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The changes in global air pollutant concentrations influenced by the COVID-19
lockdown have been widely investigated. The lack of clarity regarding the
individual contributions to restricted human activities (i.e., transportation) has
limited the understanding of the health impacts of the lockdown. In this study, an
efficient chemical transport model (GEOS-Chem) was employed to simulate the
concentration changes in air pollutants (PM2.5, NO2, and O3) associated with
emission reductions in land transportation and the corresponding health benefits.
The simulated results suggested that transportation-related PM2.5, NO2, and O3

reduced by 20%, 36%, and 55%, respectively. The reduction in O3 concentrations
presented regional variations, with percentages ranked as follows: China (67%) >
India (56%) > Europe (−81%) > the US (−86%), indicating the various intensities of
secondary transformations with spatial relevance. The health benefits were also
simulated, and the all-caused mortalities were estimated to be 63,547 (95% CI:
47,597, 79,497), 52,685 (95% CI: 32,310, 73,059), and 231,980 (95% CI: 210,373,
253,586) for the reduced concentration of PM2.5, NO2, and O3 globally,
respectively. Transportation-related O3 reduction contributed the largest
proportion (~67%) to global health benefits, further emphasizing the global
relevance and severity of O3 pollution. Our study confirms that the health
benefits of transportation emission reduction during the COVID-19 lockdown
were considerable and provides relevant simulated data as supporting evidence.
We suggest that further coordinated efforts to restrict certain pollutants
worldwide should focus on controlling the global O3 concentrations to
protect people from severe O3 exposure.
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1 Introduction

Land transportation is a major global source of air pollutants.
Numerous studies have demonstrated that emissions from road and
rail transport sectors contribute significantly to acid deposition, air
pollution, and climate change (AlKheder, 2024; Colvile et al., 2001;
Rodríguez-Sánchez et al., 2024). For example, Li and Managi
estimated that a 6.17 billion-kilometer (km) increase in on-road
transportation per square kilometer could lead to a 1-μg/m³ increase
in county-level PM2.5 concentrations across the contiguous
United States (Li and Managi, 2021). Mertens et al. quantified
that land transport emissions contribute to 18% of ozone
concentrations in North America (Mertens et al., 2018).
Additionally, there is growing concern about the impact of land
transportation on urban air quality and human health (Allaouat
et al., 2024; Priyan et al., 2024; Rajagopal et al., 2024; Sang et al.,
2022). Stevenson et al. estimated that private motor vehicles are
responsible for 826 disability-adjusted life years (DALYs) per
100,000 population (Stevenson et al., 2016). Given these
significant impacts, it is crucial to quantify the contribution of
the land transportation sector to air quality and human health,
which would enable local governments to develop targeted strategies
to mitigate these public health risks (Di et al., 2017).

A growing body of research has focused on the contribution of
land transportation to air pollution (Shen et al., 2024; Tong et al.,
2020; Xu et al., 2024; Yan et al., 2022; Zara et al., 2024). Tong et al.
assessed the impact of on-road vehicles on PM2.5 emissions and
human health in Beijing, finding that median vehicle-related PM2.5

concentrations in the city exhibited significant weekly variations,
with higher values (2.68 μg/m³) on weekdays and lower values
(1.82 μg/m³) on weekends (Tong et al., 2020). Later, Yan et al.
reported that the vehicle-related contribution to PM2.5 levels
increased from 34% to 63% between 2013 and 2020 (Yan et al.,
2022). However, most current studies have focused primarily on the
regional scale, with few exploring the global contribution of land
transportation to air pollution (Bhardwaj et al., 2023; Jiang et al.,
2022; Kim et al., 2024; Le Hong and Zimmerman, 2021).
Quantifying the impact of land transportation on air quality at a
global level is crucial for identifying hotspots and proposing
stringent control measures to mitigate environmental and
health damage.

The onset of the COVID-19 pandemic at the end of
2019 significantly reshaped normal social and economic activities
through strict lockdown measures, including stay-at-home orders
and road closures (Ansari and Ramachandran, 2024; Liu et al.,
2021). These temporary lockdowns led to a substantial reduction in
anthropogenic emissions, particularly those from land
transportation. On a global scale, Hoang et al. confirmed that
NOX emissions showed a 20% decrease in early 2020 compared
with the same period in 2019 (Hoang et al., 2021). Moreover, land
transportation emissions experienced a 50%–80% decrease around
the world, significantly higher than reductions observed in other
sectors (Doumbia et al., 2021). Furthermore, human health was also
greatly impacted by the concentration of pollutants, which was
widely predicted and simulated (Chen and Hoek, 2020; Kyrychenko,
2024; Schraufnagel et al., 2019). However, the health benefits of
COVID-19 lockdown-resulted air quality shifts were only
investigated regionally (i.e., in Eastern Indo-Gangetic Plain and

China (Jain et al., 2024; Ye et al., 2021)). The abrupt COVID-19
event provided an unprecedented chance to quantify the significant
air quality and health benefits of land transportation emission
reduction, which could provide a scientific basis for the proposal
of future emission control measures (Berman and Ebisu, 2020; Li
et al., 2021; Ma et al., 2024).

It should be noted that although the lockdown of COVID-19
has resulted in many consequences for the global economy,
health benefits were benefitted from these restrictions. The
reduction in pollutant emissions was particularly important
when considering the long-term health benefits. Emission
reductions from numerous sources reduced their contribution
to global complex pollution, thus leading to fewer cases of death
in relation to specific source emissions (Jain et al., 2024; Liu et al.,
2021; Sacks et al., 2020). Therefore, the investigation of health
benefits resulting from global emission reductions is necessary to
better understand the health effects of pollutants, which should
also be part of the long-term effects of COVID-19 (Ansari and
Ramachandran, 2024; Li R. et al., 2023; Ling et al., 2023; Mueller
et al., 2023; Tong et al., 2020; Zhang et al., 2021). In this study, a
chemical transport model was used to quantify the
concentrations of PM2.5, NO2, and O3 associated with land
transportation emissions from February to April in 2019 and
2020. Subsequently, the differences in absolute concentrations
and health impacts of these air pollutants between 2019 and
2020 were calculated. Lastly, the health benefits resulting from
the reduction in land transportation emissions were assessed.

2 Materials and methods

2.1 Field measurements

All the field measurements for atmospheric PM2.5, NO2, and O3

focus on East Asia, India, Europe, and the United States. The
hourly ambient PM2.5, NO2, and O3 observations across China
during 2019–2020 were downloaded from the website http://
beijingair.sinaapp.com/. The observation network in China
possesses more than 2000 monitoring sites, and these sites are
mixed with urban, suburban, and rural regions (Supplementary
Figure S1). The ambient PM2.5, NO2, and O3 levels were
measured using a continuous monitoring system, the
chemiluminescence method (TEI Model 42i from Thermo
Fisher Scientific Inc., USA), and the UV spectrophotometry
method (TEI model 49i from Thermo Fisher Scientific Inc.,
USA). The monthly PM2.5, NO2, and O3 concentrations in
other countries of East Asia and Southeast Asia from 2019 to
2020 were collected from the Acid Deposition Monitoring
Network in East Asia (EANET). The daily PM2.5, NO2, and O3

datasets were collected from the Central Pollution Control Board
(CPCB) database (https://app.cpcbccr.com/ccr/#/caaqm-
dashboard-all/caaqm-landing). The ground-level PM2.5, NO2,
and O3 datasets in more than 100 sites across Europe during
2019–2020 were downloaded from the European Monitoring and
Evaluation Programme (EMEP) (www.emep.int). The daily
ambient PM2.5, NO2, and O3 datasets in more than 200 sites
during 2019–2020 across the United States were downloaded
from the website https://www.epa.gov/.
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2.2 GEOS-Chem simulation

GEOS-Chem (v13.4.0) was employed to estimate PM2.5, NO2,
and O3 concentrations during February–April in 2019 and 2020.
This model comprises a detailed simulation of tropospheric
NOx–VOC–O3–aerosol chemistry mechanism (Mao et al., 2010;
Park et al., 2004). Wet deposition includes the processes of sub-grid
scavenging in convective updrafts, in-cloud rainout, and below-
cloud washout (Liu et al., 2001). Dry deposition was calculated on
the basis of a resistance-in-series model (Wesely, 2007). This model
was driven by MERRA-2 assimilated meteorological factors (Li L.
et al., 2023; Ou et al., 2022; Su et al., 2023). A global simulation was
conducted at a spatial resolution of 2 × 2.5 (Ling et al., 2023; Qiu
et al., 2020; Weagle et al., 2018). The anthropogenic emission
inventory, including land transportation emissions in 2019 (0.5°),
was collected from the Community Emissions Data System (CEDS,
https://github.com/JGCRI/CEDS). Afterward, the daily emissions
during February–April 2020 were calculated based on the value in
2019 and updated adjustment factor (for each source) proposed by
Doumbia et al. (2021). Natural emissions include open biomass
burning, lightning, and soil emissions. Open fire emissions derived
from the Global Fire Emissions Database (GFED) in 2019 and
2020 were used for simulations (Chen et al., 2023). Lightning
NOX emissions were estimated using the average of LIS/OTD
satellite observations during 1995–2013 (Hudman et al., 2012;
Murray et al., 2012). For the isolation of land transportation
contribution, we calculated the total concentrations of air
pollutants derived from all the sources and then subtracted the
concentrations derived from all the sources excluding land
transportation emissions. Finally, the concentrations derived from
land transportation alone could be determined. The modeling
performance of the contribution from individual sources cannot
be validated, and thus, we only assessed the overall predictive
accuracy of air pollutants from all the sources. In our study,
some statistical indicators (supporting information) were applied
to evaluate the predictive accuracy of the chemical transport model
based on the ground-level observations.

2.3 Health effect assessment

In our study, the premature mortality associated with short-term
PM2.5, NO2, and O3 exposures was estimated. The premature mortality
linked with excessive air pollutant exposure was calculated based on the
following formula, as previously recommended by Manojkumar and
Srimuruganandam (2021) and Sacks et al. (2020).

H � x0 1 − 1/ exp β C − C0( )[ ]( ) × Population, (1)
RR � eβ C−C0( ), (2)

where H denotes the premature all-cause mortality, owing to
excessive PM2.5, NO2, and O3 exposures. x0 represents the
baseline mortality. β and RR represent the short-term
exposure–response coefficient and relative risk for PM2.5, NO2,
and O3 pollution, respectively (Supplementary Table S1). C and
C0 are exposure concentration and theoretical minimum-risk
exposure level, respectively. Population is the total population in
each year. The log-linear exposure–response function was

established using meta-analysis, which has been obtained from
Chen et al. (2018); Hang et al. (2022); Song et al. (2023); and
Yang et al. (2021).

3 Results and discussion

3.1 Model evaluation

The modeling performance of three pollutants—PM2.5, NO2, and
O3—was evaluated using observed concentrations from field
measurements (Section 2.1) and simulated concentrations from
GEOS-Chem (Section 2.2). Ground-level observations of PM2.5,
NO2, and O3 from over 2,000 cities worldwide were used to assess
the predictive accuracy of the GEOS-Chem model. Notably, as there
were insignificant differences between the correlations for
February–April 2019 and 2020, the evaluation focused on each
individual pollutant, with the results presented in Figure 1. The
correlation coefficients (R values) between the observed and
simulated concentrations for PM2.5, NO2, and O3 were 0.61, 0.65,
and 0.72, respectively, for the period of February–April in 2019 and
2020. Furthermore, the root mean square error (RMSE) values were
3.89 μg m⁻³ for PM2.5, 6.68 μg m⁻³ for NO2, and 34.3 μg m⁻³ for O3,
indicating good model performance. The mean absolute error (MAE)
was calculated as 2.91 μg m⁻³ for PM2.5, 3.52 μg m⁻³ for NO2, and
28.2 μg m⁻³ for O3. In addition, the mean bias (MB), mean normalized
bias (MNB), and mean normalized error (MNE) were determined to
be −0.06 μg m⁻³, 0.05, and 0.42 for PM2.5; −2.98 μg m⁻³, −0.20, and
0.39 for NO2; and −23.6 μg m⁻³, −0.22, and 0.36 for O3. The MNB and
MNE values were well within the thresholds recommended by the Epa
(2007), which are ±60% forMNB and 75% forMNE. This suggests that
the model results are robust, and the predicted concentrations of PM2.5,
NO2, and O3 are reliable.

Moreover, the model’s accuracy was comparable to previous
studies. For instance, Balamurugan et al. reported an average R value
of 0.55 for PM2.5 between in situ measurements and GEOS-Chem
simulations in 10 German cities before the COVID-19 pandemic
(January–May 2019) (Balamurugan et al., 2022). Similarly, Kong
et al. found an average R value of 0.67 for NO2 in the North China
Plain in 2010, while Lu et al. reported R values of 0.72 and 0.65 for
NO2 in China in 2019 and 2020, respectively (Kong et al., 2020; Lu
et al., 2024). Although the correlation for O3 was 0.53 from February
to March 2019 over China, as simulated by Lu et al., this was likely
due to the exclusion of significantly reduced NOX emission sites and
the limited number of ground observation stations (Lu et al., 2024).
In comparison, the R value for O3 in this study was higher, adding
reliability to the model predictions. These results also surpass those
of Sun et al. and Li et al., who reported R values of 0.65 (2019), 0.63
(2020), and 0.69 for O3, respectively (Li R. et al., 2023; Sun et al.,
2024a). Overall, the model-predicted concentrations of air
pollutants were both credible and satisfactory.

3.2 Impact of land transportation emissions
on air pollutants around the world

The PM2.5, NO2, and O3 concentrations derived from land
transportation emissions were estimated by subtracting the
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concentrations excluding land transportation emissions from the
total concentrations. The results indicated that the transportation-
related PM2.5 levels varied between 0.01 and 14.5 μg/m3 with a
median of 0.46 μg/m3 during February–April 2019 (Supplementary
Figure S2). The transportation-derived PM2.5 concentrations varied
between 0.01 and 13.3 μg/m3 with a median of 0.28 μg/m3 during
February–April 2020 (Figure 2). The transportation-related NO2

levels ranged from 0.02 to 9.66 μg/m3 with a median of 0.15 μg/m3

during February–April 2019 (Supplementary Figure S3). The
transportation-related NO2 concentrations varied between
0.01 and 7.34 μg/m3 with a median of 0.09 μg/m3 during
February–April 2020 (Figure 3). The O3 concentrations
associated with land transportation ranged from 0.35 to 35.1 μg/
m3 with a median of 7.68 μg/m3 during February–April 2019
(Supplementary Figure S4). The transportation-derived O3 levels
varied between 0.26 and 30.9 μg/m3 with a median of 2.78 μg/m3

during February–April 2020 (Figure 4).
The estimated transportation-derived PM2.5, NO2, and O3 levels

exhibited significant spatial variations on a global scale. At the spatial
scale, the transportation-related PM2.5 concentrations followed this
order: India [4.19 ± 2.12 (2019) and 4.25 ± 2.66 (2020) μg/m3] >

China (3.69 ± 1.68 and 2.89 ± 1.45 μg/m3) > Europe (3.54 ± 1.78 and
1.00 ± 0.48 μg/m3) > the US (1.17 ± 0.65 and 0.72 ± 0.42 μg/m3), which
was in good agreement with the spatial distribution of total PM2.5

concentrations (Lim et al., 2020). The transportation-related NO2 levels
in 2019 followed this order: Europe (1.47 ± 0.86 μg/m3) >China (1.15 ±
0.66 μg/m3) > India (1.06 ± 0.58 μg/m3) > the US (0.57 ± 0.35 μg/m3),
while the transportation-derived NO2 levels in 2020 followed this order:
China (0.85 ± 0.52 μg/m3) > India (0.83 ± 0.55 μg/m3) > Europe (0.63 ±
0.42 μg/m3) > the US (0.44 ± 0.28 μg/m3). The results suggested that
Europe suffered from serious NO2 pollution derived from land
transportation emissions during the business-as-usual period
(Cooper et al., 2022; Sun et al., 2024b). This phenomenon is not
surprising since the field measurements suggested that the NOX

control is not as efficient as once thought, especially in Europe,
where the transportation contribution to NOX concentrations is still
dominant (Ntziachristos et al., 2016; Ramacher et al., 2020; Vestreng
et al., 2009). Transportation-related O3 levels in 2019 displayed the
highest concentrations in the US (12.4 ± 6.58 μg/m3), followed by India
(11.1 ± 5.84 μg/m3) and Europe (11.0 ± 6.42 μg/m3), and the lowest
concentration observed in China (10.1 ± 4.96 μg/m3). However, the
transportation-derived O3 levels in 2020 showed the highest values in

FIGURE 1
Modeling accuracy of estimated PM2.5 (A), NO2 (B), and O3 (C) levels during February–April in 2019 and 2020 globally (Unit: μg/m3).

FIGURE 2
Spatial distributions of PM2.5 levels from land transportation emissions in February (A), March (B), and April (C) in 2020. (D) Mean concentrations of
PM2.5 derived from land transportation emissions during February–April 2020.
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India (4.84 ± 2.65 μg/m3), followed by China (3.34 ± 2.12 μg/m3) and
Europe (2.09 ± 1.12 μg/m3), and the lowest value in the US (1.74 ±
0.96 μg/m3). Themarked decrease in transportation-derivedO3 levels in
the US compared with other countries during the COVID-19 lockdown
might be contributed to more rapid decreases in NOX and VOC
emissions than in other regions (Shakoor et al., 2020; Sicard et al.,
2020). As recommended by Mertens et al., the transportation
contribution toward ozone net production has reached 21% in
North America, higher than 13% globally (Mertens et al., 2018).
Such research studies emphasized the importance of precursors on
the secondary formation of ozone globally.

The transportation-related PM2.5, NO2, and O3 concentrations
not only displayed remarkable spatial differences but also suffered
from marked variations during the COVID-19 period. The mean

concentrations of transportation-derived PM2.5, NO2, and O3

decreased by 20%, 36%, and 55%, respectively. Furthermore, the
decreasing ratios of air pollutants in different regions often suffered
from significant spatial discrepancies. In China, PM2.5, NO2, and O3

concentrations reduced by 21%, 26%, and 67%, respectively. In
India, PM2.5, NO2, and O3 levels decreased by 1%, 21%, and 56%,
respectively. In the United States and Europe, the transportation-
related O3 levels [−81% (Europe) and −86% (the US)] experienced
more rapid decreases compared with PM2.5 [−72% (Europe)
and −38% (the US)] and NO2 [−57% (Europe) and −23% (the
US)]. More significant decreases in transportation-related air
pollutant concentrations in the United States and Europe after
the COVID-19 outbreak might be associated with dense road
networks and land transportation emissions during the non-

FIGURE 3
Spatial distributions of NO2 levels from land transportation emissions in February (A), March (B), and April (C) in 2020. (D) Mean concentrations of
NO2 derived from land transportation emissions during February–April 2020.

FIGURE 4
Spatial distributions of O3 levels from land transportation emissions in February (A), March (B), and April (C) in 2020. (D)Mean concentrations of O3

derived from land transportation emissions during February–April 2020.
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lockdown period (Gaubert et al., 2021; Keller et al., 2021; Miyazaki
et al., 2021), as shown in Figure 5. In addition, it should be noted that
the decrease in transportation-related O3 was significantly higher
than the reductions in PM2.5 and NO2, which was in contrast with
the trends observed for shipping-related air pollutants (Sun et al.,
2024a). In general, the transportation-related NOX emission
reduction was much greater than that of VOCs due to different
source apportionments (Lidén et al., 1999; Liu et al., 2016; Shao et al.,
2016; Xu et al., 2018; Zhang et al., 2020; Zhao et al., 2019), and thus,
the O3 might increase, especially in VOC-limited regions (Grange
et al., 2021; Wang et al., 2023). However, the transportation-related
O3 concentrations displayed decreases in both VOC- and
NOX-limited areas during the COVID-19 period. It was assumed
that the deep emission reduction in VOC and NOX could facilitate
the decreases in O3 concentrations (Liu and Shi, 2021; Sillman, 1999;
Xiang et al., 2020).

3.3 Health benefits of transportation-related
PM2.5, NO2, and O3 exposures

Based on Equations 1, 2 from Section 2.3, the all-cause
mortalities attributable to PM2.5, NO2, and O3 levels induced by
transportation emissions were estimated. These methods, previously
applied for assessing shipping emissions (Contini and Merico, 2021;
Tian et al., 2013; Zhang et al., 2021), offer insights into the health
impacts of air pollution. In total, transportation-related PM2.5

exposure resulted in 243,431 (95% CI: 196,813, 290,048) and
179,884 (95% CI: 149,216, 210,551) deaths globally in 2019 and
2020, respectively. Among the most affected regions, India showed
the highest mortality rates, with 55,513 (95% CI: 52,846, 58,179) and
53,191 (95% CI: 51,301, 55,080) cases in early 2019 and 2020,
respectively. China followed closely, recording 58,816 (95% CI:
57,633, 59,998) cases in 2019 and 49,709 (95% CI: 48,033,

51,385) in 2020. The slight decline in India’s numbers between
2019 and 2020 is attributed to the late imposition of COVID-19
lockdownmeasures (starting late-March 2020) (Sharma et al., 2020).
Meanwhile, China’s decrease in both PM2.5 levels and related
mortalities reflects the earlier implementation of lockdown
measures, leading to improved air quality (Chen et al., 2020; He
et al., 2020). Europe recorded similar PM2.5-related mortalities in
early 2019, with 51,993 (95% CI: 35,101, 68,884) deaths, compared
to a significant decrease in 2020 with 18,635 (95% CI: 11,631,
25,638) cases. The United States experienced the lowest numbers,
with 17,481 (95% CI: 10,555, 24,408) in 2019 and 12,134 (95% CI:
7,233, 17,034) in 2020. The health benefits from the reduction in
transportation-related PM2.5 emissions were estimated based on the
decreased number of cases, as shown in Table 1. The reduction in
mortalities amounted to 9,107 (95% CI: 8,613, 9,601) in China, 5,348
(95% CI: 3,322, 7,374) in the United States, 33,358 (95% CI: 23,471,
43,246) in Europe, 2,322 (95% CI: 1,545, 3,098) in India, and 63,547
(95% CI: 47,597, 79,497) globally.

The all-cause mortalities and health benefits associated with
transportation-related NO2 emissions were also calculated. Globally,
transportation-related NO2 exposure resulted in 154,195 (95% CI:
90,311, 218,079) and 101,510 (95% CI: 58,000, 145,020) cases in
early 2019 and 2020, respectively. In China, the estimated mortalities
were 84,759 (95% CI: 51,886, 117,631) in 2019 and 49,709 (95% CI:
48,033, 51,385) in 2020. Similarly, in India, NO2-related all-cause
mortalities were 54,967 (95% CI: 30,795, 79,140) in 2019 and 40,159
(95% CI: 21,742, 58,576) in 2020 during the February–April period.
In Europe, the number of cases attributed to NO2 exposure from
transportation emissions was 16,040 (95% CI: 8,787, 23,293) in
2019, decreasing to 2,628 (95% CI: 1,388, 3,868) in 2020. The
United States exhibited the lowest health benefits, with 1,501
(95% CI: 796, 2,207) cases in 2019 and 610 (95% CI: 326, 895)
in 2020. Globally, the reduction in NO2-related mortalities due to
decreased transportation emissions was estimated at 52,685 (95%

FIGURE 5
Spatial distributions of PM2.5 (A), NO2 (B), and O3 (C) concentrations before and during the COVID-19 period derived from land transportation
emissions on a global scale.
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CI: 32,310, 73,059). Regionally, the health benefits were estimated as
follows: China, 23,363 (95% CI: 15,548, 31,178); the United States,
891 (95% CI: 470, 1,312); Europe, 13,412 (95% CI: 7,399, 19,425);
and India, 14,808 (95% CI: 9,053, 20,564).

The ambient O3 concentrations affected by the COVID-19
lockdown were also simulated, and the resulting health benefits
from transportation emissions were estimated to be 25,106 (95%
CI: 21,621, 28,591) in China, 21,497 (95% CI: 19,638, 23,357) in
the United States, 33,422 (95% CI: 30,802, 36,043) in Europe, and
29,323 (95% CI: 24,821, 33,824) in India. During the lockdown
period, our simulations indicated a slight increase in O3

concentration globally, consistent with previous research (Bi
et al., 2022; Deroubaix et al., 2021; Keller et al., 2021).
Globally, the total O3-related health benefits were estimated at
231,980 (95% CI: 210,373, 253,586), making it the most
significant of the three pollutants examined. Summarizing the
health benefits of all three pollutants, the transportation-related
benefits were 57,576 (95% CI: 49,005, 66,147) in China, 27,736
(95% CI: 24,954, 30,518) in the United States, 80,193 (95% CI:
68,327, 92,058) in Europe, and 46,453 (95% CI: 39,104, 53,801) in
India. Notably, while Europe represents approximately 9.5% of
the global population, it accounted for over 24.1% of the health
benefits, particularly with 52.5% of the PM2.5-related benefits and
25.5% of the NO2-related benefits. This highlights the substantial
health benefits of reduced transportation emissions and
emphasizes the severe situation of transportation emissions in
Europe (Matthias et al., 2021; Ntziachristos et al., 2016;
Rodríguez-Sánchez et al., 2024). Similarly, the United States,
representing 4.2% of the global population, contributed 8.0%
of the total health benefits.

It is important to acknowledge that the relative risk (RR) values
used to estimate health impacts can vary significantly across
different regions (Chen and Sun, 2021). As a result, this
introduces uncontrolled uncertainties into the simulation process.
Future simulations should focus on determining region-specific RR
values, particularly in countries with smaller populations, to
improve the accuracy of predictions.

4 Conclusions and implications

In this study, the GEOS-Chemmodel was employed to assess the
health impacts associated with the reduction in transportation
emissions by removing the corresponding contributions during
February–April of both 2019 and 2020, enabling the
quantification of the additional effects of the COVID-19

lockdown. Initially, transportation-related emissions were
included in the pollutant simulations but were subsequently
excluded for a separate simulation. The difference between these
simulations was considered the health benefit derived from the
reduction in transportation emissions. Therefore, the change in
transportation emissions between 2019 and 2020 accounted for
the health benefit differences observed between these 2 years. The
simulation of selected pollutants in this study demonstrated strong
agreement with corresponding observations (R = 0.61 for PM2.5,
0.65 for NO2, and 0.72 for O3).

According to the simulation, significant spatial variations were
observed in transportation-related PM2.5, NO2, and O3 levels. The
estimated PM2.5 concentrations followed this order: India > China >
Europe > the United States in both 2019 and 2020, a spatial
distribution consistent with the findings of Lim et al. (2020). The
predicted NO2 concentrations presented a different pattern between
2019 and 2020. When comparing the influence of excluding
transportation emissions, the results showed that the world
(36%) > China (26%) > India (21%) > the United States
(−23%) > Europe (−57%). This suggests that the COVID-19
lockdown caused a significant decrease in NO2 levels in China
and India, while globally, NO2 concentrations were suppressed
except in Europe and the United States. The lockdowns, which
began in early March 2020 in Europe and mid-March in the
United States—coinciding with the same period in India—led to
varying impacts on NO2 levels (Berman and Ebisu, 2020; Matthias
et al., 2021; Nigam et al., 2021; Sharma et al., 2020). The industrial
emissions in China and India contributed to higher NO2 levels than
those in Europe and the United States, where transportation
emissions dominated. As a result, the decrease in NO2

concentrations in China and India was less pronounced
compared to the steep declines in Europe and the United States,
where transportation was the primary source of NO2 emissions.
Regarding O3, the reduction in transportation-related emissions
caused a larger decrease in O3 levels compared to PM2.5 and
NO2, which contrasts with patterns observed for shipping
emissions (Sun et al., 2024a). O3 levels are generally controlled
by photochemical reactions, as explained by the Empirical Kinetic
Modeling Approach (EKMA) (Martinez et al., 1983), which suggests
that reducing NOX and VOCs emissions may improve O3

concentrations. This was further supported by the observed
higher O3 concentrations during the lockdown period compared
to pre-lockdown levels (Figure 4). Overall, effective O3 pollution
control requires a comprehensive approach, addressing both NOX

and VOC emissions alongside the local and long-range transport of
these pollutants.

TABLE 1 Health benefits (95% CI: lower, upper) associated with PM2.5, NO2, and O3 induced by land transportation emission reduction during the COVID-19
period.

PM2.5 NO2 O3 Total

China 9,107 (8,613, 9,601) 23,363 (15,548, 31,178) 25,106 (21,621, 28,591) 57,576 (49,005, 66,147)

The United States 5,348 (3,322, 7,374) 891 (470, 1,312) 21,497 (19,638, 23,357) 27,736 (24,954, 30,518)

Europe 33,358 (23,471, 43,246) 13,412 (7,399, 19,425) 33,422 (30,802, 36,043) 80,193 (68,327, 92,058)

India 2,322 (1,545, 3,098) 14,808 (9,053, 20,564) 29,323 (24,821, 33,824) 46,453 (39,104, 53,801)

World 63,547 (47,597, 79,497) 52,685 (32,310, 73,059) 231,980 (210,373, 253,586) 348,212 (314,502, 381,921)
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The health benefits of reducing PM2.5, NO2, and O3 emissions
due to transportation-related activities were evaluated across key
global regions. The all-cause mortalities associated with these
pollutants were simulated to be 65,347 (95% CI: 47,597, 79,497)
for PM2.5, 52,685 (95% CI: 32,310, 73,059) for NO2, and 231,980
(95% CI: 210,373, 253,586) for O3. Among the regions studied,
Europe saw the greatest health benefits, with estimated reductions in
mortalities at 80,193 (95% CI: 68,327, 92,058), followed by China
[57,576 (95% CI: 49,005, 66,147)], India [46,453 (95% CI: 39,104,
53,801)], and the United States [27,736 (95% CI: 24,954, 30,518)].
Although previous studies have investigated this by regional or
source differences (Cesaroni et al., 2012; Host et al., 2020; Liu et al.,
2021; Pappin et al., 2016; Zhang et al., 2021), the transportation
emission reduction-related health benefits were derived globally in
this study, providing a valuable perspective on the long-term effect
of the COVID-19 lockdown.

The findings from this research also hold significant global
implications for policy-making. First, the positive health impacts
observed from the reduction of transportation emissions
demonstrate that limiting vehicle usage can substantially
protect populations from pollutant exposure. This underscores
the importance of implementing stricter emission standards for
fuel-powered vehicles and encouraging the adoption of cleaner,
alternative energy vehicles worldwide. As transportation is one of
the major sources of pollution globally, future efforts must focus
on imposing greater restrictions on emissions in this sector.
Moreover, even during the global lockdown in April 2020,
when PM2.5 and NO2 concentrations were at their lowest, O3

levels peaked globally—except in South America, where high
cloud cover and frequent rainfall likely contributed to lower
ozone concentrations (Cazorla et al., 2021; Gaubert et al.,
2021). Of particular concern is the fact that transportation-
related ozone exposure accounted for most health benefits
across the three selected pollutants, emphasizing the critical
role of transportation-emitted precursors (such as VOCs and
NOX) in ozone formation. These precursors should be strictly
regulated in future policies.

It is important to acknowledge the limitations to this study.
Transportation emissions globally can influence several other factors,
such as aerosol optical depth, surface temperature, and the local
meteorological transformations that occur in response to the absence
of these emissions. Additionally, the health impacts associated with
reduced transportation emissions may extend beyond immediate
respiratory conditions, potentially affecting crop growth, local
photosynthesis, and even the long-term effects of COVID-19
infections. To better estimate health benefits and minimize
uncertainties, future studies should incorporate more accurate
observations and detailed variable data in modeling efforts.
Furthermore, identifying effective strategies for managing secondary
pollutants like O3 is crucial for safeguarding human health worldwide.
Furthermore, the health benefits from other specific sources remain
uninvestigated (i.e., industrial emissions). As the most important factor
in emission reduction, the COVID-19 lockdown plays a significant role
in global pollution levels and climate change (Abdullah et al., 2024; Liu
et al., 2024; Tautan et al., 2024). More research studies are
recommended on the concentration reduction of pollutants to gain
a better understanding of regional secondary transformation and global
pollution formation.
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