The land demand is simulated within the study area under
three distinct policy frameworks: the Grain Crop Priority Policy,
the Fuel Ethanol Crop Priority Policy, and the Carbon Storage
Priority Policy. This simulation was conducted to translate the
developed CLUE-S model and ArcGIS outputs into a visual
representation of future land use/cover. The results reveal that
under scenario 1, which ensures regional food production, there
is an expansion of arable land by 1262.41 ha. Scenario 2,
prioritizing regional fuel ethanol output, observes an increase
in the area dedicated to maize cultivation by approximately
3572.8 ha. Scenario 3, focused on bolstering the regional
carbon sink, leads to substantial growth in both forested and

grassland areas. Collectively, these three hypothetical scenarios
within the study area effectively fulfill the preset requirements for
the corresponding land use/cover categories.

The simulation of land use/cover in the research area in
2030 under four possible future scenarios was visualized based on
the secondary classification. The conclusion proves that the land
use/cover planning of typical fuel ethanol crop planting areas
under different policy orientations can meet the needs of this
policy, and its change pattern conforms to the literature
description and actual situation, which has practical
reference value.

In addition, the study assessed the carbon sequestration
performance across a range of hypothetical scenarios,
demonstrating a substantial increase in carbon capture for all
scenarios compared to the baseline year of 2020. The outcomes
highlight the substantial impact of each scenario in enhancing
regional carbon sequestration potential, offering substantial
empirical data and theoretical support for local policy
formulation. Crucially, the study’s findings are of considerable
importance for shaping future regional land use strategies and
refining land use configurations.
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FIGURE 14
Various scenario simulations and 2020 NEP in the Hulan River Basin.
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